JPH0640495B2 - All solid state secondary battery - Google Patents
All solid state secondary batteryInfo
- Publication number
- JPH0640495B2 JPH0640495B2 JP1067063A JP6706389A JPH0640495B2 JP H0640495 B2 JPH0640495 B2 JP H0640495B2 JP 1067063 A JP1067063 A JP 1067063A JP 6706389 A JP6706389 A JP 6706389A JP H0640495 B2 JPH0640495 B2 JP H0640495B2
- Authority
- JP
- Japan
- Prior art keywords
- solid
- secondary battery
- silver
- solid electrolyte
- state secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、全固体二次電池に関する。TECHNICAL FIELD The present invention relates to an all solid state secondary battery.
従来の技術 現在電池は、電解質に液体を使用しているため、電解質
の漏液等の問題を皆無とすることができない。こうした
問題を解決し信頼性を高めるため、また素子を小型,薄
膜化するためにも、液体電解質に代えて固体電解質を用
い、電池を全固体化する試みが各方面でなされている。2. Description of the Related Art Since a battery currently uses a liquid as an electrolyte, problems such as electrolyte leakage cannot be eliminated. In order to solve these problems and improve reliability, and to reduce the size and thickness of the device, attempts have been made in various fields to use a solid electrolyte instead of a liquid electrolyte to make the battery all solid.
ここで用いられる固体電解質としては、銅イオン導電
性,銀イオン導電性,リチウムイオン導電性のものなど
があるが、例えばRbCL−CuCl−CuI系の銅イオン導電性
固体電解質を用い、電極活物質として正極に二硫化チタ
ン(TiS2)や二硫化ニオブ(NbS2)等の層状構造を持つ
遷移金属二硫化物やCuxMo6S9で表わされる銅シェブレル
相化合物を用い、負極に金属銅や銅シェブレル相化合物
を用いた全固体二次電池等がその一例である。The solid electrolyte used here includes those having copper ion conductivity, silver ion conductivity, lithium ion conductivity, and the like. For example, a RbCL-CuCl-CuI-based copper ion conductive solid electrolyte is used, and an electrode active material is used. As a positive electrode, a transition metal disulfide having a layered structure such as titanium disulfide (TiS 2 ) or niobium disulfide (NbS 2 ) or a copper chevrel phase compound represented by Cu x Mo 6 S 9 is used as a positive electrode, and a metal copper is used as a negative electrode. An example thereof is an all-solid secondary battery using a copper chevrel phase compound or the like.
しかしながら、以上のように固体電解質としてRbCl−Cu
Cl−CuI系の銅イオン伝導性固体電解質を用い素子を構
成した場合、固体電解質が大気中の水分と酸素の存在に
よって分解を起こす、また電極活性物質として用いられ
る硫化が酸素の存在下で、特に高温において酸化されや
すいといった問題点を有していた。However, as described above, RbCl-Cu is used as the solid electrolyte.
When a device is constructed using a Cl-CuI-based copper ion conductive solid electrolyte, the solid electrolyte undergoes decomposition in the presence of moisture and oxygen in the atmosphere, and sulfide used as an electrode active substance is present in the presence of oxygen. Especially, it has a problem that it is easily oxidized at a high temperature.
上記の問題点を解決するため電極活物質として銀と遷移
金属酸化物よりなる銀と遷移金属の複合酸化物、固体電
解質として銀イオン導電性の固体電解質を用い、複合酸
化物の層間における銀のインターカレーション・デイン
ターカレーション反応により充放電を行なう全固体二次
電池の提案が発明者らによってなされている。In order to solve the above problems, a composite oxide of silver and a transition metal consisting of silver and a transition metal oxide is used as an electrode active material, and a silver ion conductive solid electrolyte is used as a solid electrolyte. The inventors have proposed a solid-state secondary battery that charges and discharges by an intercalation / deintercalation reaction.
発明が解決しようとする課題 しかしながら、遷移金属酸化物として酸化バナジウムを
用いた場合、複合酸化物中の銀の含有量が少ない領域に
おいては銀のインターカレーション・デインターカレー
ション反応が電気化学的に起こりにくい結晶構造を持つ
相が生じるため、エネルギー密度が低くなるといった課
題を有している。However, when vanadium oxide is used as the transition metal oxide, the intercalation / deintercalation reaction of silver is electrochemical in the region where the content of silver in the composite oxide is low. Since a phase having a crystal structure that hardly occurs is generated, there is a problem that the energy density becomes low.
また一方、銀の含有量が多い領域においては、複合酸化
物中に金属銀が混在する。そのため、銀のインターカレ
ーション・デインターカレーション反応を電気化学的に
起こす結晶構造を持つ相の電極活物質の重量当りに存在
する割合が小さくなり、エネルギー密度が低くなるとい
った課題を有している。On the other hand, in the region where the silver content is high, metallic silver is mixed in the composite oxide. Therefore, there is a problem that the proportion of the phase having a crystal structure that electrochemically causes the intercalation / deintercalation reaction of silver in the weight of the electrode active material is small and the energy density is low. There is.
また固体電解質として銀イオン導電性固体電解質を用
い、充放電反応に銀の酸化・還元反応を用いた電池を構
成した場合、銀イオンの還元反応により生じた金属銀
は、銅やリチウムに比べデンドライトとして成長し易い
ため、充放電の繰り返しにより特に充電時の負極におい
てデンドライトが成長し、やがては両極の短絡が生じ易
いといった課題を有している。When a battery using a silver ion conductive solid electrolyte as the solid electrolyte and using the oxidation / reduction reaction of silver for the charge / discharge reaction is used, metallic silver produced by the reduction reaction of silver ions is more dendrite than copper or lithium. Therefore, there is a problem that dendrites grow particularly in the negative electrode during charging due to repeated charging and discharging, and short-circuiting of both electrodes is likely to occur eventually.
本発明は以上のような課題を解決し、エネルギー密度が
高く、金属銀のデンドライトの成長による両極の短絡の
ない全固体二次電池を提供する事を目的とする。An object of the present invention is to solve the above problems and to provide an all-solid secondary battery having a high energy density and not causing a short circuit between both electrodes due to the growth of metallic silver dendrites.
課題を解決するための手段 本発明は、エネルギー密度の高い全固体二次電池を構成
するために、電極活物質として、AgxV2O5-y(0.
35<x,y酸素欠損)で表わされる銀とバナジウム酸
化物、特にAgxV2O5-y(0.6≦x≦0.8,yは
酸素欠損)で表わされる銀とバナジウム酸化物よりなる
複合酸化物を用いる。Means for Solving the Problems The present invention provides Ag x V 2 O 5-y (0.
