[go: up one dir, main page]

JPH0638415B2 - Organic conductive medium and manufacturing method thereof - Google Patents

Organic conductive medium and manufacturing method thereof

Info

Publication number
JPH0638415B2
JPH0638415B2 JP61213975A JP21397586A JPH0638415B2 JP H0638415 B2 JPH0638415 B2 JP H0638415B2 JP 61213975 A JP61213975 A JP 61213975A JP 21397586 A JP21397586 A JP 21397586A JP H0638415 B2 JPH0638415 B2 JP H0638415B2
Authority
JP
Japan
Prior art keywords
organic
substrate
film
conductive
organic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61213975A
Other languages
Japanese (ja)
Other versions
JPS6370544A (en
Inventor
邦裕 酒井
俊彦 宮▲崎▼
健 江口
春紀 河田
佳紀 富田
宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61213975A priority Critical patent/JPH0638415B2/en
Priority to US07/099,345 priority patent/US4929524A/en
Priority to DE3789585T priority patent/DE3789585T2/en
Priority to EP87308072A priority patent/EP0260152B1/en
Publication of JPS6370544A publication Critical patent/JPS6370544A/en
Publication of JPH0638415B2 publication Critical patent/JPH0638415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機導電媒体およびその製造方法に関し、更に
詳しくは有機導電媒体の有機導電層が高導電性領域と低
または非導電性領域にパターン化された有機導電媒体お
よび該有機導電媒体を容易に提供することができる有機
導電媒体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to an organic conductive medium and a method for manufacturing the same, and more particularly, an organic conductive layer of an organic conductive medium is patterned into a high conductive region and a low or non-conductive region. And a method for producing an organic conductive medium capable of easily providing the organic conductive medium.

(従来の技術) 従来、種々のICや半導体等の各種導電媒体が知られて
おり、これらの導電媒体の機能部分の材料としては、殆
どの場合に導電性無機物が使用されている。しかしなが
ら、これらの導電媒体について益々高精度化、高微細
化、高集積化が要求される結果、半導体素子等の機能部
分の材料として取扱い容易で種類の多い導電性有機物の
利用が広く検討されている。
(Prior Art) Conventionally, various conductive media such as various ICs and semiconductors have been known, and in most cases, a conductive inorganic substance is used as a material of a functional portion of these conductive media. However, as these conductive media are required to have higher precision, higher miniaturization, and higher integration, the use of conductive organic substances that are easy to handle and have many types as materials for functional parts such as semiconductor elements has been widely studied. There is.

導電性有機物の1種としては有機電荷移動錯体が知られ
ており、このような有機電荷移動錯体を任意の基板上に
均一な膜として形成する方法としては、ラングミュアら
が提案したラングミュア・ブロジェット方法(LB法)
が知られている。
An organic charge transfer complex is known as one of conductive organic substances. As a method for forming such an organic charge transfer complex as a uniform film on an arbitrary substrate, Langmuir Blodgett proposed by Langmuir et al. Method (LB method)
It has been known.

このLB法によれば、1分子中に疎水性部位と親水性部
位とを有する有機電荷移動錯体の単分子膜またはその累
積膜を基板上に容易に形成することができる。このよう
に形成された有機導電層は、電気的絶縁性の高い疎水性
部位と導電性の高い親水性部位とが平面状に多層に重な
り合っていることから、膜の水平方向では良好な導電性
を示し、且つ膜に垂直な方向では高い絶縁性を有すると
いう導電性の異方性をいう特異な性質を有するものであ
る。
According to this LB method, a monomolecular film of an organic charge transfer complex having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof can be easily formed on a substrate. The thus formed organic conductive layer has a good conductivity in the horizontal direction of the film because the hydrophobic part having a high electrical insulation property and the hydrophilic part having a high conductivity are superposed in a multilayer form. And has a peculiar property of anisotropy of conductivity such that it has a high insulating property in the direction perpendicular to the film.