35 <x, y oxygen deficiency) and particularly silver and vanadium oxide represented by Ag x V 2 O 5-y (0.6 ≦ x ≦ 0.8, y is oxygen deficiency) Is used.
またデンドライトの成長を防ぐために、正極がAgxV2
O5-y(0.6≦x≦0.8,yは酸素欠損)で表わさ
れる銀とバナジウム酸化物よりなる複合酸化物をM1m
olを含み、負極が、AgvV2O5-w(0.6≦v≦
0.8,wは酸素欠損)で表わされる銀とバナジウム酸
化物よりなる複合酸化物をM2mol含む時、0.6≦
x≦0.7のときQ1=M1(1.4x−0.55),
0.7≦x≦0.8のときQ1=M1(0.6x+0.0
1),0.6≦v≦0.7のときQ2=M2(0.6v−
0.18),0.7≦x≦0.8のときQ2=M2(−
0.6v+0.66)としたときに、Q1≦Q2の条件を
みたすように、全固体二次電池を構成する。In addition, in order to prevent the growth of dendrites, the positive electrode is Ag x V 2
A composite oxide composed of silver and vanadium oxide represented by O 5-y (0.6 ≦ x ≦ 0.8, y is oxygen deficiency) is M 1 m
and the negative electrode contains Ag v V 2 O 5-w (0.6 ≦ v ≦
0.8, w is an oxygen deficiency), and when M 2 mol of a composite oxide composed of silver and vanadium oxide is included, 0.6 ≦
When x ≦ 0.7, Q 1 = M 1 (1.4x−0.55),
When 0.7 ≦ x ≦ 0.8, Q 1 = M 1 (0.6x + 0.0
1), when 0.6 ≦ v ≦ 0.7, Q 2 = M 2 (0.6v−
0.18), and 0.7 ≦ x ≦ 0.8, Q 2 = M 2 (−
0.6v + 0.66), the all-solid secondary battery is constructed so as to satisfy the condition of Q 1 ≦ Q 2 .
作用 AgxV2O5-y(yは酸素欠損)で表される銀と酸化バ
ナジウムよりなる複合酸化物においては、銀の含有量に
より、α相、β相、δ相の結晶構造が現れる。これらの
結晶相のうち、銀イオン導電性固体電解質と組み合わせ
た際に最も電気化学的な活性を示す結晶相はδ相であ
る。従って、銀イオン導電性固体電解質を用いた全固体
二次電池の電極活物質として、δ相の結晶構造が存在す
るAgxV2O5-y(0.35<x,yは酸素欠損)で表
される組成の銀と酸化バナジウムよりなる複合酸化物を
用いることで、エネルギー密度の高い全固体二次電池を
構成することができる。特にx≧0.6で表わされる範
囲においてはAg0.35V2O5で表わされる相がほとんど
見られなくなるため、またx≦0.8の範囲においては
複合酸化物中に金属銀がほとんど混在しなくなるため特
に好ましく用いられる。In the composite oxide composed of silver and vanadium oxide represented by Ag x V 2 O 5-y (y is oxygen deficiency), the crystal structure of α phase, β phase, and δ phase appears depending on the content of silver. . Among these crystal phases, the crystal phase which shows the most electrochemical activity when combined with the silver ion conductive solid electrolyte is the δ phase. Therefore, Ag x V 2 O 5-y (0.35 <x, y is oxygen deficiency) having a δ-phase crystal structure is used as an electrode active material of an all solid state secondary battery using a silver ion conductive solid electrolyte. By using a composite oxide composed of silver and vanadium oxide having a composition represented by, an all-solid secondary battery having a high energy density can be constructed. Particularly, in the range represented by x ≧ 0.6, the phase represented by Ag 0.35 V 2 O 5 is hardly seen, and in the range represented by x ≦ 0.8, metallic silver is almost mixed in the composite oxide. It is particularly preferably used because it disappears.
また金属銀のデンドライトは、充電時の負極における Ag++e-→Ag の反応によって進行する。金属銀のデンドライト成長を
防ぐためには、負極において還元反応によって生じた銀
を複合酸化層間中に完全にインターカレートする必要が
ある。AgxV2O5-y(0.6≦x≦0.8,yは酸素
欠損)で表わされる複合酸化物は1mol当り、0.6
≦x≦0.7のとき(1.4x−0.55)mol,
0.7≦x≦0.8のとき(0.6x+0.01)mo
lの銀をデインターカレートすることができ、0.6≦
x≦0.7のとき(0.6x−0.18)mol,0.
7≦x≦0.8のとき(−0.6x+0.66)mol
の銀をインターカレートすることができる。充電時の負
極において還元された銀を複合酸化物の層間に完全にイ
ンターカレートし、デンドライトの発生を防ぎ、なおか
つエネルギー密度を高いものにしようとすれば、正極か
ら銀が完全にデインターカレートしてもなおかつ負極に
銀がインターカレートできる状態であることが必要であ
る。そのため、正極の活物質としてAgxV2O
5-y(0.6≦x≦0.8,yは酸素欠損)を、M1mo
l、負極の活物質としてAgvV2O5-w(0.6≦v≦
0.8.wは酸素欠損)をM2mol用いた全固体二次
電池を構成した場合、0.6≦x≦0.7のときQ1=
M1(1.4x−0.55),0.7<x≦0.8のと
きQ1=M1(0.6x+0.01)とし、0.6≦v≦
0.7のときQ2=M2(0.6v−0.18),0.7
<v≦0.8のときQ2=M2(−0.6v+0.66)
としたときに、Q1≦Q2の範囲においては正極から銀が
完全にデインターカレートしてもなおかつ負極に銀がイ
ンターカレートできる状態となり、充放電の繰り返しに
よるデンドライト成長による両極の短絡を防ぐことがで
きる。The metallic silver dendrite proceeds by the reaction of Ag + + e − → Ag in the negative electrode during charging. In order to prevent the dendrite growth of metallic silver, it is necessary to completely intercalate the silver produced by the reduction reaction in the negative electrode into the complex oxide layer. The complex oxide represented by Ag x V 2 O 5-y (0.6 ≦ x ≦ 0.8, y is oxygen deficiency) is 0.6
When ≦ x ≦ 0.7, (1.4x−0.55) mol,
When 0.7 ≦ x ≦ 0.8 (0.6x + 0.01) mo
l silver can be deintercalated, 0.6 ≦
When x ≦ 0.7, (0.6x−0.18) mol, 0.
When 7 ≦ x ≦ 0.8 (−0.6x + 0.66) mol
Silver can be intercalated. When the reduced silver in the negative electrode during charging is completely intercalated between the layers of the composite oxide to prevent dendrite generation and to have a high energy density, the silver from the positive electrode is completely deintercalated. However, it is necessary that silver be intercalated in the negative electrode. Therefore, Ag x V 2 O is used as the positive electrode active material.
5-y (0.6 ≤ x ≤ 0.8, y is oxygen deficiency), M 1 mo
l, Ag v V 2 O 5-w (0.6 ≦ v ≦
0.8. When an all-solid secondary battery using M 2 mol (where w is oxygen deficiency) is used, when 0.6 ≦ x ≦ 0.7, Q 1 =
When M 1 (1.4x−0.55) and 0.7 <x ≦ 0.8, Q 1 = M 1 (0.6x + 0.01), and 0.6 ≦ v ≦
When 0.7, Q 2 = M 2 (0.6v−0.18), 0.7
<V ≦ 0.8, Q 2 = M 2 (−0.6v + 0.66)
In the range of Q 1 ≦ Q 2 , even if silver is completely deintercalated from the positive electrode, silver is still able to intercalate to the negative electrode, and short circuit of both electrodes due to dendrite growth due to repeated charging and discharging. Can be prevented.
この電極材料に対して用いられる銀イオン導電性の固体
電解質としてはどの様な組成の銀イオン導電性の固体電
解質を用いても素子を構成することが可能であるが、W
O3,SiO2,M0O3,V2O5から選ばれる化合物とA
gI,Ag2Oから合成された固体電解質は、すべて吸
湿性をもたない材料から合成することになるため、材料
合成を乾燥雰囲気で行う必要がなく、また合成された固
体電解質も大気中の水分に対して安定であるため全固体
二次電池の構成も大気中で行うことができることや、構
成された全固体二次電池の耐候性の観点から好ましく用
いられる。As the silver ion conductive solid electrolyte used for this electrode material, the element can be constituted by using any composition of the silver ion conductive solid electrolyte.
A compound selected from O 3 , SiO 2 , M 0 O 3 and V 2 O 5 and A
Since the solid electrolyte synthesized from gI and Ag 2 O is all synthesized from a material that does not have hygroscopicity, it is not necessary to synthesize the material in a dry atmosphere. It is preferably used from the viewpoint of being stable against moisture and enabling the construction of the all-solid-state secondary battery to be performed in the atmosphere, and the weather resistance of the constructed all-solid-state secondary battery.
またCrO3,P2O5,B2O3から選ばれる化合物とAgI,A
g2Oから合成された固体電解質は、原材料として吸湿性
のあるものを含んでいるが、合成された固体電解質は湿
度に対し安定であることから同様に好ましく用いられ
る。In addition, a compound selected from CrO 3 , P 2 O 5 , B 2 O 3 and AgI, A
The solid electrolyte synthesized from g 2 O contains a hygroscopic material as a raw material, but the synthesized solid electrolyte is also preferably used because it is stable against humidity.
実施例 以下、本発明の実施例を図面を用いて説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.
(実施例1) 最初に、AgI,Ag2O,WO3をモル比で4:1:1の比と
なるように秤量し、アルミナ乳鉢で混合した。この混合
物を加圧成形しペレット状とした後、パイレックス管中
に減圧封入し、400℃で17時間溶融、反応させた。
その反応物を乳鉢で200メッシュ以下に粉砕し、4Ag
I・Ag2WO4で表わされる銀イオン導電性の固体電解質を
得た。Example 1 First, AgI, Ag 2 O and WO 3 were weighed so that the molar ratio was 4: 1: 1 and mixed in an alumina mortar. This mixture was pressure-molded into pellets, which were then sealed in a Pyrex tube under reduced pressure and melted and reacted at 400 ° C. for 17 hours.
Grind the reaction product to less than 200 mesh in a mortar and
A silver ion conductive solid electrolyte represented by I · Ag 2 WO 4 was obtained.
次に銀と遷移金属酸化物としてバナジウム酸化物を用
い、銀とバナジウムの複合酸化物を以下の方法により合
成した。V2O5で表わされるバナジウム酸化物と金属銀
をモル比で1:0.7となるよう秤量し、乳鉢で混合し
た。その混合物を同じくペレット状に加圧成形し、石英
管中に減圧封入し、600℃で48時間反応させ、同じ
く200メッシュ以下に粉砕し、Ag0.7V2O5で表わ
される銀とバナジウムの複合酸化物を得た。Next, using vanadium oxide as silver and a transition metal oxide, a composite oxide of silver and vanadium was synthesized by the following method. Vanadium oxide represented by V 2 O 5 and metallic silver were weighed out in a molar ratio of 1: 0.7 and mixed in a mortar. The mixture was similarly pressure-molded into pellets, sealed in a quartz tube under reduced pressure, reacted at 600 ° C. for 48 hours, pulverized to 200 mesh or less, and a composite of silver and vanadium represented by Ag 0.7 V 2 O 5. An oxide was obtained.
このようにして得た銀と酸化バナジウムよりなる複合酸
化物の正極活性物質としての特性を評価するため、以下
の方法で全固体二次電池を構成した。In order to evaluate the characteristics of the composite oxide composed of silver and vanadium oxide thus obtained as a positive electrode active material, an all solid state secondary battery was constructed by the following method.
以上のようにして得られた固体電解質と各々の複合酸化
物を重量比で1:1の比で混合し、全固体二次電池用の
正極材料を得た。この電極材料を200mg秤量し、4
ton/cm2で10mmφに加圧成形し正極ペレット
を得た。The solid electrolyte obtained as described above and each composite oxide were mixed at a weight ratio of 1: 1 to obtain a positive electrode material for an all solid state secondary battery. 200 mg of this electrode material is weighed and 4
A positive electrode pellet was obtained by pressure molding to 10 mmφ at ton / cm 2 .
また負極活物質としては金属銀を用い、金属銀粉末と以
上のようにして得られた固体電解質を重量比で1:1の
比に混合したものを上記と同様に200mg秤量し、4
ton/cm2で10mmφに加圧成形し負極ペレット
を得た。Further, metallic silver was used as the negative electrode active material, metallic silver powder and the solid electrolyte obtained as described above were mixed at a weight ratio of 1: 1, and 200 mg was weighed in the same manner as above.
A negative electrode pellet was obtained by pressure molding to 10 mmφ at ton / cm 2 .
以上のようにして得られた各々正極,負極ペレットを固
体電解質400mgを介して配し、全体を4ton/c
m2で加圧圧接し固体電池素子を得た。この固体電池素
子に錫鍍金銅線のリードをカーボンペーストにより接着
し、全体をエポキシ系の樹脂で封じ全固体二次電池Aを
得た。The positive and negative electrode pellets obtained as described above were placed through 400 mg of solid electrolyte, and the whole was 4 ton / c.