(発明が解決しようとしている問題点) 上記の如き有機導電層は層の面方向に対して非常に均一
な導電性を有するものであり、種々の用途が期待されて
いる。これらの有機導電層を有する有機導電媒体は、種
々の電気素子、例えば、電気回路等として使用する場合
には、それらの導電層を所望のパターンに微細加工する
ことが必要である。このような微細加工方法としては、
例えば、上記の如き導電層を基板上にパターン状に形成
および成長させる方法が考えられているが、前記の如き
LB膜は水相上に展開した均一な単分子膜を基板上に移
す方法で形成されるため、かかるパターン状の膜形成は
未だ実用的な領域には達していない。
(Problems to be Solved by the Invention) The above organic conductive layer has extremely uniform conductivity in the plane direction of the layer, and various applications are expected. When the organic conductive medium having these organic conductive layers is used as various electric elements such as electric circuits, it is necessary to finely process the conductive layers into a desired pattern. As such a fine processing method,
For example, a method of forming and growing a conductive layer as described above on a substrate in a pattern has been considered, but the LB film as described above is a method of transferring a uniform monomolecular film spread on an aqueous phase onto the substrate. Since it is formed, the formation of such a patterned film has not yet reached a practical area.

別の方法としては一旦形成したLB膜を後処理によって
パターン化する方法、例えば、膜の所望領域を除去する
エッチング方法が考えられているが、この方法は無機物
の化学的エッチングとは異なり、マスク材、マスク方
法、エッチング剤等の選定が困難であり、エッチング領
域以外の導電層までがエッチング剤により変質する恐れ
が大であるという問題がある。特に、有機導電媒体が高
密度、高集積度になればなる程このような微細加工が困
難となり、そのために有機電荷移動錯体の単分子膜また
は累積膜からなる層の優れた特性を生かすことができな
いという問題がある。
As another method, a method of patterning the LB film once formed by post-treatment, for example, an etching method of removing a desired region of the film is considered, but this method is different from the chemical etching of the inorganic substance, There is a problem in that it is difficult to select a material, a mask method, an etching agent, etc., and there is a great possibility that even the conductive layer other than the etching region is deteriorated by the etching agent. In particular, the higher the density and the degree of integration of the organic conductive medium, the more difficult such microfabrication becomes, and therefore it is possible to take advantage of the excellent characteristics of the layer composed of the monomolecular film or cumulative film of the organic charge transfer complex. There is a problem that you cannot do it.

また上記の如きLB膜の導電性は、通常0.1S/cm程度
と有機物としては非常に高いものであるが、従来の無機
導電材料である金、銀、銅等に比較すれば著しく小さい
ものであるため、導電性という面でも不十分であるとい
う問題がある。
The conductivity of the LB film as described above is usually about 0.1 S / cm, which is very high as an organic substance, but is significantly smaller than that of conventional inorganic conductive materials such as gold, silver and copper. Therefore, there is a problem that the conductivity is insufficient.

従って、上記の如き導電性有機物からなる機能部分を有
する有機導電媒体に、これらの層の特性を損なうことな
く高精度且つ微細なパターンを容易に形成する技術が要
望されている。
Therefore, there is a demand for a technique capable of easily forming a highly precise and fine pattern in an organic conductive medium having a functional portion made of a conductive organic substance as described above without impairing the characteristics of these layers.

(問題点を解決するための手段) 本発明者は上述の如き従来技術の要望に応えるべく鋭意
研究の結果、導電性有機物からなる導電層の精密性やそ
れらの特性を何ら損なうことなくそれらの有機導電層を
所望のパターンの高導電領域と低または非導電領域に容
易にパターン化が可能な技術を開発した。
(Means for Solving Problems) As a result of earnest research to meet the demands of the prior art as described above, the present inventor has confirmed that the precision of a conductive layer made of a conductive organic substance and the characteristics thereof are not impaired. We have developed a technique that enables easy patterning of the organic conductive layer into a high conductive region and a low or non-conductive region of a desired pattern.

すなわち、本発明の第一の発明は、微細な凹凸形状を有
する基板表面に有機導電層が形成されていることを特徴
とする有機導電媒体であり、第二の発明は、微細な凹凸
形状を有する基板表面に導電性有機化合物の単分子膜ま
たはその累積膜を積層することを特徴とする有機導電媒
体の製造方法である。
That is, the first invention of the present invention is an organic conductive medium characterized in that an organic conductive layer is formed on the surface of a substrate having a fine uneven shape, and the second invention is a fine uneven shape. A method for producing an organic conductive medium, characterized in that a monomolecular film of a conductive organic compound or a cumulative film thereof is laminated on the surface of the substrate.