A solid battery element was obtained by press-contacting with m 2 . A lead of a tin-plated copper wire was adhered to this solid battery element with a carbon paste, and the whole was sealed with an epoxy resin to obtain an all-solid secondary battery A.
また同様に、V2O5で表わされるバナジウム酸化物と金
属銀をモル比で1:0.3,1:0.5,1:0.6,
1:0.65,1:0.8,1:1.0,1:1.2と
なるよう秤量し、上記と同様の方法でAg0.3V2O5,
Ag0.5V2O5,Ag0.6V2O5,Ag0.65V2O5,Ag
0.8V2O5,Ag1.0V2O5,Ag1.2V2O5で表わされ
る銀とバナジウムの複合酸化物を得、同様の方法で全固
体二次電池B(電極活物質としてAg0.3V2O5を用い
たもの),全固体二次電池C(電極活物質としてAg
0.5V2O5を用いたもの),全固体二次電池D(電極活
物質としてAg0.6V2O5を用いたもの),全固体二次
電池E(電極活物質としてAg0.65V2O5を用いたも
の),全固体二次電池F(電極活物質としてAg0.8V2
O5を用いたもの),全固体二次電池G(電極活物質とし
てAg1.0V2O5を用いたもの),全固体二次電池H(電
極活物質としてAg1.2V2O5を用いたもの)を得た。Similarly, the vanadium oxide represented by V 2 O 5 and metallic silver are used in a molar ratio of 1: 0.3, 1: 0.5, 1: 0.6,
Weigh it so that it becomes 1: 0.65, 1: 0.8, 1: 1.0, 1: 1.2, and in the same manner as above, Ag 0.3 V 2 O 5 ,
Ag 0.5 V 2 O 5 , Ag 0.6 V 2 O 5 , Ag 0.65 V 2 O 5 , Ag
A composite oxide of silver and vanadium represented by 0.8 V 2 O 5 , Ag 1.0 V 2 O 5 , and Ag 1.2 V 2 O 5 was obtained, and an all solid state secondary battery B (Ag 0.3 V as an electrode active material) was obtained by the same method. 2 O 5 ), all-solid secondary battery C (Ag as electrode active material)
0.5 V 2 O 5 ), all-solid secondary battery D (using Ag 0.6 V 2 O 5 as an electrode active material), all-solid secondary battery E (Ag 0.65 V 2 O as an electrode active material) 5 ), all-solid secondary battery F (Ag 0.8 V 2 as an electrode active material)
O 5 ), all-solid secondary battery G (using Ag 1.0 V 2 O 5 as electrode active material), all-solid secondary battery H (using Ag 1.2 V 2 O 5 as electrode active material) I got).
これら全固体二次電池A,B,C,D,E,F,G,H
を用い、0.25V〜0.5V,20℃における1mA
の定電流充放電を行なった。その結果を第1図,第2図
に示す。These all solid state secondary batteries A, B, C, D, E, F, G, H
1mA at 0.25V to 0.5V, 20 ° C
Was charged and discharged at a constant current. The results are shown in FIGS. 1 and 2.
正極活物質としてAg0.3V2O5を用いた全固体二次電
池Bにおいては、ほとんど充放電を行なうことができな
いのに対し、本発明による全固体二次電池A,C,D,
E,F,G,Hでは充放電を行なうことができ、特にA
gxV2O5-y(0.6≦x≦0.8)で表わされる銀と
酸化バナジウムよりなる複合酸化物を正極活物質とした
全固体二次電池A,D,E,Fにおいては充放電容量が
高いものになっており、このような複合酸化物を正極活
物質として用いた場合、エネルギー密度の高い全固体二
次電池を構成できることがわかる。In the all-solid-state secondary battery B using Ag 0.3 V 2 O 5 as the positive electrode active material, almost no charge and discharge can be performed, whereas all-solid-state secondary batteries A, C, D according to the present invention,
E, F, G, H can be charged and discharged, especially A
In all solid state secondary batteries A, D, E and F using a composite oxide composed of silver and vanadium oxide represented by g x V 2 O 5-y (0.6 ≦ x ≦ 0.8) as a positive electrode active material Has a high charge / discharge capacity, and it can be seen that when such a composite oxide is used as a positive electrode active material, an all solid state secondary battery having a high energy density can be constructed.
(実施例2) 次に、実施例1で得た銀と酸化バナジウムよりなる複合
酸化物の負極活物質としての特性を評価するため、以下
の方法で全固体二次電池を構成した。(Example 2) Next, in order to evaluate the characteristics of the composite oxide composed of silver and vanadium oxide obtained in Example 1 as a negative electrode active material, an all-solid secondary battery was constructed by the following method.
銀イオン導電性固体電解質は、以下の方法により合成し
た。AgI,Ag2M0O4をモル比で3:1の比となるよう
に秤量し、アルミナ乳鉢で混合した。この混合物をパイ
レックス管中で500℃で10時間溶融、反応させた
後、融液を直接液体窒素中に注ぎ込み急冷した。以上の
ようにして得られた反応物を乳鉢で200メッシュ以下
に粉砕し3AgI・Ag2M0O4表わされる銀イオン導電性
の固体電解質を得た。The silver ion conductive solid electrolyte was synthesized by the following method. AgI and Ag 2 M 0 O 4 were weighed in a molar ratio of 3: 1 and mixed in an alumina mortar. This mixture was melted and reacted in a Pyrex tube at 500 ° C. for 10 hours, and then the melt was directly poured into liquid nitrogen and quenched. The reaction product obtained as described above was crushed to 200 mesh or less in a mortar to obtain a silver ion conductive solid electrolyte represented by 3AgI.Ag 2 M 0 O 4 .
以上のようにして得た銀イオン伝導性固体電解質を用い
た以外は実施例1と同様の方法で、全固体二次電池I
(電極活物質としてAg0.7V2O5を用いたもの),全
固体二次電池J(電極活物質としてAg0.3VV2O5を
用いたもの),全固体二次電池K(電極活物質としてA
g0.5V2O5を用いたもの),全固体二次電池L(電極
活物質としてAg0.6V2O5を用いたもの),全固体二
次電池M(電極活物質としてAg0.65V2O5を用いたも
の),全固体二次電池N(電極活物質としてAg0.8V2
O5を用いたもの),全固体二次電池O(電極活物質と
してAg1.0V2O5を用いたもの),全固体二次電池P
(電極活物質としてAg1.2V2O5を用いたもの)を得
た。An all solid state secondary battery I was prepared in the same manner as in Example 1 except that the silver ion conductive solid electrolyte obtained as described above was used.
(Using Ag 0.7 V 2 O 5 as the electrode active material), all-solid secondary battery J (using Ag 0.3 VV 2 O 5 as the electrode active material), all-solid secondary battery K (electrode active material) As A
g 0.5 V 2 O 5 ), all solid state secondary battery L (using Ag 0.6 V 2 O 5 as an electrode active material), all solid state secondary battery M (Ag 0.65 V 2 as an electrode active material) O 5 ), all-solid secondary battery N (Ag 0.8 V 2 as electrode active material)
O 5 ), all-solid secondary battery O (using Ag 1.0 V 2 O 5 as an electrode active material), all-solid secondary battery P
(Ag 1.2 V 2 O 5 was used as the electrode active material) was obtained.
これら全固体二次電池I,J,K,L,M,N,O,P
を用い、0.1V〜0V,20℃における1mAの定電
流充放電を行なった。その結果を第3図、第4図に示
す。These all solid state secondary batteries I, J, K, L, M, N, O, P
Was charged and discharged at a constant current of 1 mA at 0.1 V to 0 V and 20 ° C. The results are shown in FIGS. 3 and 4.
負極活物質としてAg0.3V2O5を用いた全固体二次電
池Jにおいては、ほとんど充放電を行なうことができな
いのに対し、本発明による全固体二次電池I,K,L,
M,N,O,Pでは充放電を行なうことができ、特にA
gxV2O5-y(0.6≦x≦0.8)で表わされる銀と
酸化バナジウムよりなる複合酸化物を負極活物質とした
全固体二次電池I,L,M,Nにおいては充放電容量が
高いものになっており、このような複合酸化物を負極活
物質として用いた場合、エネルギー密度の高い全固体二
次電池を構成できることがわかる。In the all-solid-state secondary battery J using Ag 0.3 V 2 O 5 as the negative electrode active material, almost no charge and discharge can be performed, whereas all-solid-state secondary batteries I, K, L according to the present invention,
Charge, discharge can be performed with M, N, O, and P.
In all solid state secondary batteries I, L, M and N using a composite oxide composed of silver and vanadium oxide represented by g x V 2 O 5-y (0.6 ≦ x ≦ 0.8) as a negative electrode active material Has a high charge / discharge capacity, and it can be seen that when such a composite oxide is used as a negative electrode active material, an all-solid secondary battery with high energy density can be constructed.
(実施例3) 最初に、AgI,Ag2O,SiO2をモル比で3:2:1
の比となるように秤量し、アルミナ乳鉢で混合した。こ
の混合物をガラス状カーボン坩堝中で、加熱溶融,反応
させた後、融液を直接液体窒素中に注ぎ込み急冷した。
以上のようにして得られた反応物を乳鉢で200メッシ
ュ以下に粉砕し3AgI・Ag4SiO4で表わされる銀イ
オン導電性の固体電解質を得た。(Example 3) First, AgI, Ag 2 O, the SiO 2 in a molar ratio of 3: 2: 1
Were weighed and mixed in an alumina mortar. This mixture was heated, melted and reacted in a glassy carbon crucible, and then the melt was directly poured into liquid nitrogen and quenched.
The reaction product obtained as described above was crushed to 200 mesh or less in a mortar to obtain a silver ion conductive solid electrolyte represented by 3AgI.Ag 4 SiO 4 .
次に、電極活物質として実施例1において得たAg0.7
V2O5で表わされる銀とバナジウムの複合酸化物と、以
上のようにして得た銀イオン導電性固体電解質を重量比
で1:1の割合で混合し、全固体二次電池用の電極材料
を得た。Next, Ag 0.7 obtained in Example 1 as an electrode active material was used.
A composite oxide of silver and vanadium represented by V 2 O 5 and the silver ion conductive solid electrolyte obtained as described above are mixed at a weight ratio of 1: 1 to prepare an electrode for an all solid state secondary battery. Got the material.
この電極材料を100mg秤量し、4ton/cm2で
10mmφに加圧成形し正極ペレットを得た。また負極
ペレットとしては、同じ電極材料を200mg秤量し、
同じく4ton/cm2で10mmφに加圧成形したも
のを用いた。100 mg of this electrode material was weighed and pressure-molded to 10 mmφ at 4 ton / cm 2 to obtain a positive electrode pellet. As the negative electrode pellet, 200 mg of the same electrode material was weighed,
Similarly, what was pressure-molded to 10 mmφ at 4 ton / cm 2 was used.
以上のようにして得られた各々正極,負極ペレットを固
体電解質100mgを介して配し、全体を4ton/c
m2で加圧圧接し、固体電池素子を得た。この固体電池
素子に錫鍍金銅線のリードをカーボンペーストにより接
着し、全体をエポキシ系の樹脂で封じ、全固体二次電池
Qを得た。The positive and negative electrode pellets obtained as described above were placed through 100 mg of solid electrolyte, and the whole was 4 ton / c.
m 2 at applied pressure contact to obtain a solid battery element. A lead of a tin-plated copper wire was adhered to this solid battery element with a carbon paste, and the whole was sealed with an epoxy resin to obtain an all-solid secondary battery Q.
このようにして得られた全固体二次電池Qにおいては、
x=v=0.7,M1=1.9×10-4mol,M2=
3.9×10-4molであり、Q1=8.3×10-5,
Q2=9.3×10-5となり、本発明によるQ1≦Q2の
条件をみたす。In the thus obtained all-solid secondary battery Q,
x = v = 0.7, M 1 = 1.9 × 10 −4 mol, M 2 =
3.9 × 10 −4 mol, Q 1 = 8.3 × 10 −5 ,
Q 2 = 9.3 × 10 −5 , which satisfies the condition of Q 1 ≦ Q 2 according to the present invention.
比較例として、負極ペレットとして以上と同じ電極材料
を100mgを加圧成型したものを用いた以外は同様の
方法で全固体二次電池Rを得た。As a comparative example, an all-solid secondary battery R was obtained by the same method except that 100 mg of the same electrode material as the above was pressed and molded as the negative electrode pellet.
このようにして得られた全固体二次電池Rにおいては、
x=v=0.7,M11.9×10-4mol,M2=1.
9×10-4molであり、Q1=8.3×10-5,Q2=
4.7×10-5となり、本発明によるQ1≦Q2の条件を
みたさない。In the thus-obtained all-solid-state secondary battery R,
x = v = 0.7, M 1 1.9 × 10 −4 mol, M 2 = 1.
9 × 10 −4 mol, Q 1 = 8.3 × 10 −5 , Q 2 =
The result is 4.7 × 10 −5 , which does not satisfy the condition of Q 1 ≦ Q 2 according to the present invention.