次に本発明を更に詳細に説明する。Next, the present invention will be described in more detail.

すなわち、本発明者の詳細な研究によれば、表面平滑な
基板上に導電性有機化合物により有機導電層を形成する
と、その有機導電層の面に平行な方向においては、ほぼ
均一な導電性を示すものであったが、これに対して予め
基板表面に微細な凹凸形状を形成しておいて、その面に
有機導電層を形成することによって、基板上の凹凸形状
に沿ってその上に形成された有機導電層の導電性が著し
く向上したりあるいは低下したりして、高導電性領域と
低または非導電性領域とにパターン化されるものであっ
た。このような導電性の著しい変化は、有機導電層を微
細な凹凸形状面に移すときに層を構成している分子の配
向性が、凹凸形状に沿って著しく向上することや、層が
凹凸形状に対応して局所的な流動あるいは膜構成分子の
再配列等が生じて膜の導電性が変化するものと考えられ
ている。
That is, according to a detailed study by the present inventor, when an organic conductive layer is formed of a conductive organic compound on a substrate having a smooth surface, a substantially uniform conductivity is obtained in a direction parallel to the surface of the organic conductive layer. As shown in the figure, on the contrary, by forming a fine uneven shape on the substrate surface in advance and forming an organic conductive layer on the surface, the fine uneven shape is formed on the substrate along the uneven shape. The conductivity of the formed organic conductive layer is significantly improved or decreased, and the organic conductive layer is patterned into a high conductive region and a low or non-conductive region. Such a significant change in conductivity is due to the fact that when the organic conductive layer is transferred to a fine uneven surface, the orientation of the molecules forming the layer is significantly improved along the uneven shape, and the layer has an uneven shape. It is considered that the local conductivity or rearrangement of the membrane-constituting molecules occurs correspondingly to the change in the conductivity of the membrane.

従って、本発明によれば、基板に所望の凹凸形状を付与
しておくのみで、後は単にその表面に有機導電層を形成
するのみで所望の導電パターンを有する有機導電媒体が
提供されるものであり、従来技術における種々の欠点、
すなわち、煩雑な多くの工程、高温、高圧等の苛酷な条
件の使用、種々の薬剤の使用等の問題が容易に解決さ
れ、非常に簡単な工程で高密度、高集積度等の有機導電
媒体が提供された。
Therefore, according to the present invention, it is possible to provide an organic conductive medium having a desired conductive pattern simply by forming a desired uneven shape on a substrate and then simply forming an organic conductive layer on the surface. And various drawbacks in the prior art,
That is, problems such as many complicated steps, use under severe conditions such as high temperature and high pressure, use of various chemicals, etc. can be easily solved, and an organic conductive medium having high density, high integration degree, etc. can be formed by very simple steps. Was provided.

本発明の有機導電媒体の有機導電層を形成する導電性有
機化合物は、従来公知のいずれの導電性有機化合物でも
使用することができるが、特に好ましい導電性有機化合
物は有機電荷移動錯体である。
As the conductive organic compound forming the organic conductive layer of the organic conductive medium of the present invention, any conventionally known conductive organic compound can be used, but a particularly preferred conductive organic compound is an organic charge transfer complex.

本発明で有機導電層の形成に使用する好ましい電荷移動
錯体とは、1分子内に親水性部位、疎水性部位および導
電性部位を有する化合物である。
The preferred charge transfer complex used for forming the organic conductive layer in the present invention is a compound having a hydrophilic site, a hydrophobic site and a conductive site in one molecule.

このような条件を有する従来公知の電荷移動錯体はいず
れも本発明において好ましく使用できるが、特に好適な
化合物は、親水性部位が第4級アンモニウム基であり、
疎水性部位がアルキル基、アリール基、アルキルアリー
ル基等の疎水性炭化水素基であり、導電性部位がテトラ
シアノキノジメタン構造である電荷移動錯体である。
Any conventionally known charge transfer complex having such a condition can be preferably used in the present invention, but a particularly preferable compound is that the hydrophilic moiety is a quaternary ammonium group,
The hydrophobic moiety is a hydrophobic hydrocarbon group such as an alkyl group, an aryl group, or an alkylaryl group, and the conductive moiety is a tetracyanoquinodimethane structure.

上記電荷移動錯