このようにして得られた全固体二次電池Q,Rを用い
て、実施例1と同様に電池の充放電特性を測定した。充
放電を繰り返した結果、全固体二次電池Rについては1
82サイクルめで電池内部に微小短絡が生じ充電するこ
とができなくなったのに対し、本発明による全固体二次
電池Qについては300サイクル経過後も充放電特性に
異常はなかった。Using the thus obtained all-solid-state secondary batteries Q and R, the charge / discharge characteristics of the battery were measured in the same manner as in Example 1. As a result of repeated charging and discharging, 1 was obtained for the all-solid-state secondary battery R.
At the 82nd cycle, a minute short circuit occurred inside the battery, and charging was not possible. On the other hand, in the all solid state secondary battery Q according to the present invention, there was no abnormality in charge / discharge characteristics even after 300 cycles.
(実施例4) 最初に、AgI,Ag2O,V2O5をモル比で5:3:2の
比となるように秤量し、アルミナ乳鉢で混合した。この
混合物をガラス状カーボン坩堝中で、加熱溶融,反応さ
せた後、融液を直接液体窒素中に注ぎ込み急冷した。以
上のようにして得られた反応物を乳鉢で200メッシュ
以下に粉砕し55AgI・3Ag20・2V2O5で表わされる
銀イオン導電性の固体電解質を得た。Example 4 First, AgI, Ag 2 O and V 2 O 5 were weighed so that the molar ratio was 5: 3: 2, and mixed in an alumina mortar. This mixture was heated, melted and reacted in a glassy carbon crucible, and then the melt was directly poured into liquid nitrogen and quenched. To obtain a more way ground to below 200 mesh in a mortar and the reaction product obtained 55AgI · 3Ag 2 0 · 2V silver ion conductive solid electrolyte represented by 2 O 5.
次に、電極活物質として実施例1において得たAg0.8
V2O5で表わされる銀とバナジウムの複合酸化物と、以
上のようにして得た銀イオン導電性固体電解質を重量比
で1:3の割合で混合し全固体二次電池用の正極材料
を、3:1の割合で混合し全固体二次電池用の負極材料
を得た。Next, Ag 0.8 obtained in Example 1 as an electrode active material was used.
A composite oxide of silver and vanadium represented by V 2 O 5 and the silver ion conductive solid electrolyte obtained as described above are mixed in a weight ratio of 1: 3 to prepare a positive electrode material for an all solid state secondary battery. Were mixed at a ratio of 3: 1 to obtain a negative electrode material for an all-solid secondary battery.
このようにして得られた正極,負極材料を各々200m
g秤量し、4ton/cm2で10mmφに加圧成形し
正極,負極ペレットを得た。200m each of the positive electrode material and the negative electrode material thus obtained
g was weighed and pressure-molded at 4 ton / cm 2 to 10 mmφ to obtain positive and negative electrode pellets.
以上のようにして得られた各々正極,負極ペレットを実
施例3と同じく固体電解質100mgを介して配し、全
体を4ton/cm2で加圧圧接し固体電池素子を得
た。この固体電池素子に錫鍍金銅線のリードをカーボン
ペーストにより接着し、全体をエポキシ系の樹脂で封
じ、全固体二次電池Sを得た。The positive electrode and negative electrode pellets obtained as described above were placed through 100 mg of the solid electrolyte as in Example 3, and the whole was pressed and pressed at 4 ton / cm 2 to obtain a solid battery element. A lead of a tin-plated copper wire was adhered to this solid battery element with a carbon paste, and the whole was sealed with an epoxy resin to obtain an all-solid secondary battery S.
このようにして得られた全固体二次電池Sにおいては、
x=v=0.8,M1=1.9×10-4mol,M2=
5.6×10-4molであり、Q1=9.1×10-5,
Q2=1.0×10-4となり、本発明によるQ1≦Q2の
条件をみたす。In the all solid state secondary battery S thus obtained,
x = v = 0.8, M 1 = 1.9 × 10 −4 mol, M 2 =
5.6 × 10 -4 mol, Q 1 = 9.1 × 10 -5 ,
Q 2 = 1.0 × 10 −4 , which satisfies the condition of Q 1 ≦ Q 2 according to the present invention.
比較例として、電極活物質として実施例1において得た
Ag0.8V2O5で表わされる銀とバナジウムの複合酸化
物と、以上のようにして得た銀イオン導電性固体電解質
を重量比で1:1の割合で混合したものを、全固体二次
電池用の正極材料とした以外は、上記と同様の方法で、
全固体二次電池Tを得た。As a comparative example, the composite oxide of silver and vanadium represented by Ag 0.8 V 2 O 5 obtained in Example 1 as the electrode active material, and the silver ion conductive solid electrolyte obtained as described above in a weight ratio of 1 In the same manner as above, except that the mixture in the ratio of 1 was used as the positive electrode material for the all-solid secondary battery,
An all-solid secondary battery T was obtained.
このようにして得られた全固体二次電池Tにおいては、
x=v=0.7,M1=3.7×10-4mol,M2=
5.6×10-4molであり、Q1=1.8×10-4,
Q2=1.0×10-4となり、本発明によるQ1≦Q2の
条件をみたさない。In the all-solid-state secondary battery T thus obtained,
x = v = 0.7, M 1 = 3.7 × 10 −4 mol, M 2 =
5.6 × 10 −4 mol, Q 1 = 1.8 × 10 −4 ,
Since Q 2 = 1.0 × 10 −4 , the condition of Q 1 ≦ Q 2 according to the present invention is not satisfied.
このようにして得られた全固体二次電池S,Tを用い
て、実施例1と同様に電池の充放電特性を測定した。そ
の結果、全固体二次電池Tについては107サイクルめ
で電池内部に微小短絡が生じたのに対し、本発明による
全固体二次電池Sについては300サイクル経過後も充
放電特性に異常はなかった。Using the thus obtained all-solid-state secondary batteries S and T, the charge / discharge characteristics of the battery were measured in the same manner as in Example 1. As a result, for the all-solid-state secondary battery T, a minute short circuit occurred inside the battery after the 107th cycle, whereas for the all-solid-state secondary battery S according to the present invention, there was no abnormality in the charge / discharge characteristics even after 300 cycles. .
(実施例5) 最初に、AgI,Ag2O,B2O3をモル比で1:1:2の
比となるように秤量し、アルミナ乳鉢で混合した。この
混合物を石英管中で600℃で1時間溶融、反応させた
後、ステンレス板上にキャストし急冷した。以上のよう
にして得られた反応物を乳鉢で200メッシュ以下に粉
砕しAgI・Ag2O・2B2O3で表わされる銀イオン導電
性の固体電解質を得た。Example 5 First, AgI, Ag 2 O and B 2 O 3 were weighed so that the molar ratio was 1: 1: 2 and mixed in an alumina mortar. This mixture was melted and reacted in a quartz tube at 600 ° C. for 1 hour, then cast on a stainless plate and rapidly cooled. The reaction product obtained as described above was crushed to 200 mesh or less in a mortar to obtain a silver ion conductive solid electrolyte represented by AgI · Ag 2 O · 2B 2 O 3 .
次に、電極活物質として実施例1において得たAg0.6
V2O5で表わされる銀とバナジウムの複合酸化物と、以
上のようにして得た銀イオン導電性固体電解質を重量比
で1:1の割合で混合し、全固体二次電池用の正極材料
を得た。この電極材料を150mg秤量し、4ton/
cm2で10mmφに加圧成形し正極ペレットを得た。Next, as an electrode active material, the Ag 0.6 obtained in Example 1 was used.
A composite oxide of silver and vanadium represented by V 2 O 5 and the silver ion conductive solid electrolyte obtained as described above are mixed at a weight ratio of 1: 1 to obtain a positive electrode for an all solid state secondary battery. Got the material. 150 mg of this electrode material is weighed and 4 ton /
A positive electrode pellet was obtained by pressure molding into 10 mmφ in cm 2 .
また負極材料としては、実施例1において得たAg0.7
V2O5で表わされる銀とバナジウムの複合酸化物と、以
上のようにして得た銀イオン導電性固体電解質を重量比
で1:1の割合で混合したものを用い、200mg秤量
し、同じく4ton/cm2で10mmφに加圧成形し
負極ペレットを得た。As the negative electrode material, Ag 0.7 obtained in Example 1 was used.
200 mg of a composite oxide of silver and vanadium represented by V 2 O 5 and the silver ion conductive solid electrolyte obtained as described above were mixed at a weight ratio of 1: 1 and weighed 200 mg. Negative electrode pellets were obtained by pressure molding at 4 ton / cm 2 to 10 mmφ.
以上のようにして得られた各々正極,負極ペレットを固
体電解質100mgを介して配し、全体を4ton/c
m2で加圧圧接し、固体電池素子を得た。この固体電池
素子に錫鍍金銅線のリードをカーボンペーストにより接
着し、全体をエポキシ系の樹脂で封じ、全固体二次電池
Uを得た。The positive and negative electrode pellets obtained as described above were placed through 100 mg of solid electrolyte, and the whole was 4 ton / c.
m 2 at applied pressure contact to obtain a solid battery element. A lead of a tin-plated copper wire was adhered to this solid battery element with a carbon paste, and the whole was sealed with an epoxy resin to obtain an all-solid secondary battery U.
このようして得られた全固体二次電池Uにおいては、x
=0.6,v=0.7,M1=3.0×10-4mol,
M2=3.9×10-4molであり、Q1=8.8×10
-5,Q2=9.3×10-5となり、本発明によるQ1≦Q
2の条件をみたす。In the all-solid secondary battery U thus obtained, x
= 0.6, v = 0.7, M 1 = 3.0 × 10 −4 mol,
M 2 = 3.9 × 10 −4 mol and Q 1 = 8.8 × 10
-5 , Q 2 = 9.3 × 10 -5 , and Q 1 ≤Q according to the present invention.
Meet condition 2
比較例として、負極材料としてとして実施例1において
得たAg0.8V2O5で表わされる銀とバナジウムの複合
酸化物と、以上のようにして得た銀イオン導電性固体電
解質を重量比で1:1の割合で混合したものを用いた以
外は上記と同様の方法で、全固体二次電池Vを得た。As a comparative example, as a negative electrode material, the composite oxide of silver and vanadium represented by Ag 0.8 V 2 O 5 obtained in Example 1 and the silver ion conductive solid electrolyte obtained as described above are used in a weight ratio of 1: 1. An all-solid secondary battery V was obtained in the same manner as above except that the mixture of 1: 1 was used.
このようにして得られた全固体二次電池Vにおいては、
x=v=0.6,M1=3.0×10-4mol,M2=
4.1×10-4molであり、Q1=8.8×10-5,
Q2=7.3×102となり、本発明によるQ1≦Q2の条
件をみたさない。In the all-solid-state secondary battery V thus obtained,
x = v = 0.6, M 1 = 3.0 × 10 −4 mol, M 2 =
4.1 × 10 −4 mol, Q 1 = 8.8 × 10 −5 ,
Since Q 2 = 7.3 × 10 2 , the condition of Q 1 ≦ Q 2 according to the present invention is not satisfied.
このようにして得られた全固体二次電池U,Vを用い
て、実施例1と同様に電池の充放電特性を測定した。そ
の結果、全固体二次電池Uについては216サイクルめ
で電池内部に微小短絡が生じたのに対し、本発明による
全固体二次電池Vについては300サイクル経過後も充
放電特性に異常はなかった。Using the thus obtained all-solid secondary batteries U and V, the charge / discharge characteristics of the battery were measured in the same manner as in Example 1. As a result, for the all-solid secondary battery U, a minute short circuit occurred inside the battery at the 216th cycle, while for the all-solid secondary battery V according to the present invention, there was no abnormality in the charge / discharge characteristics even after 300 cycles. .
発明の効果 以上のように本発明によると、エネルギー密度が高く、
金属銀のデンドライトの成長による両極の短絡のない全
固体二次電池を得ることができる。As described above, according to the present invention, the energy density is high,
It is possible to obtain an all-solid-state secondary battery in which both electrodes are not short-circuited by the growth of metallic silver dendrite.
第1図〜第4図は、本発明の実施例にかかる全固体二次
電池の充放電特性図である。1 to 4 are charge / discharge characteristic diagrams of the all solid state secondary battery according to the embodiment of the present invention.
Claims (5)
電解質層を介して配される一対の電極を有し、前記電極
のうち少なくとも一方の電極が AgxV2O5-y(0.35<x,yは酸素欠損)で表さ
れる銀とバナジウム酸化物よりなる複合酸化物を含むこ
とを特徴とする全固体二次電池。1. A silver ion conductive solid electrolyte layer and a pair of electrodes arranged via the solid electrolyte layer, wherein at least one of the electrodes is Ag x V 2 O 5-y (0 .35 <x, y is oxygen deficiency), and the all-solid-state secondary battery characterized by containing the compound oxide which consists of silver and vanadium oxide.
電解質層を介して配される一対の電極を有し、前記電極
のうち少なくとも一方の電極が AgxV2O5-y(0.6≦x≦0.8,yは酸素欠損)
で表される銀とバナジウム酸化物よりなる複合酸化物を
含むことを特徴とする全固体二次電池。2. A silver ion conductive solid electrolyte layer and a pair of electrodes arranged via the solid electrolyte layer, at least one of the electrodes being Ag x V 2 O 5-y (0 6 ≦ x ≦ 0.8, y is oxygen deficiency)
An all-solid-state secondary battery comprising a composite oxide composed of silver and vanadium oxide represented by:
電解質層を介して配される一対の電極を有し、前記電極
のうち正極がδ相の結晶構造の存在する AgxV2O5-y(0.6≦x≦0.8,yは酸素欠損)
で表される銀とバナジウム酸化物よりなる複合酸化物を
含み、負極がAgvV2O5-w(0.6≦x≦0.8,w
は酸素欠損)で表される銀とバナジウム酸化物よりなる
複合酸化物を含むことを特徴とする全固体二次電池。3. An Ag x V 2 O having a silver ion conductive solid electrolyte layer and a pair of electrodes arranged via the solid electrolyte layer, wherein the positive electrode of the electrodes has a δ-phase crystal structure. 5-y (0.6 ≦ x ≦ 0.8, y is oxygen deficiency)
And a negative electrode containing Ag v V 2 O 5-w (0.6 ≦ x ≦ 0.8, w
Is a oxygen deficiency), and an all-solid secondary battery comprising a composite oxide composed of silver and vanadium oxide.
電解質層を介して配される一対の電極を有し、前記電極
のうち正極がAgxV2O5-y(0.6≦x≦0.8,y
は酸素欠損)で表される銀とバナジウム酸化物よりなる
複合酸化物をM1mol含み、0.6≦x≦0.7のと
きQ1=M1(1.4x−0.55),0.7<x≦0.
8のときQ1=M1(0.6x+0.01)とし、負極が
AgvV2O5-w(0.6≦v≦0.8,wは酸素欠損)
で表される銀とバナジウム酸化物よりなる複合酸化物を
M2mol含み、0.6≦v≦0.7のときQ2=M
2(0.6v−0.18),0.7<v≦0.8のとき
Q2=M2(−0.6v+0.66)としたときにQ1≦
Q2をみたすことを特徴とする全固体二次電池。4. A silver ion conductive solid electrolyte layer and a pair of electrodes arranged via the solid electrolyte layer, wherein the positive electrode of the electrodes is Ag x V 2 O 5-y (0.6 ≦ x ≦ 0.8, y
Is a oxygen deficiency) and contains M 1 mol of a composite oxide composed of silver and vanadium oxide, and when 0.6 ≦ x ≦ 0.7, Q 1 = M 1 (1.4x−0.55), 0.7 <x ≦ 0.
In case of 8, Q 1 = M 1 (0.6x + 0.01), and the negative electrode is Ag v V 2 O 5-w (0.6 ≦ v ≦ 0.8, w is oxygen deficiency)
In the case of 0.6 ≦ v ≦ 0.7, M 2 contains M 2 mol of the complex oxide composed of silver and vanadium oxide, and Q 2 = M
2 (0.6v−0.18), when 0.7 <v ≦ 0.8, when Q 2 = M 2 (−0.6v + 0.66), Q 1 ≦
An all solid state secondary battery characterized by satisfying Q 2 .
oO3,SiO2,V2O5,CrO3,P2O5,B2O3よ
り選ばれる少なくとも一種類の化合物とAgI,Ag2
Oよりなることを特徴とする請求項1,2,3または4
記載の全固体二次電池。5. A silver ion conductive solid electrolyte is WO 3 , M.
at least one compound selected from oO 3 , SiO 2 , V 2 O 5 , CrO 3 , P 2 O 5 , and B 2 O 3 and AgI and Ag 2
O is comprised of O, Claims 1, 2, 3 or 4
The all-solid-state secondary battery described.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1067063A JPH0640495B2 (en) | 1989-03-17 | 1989-03-17 | All solid state secondary battery |
DE69018279T DE69018279T2 (en) | 1989-01-24 | 1990-01-23 | Electrochemical solid state cell. |
US07/468,555 US4965151A (en) | 1989-01-24 | 1990-01-23 | Solid-state electrochemical cell |
EP90101322A EP0380058B1 (en) | 1989-01-24 | 1990-01-23 | A solid-state electrochemical cell |
KR1019900000792A KR920010424B1 (en) | 1989-01-24 | 1990-01-24 | Solid state electrochemical cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1067063A JPH0640495B2 (en) | 1989-03-17 | 1989-03-17 | All solid state secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02247978A JPH02247978A (en) | 1990-10-03 |
JPH0640495B2 true JPH0640495B2 (en) | 1994-05-25 |
Family
ID=13334013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1067063A Expired - Fee Related JPH0640495B2 (en) | 1989-01-24 | 1989-03-17 | All solid state secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0640495B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4310609A (en) * | 1979-12-17 | 1982-01-12 | Wilson Greatbatch Ltd. | Metal oxide composite cathode material for high energy density batteries |
JPS60198067A (en) * | 1984-03-22 | 1985-10-07 | Matsushita Electric Ind Co Ltd | Solid electrolyte secondary battery |
-
1989
- 1989-03-17 JP JP1067063A patent/JPH0640495B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02247978A (en) | 1990-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7281771B2 (en) | Cathode materials and batteries | |
EP1009055B1 (en) | Nonaqueous electrolyte battery and charging method therefor | |
US4002492A (en) | Rechargeable lithium-aluminum anode | |
EP0951083B1 (en) | Solid state lithium secondary battery | |
US4965151A (en) | Solid-state electrochemical cell | |
WO2000028608A1 (en) | Lithium secondary cell | |
JPH04231346A (en) | Li3po4 as mesh forming component and mesh modifying component and vitreous composition based on lipo3 | |
JP4207510B2 (en) | Positive electrode material, positive electrode, and battery | |
EP0459451B1 (en) | Solid-state voltage storage cell | |
JPS6166369A (en) | Lithium secondary battery | |
JPH0640495B2 (en) | All solid state secondary battery | |
JPH06275322A (en) | Lithium battery | |
KR100651247B1 (en) | Room temperature sodium iron sulfide secondary battery | |
JP4534264B2 (en) | Nonaqueous electrolyte secondary battery | |
IE49392B1 (en) | An electrochemical generator with a non-aqueous electrolyte | |
JPH03105858A (en) | Manufacture of nonaqueous solvent secondary battery | |
JPH01260767A (en) | Secondary battery | |
JP3439718B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0644492B2 (en) | Electrochemical element | |
JP3439717B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH03297068A (en) | All-solid secondary battery | |
JPH03291859A (en) | Fully solid secondary cell | |
JPH03297069A (en) | All-solid secondary battery | |
JPH0426073A (en) | Fully solid secondary battery | |
JPH05166510A (en) | Secondary lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |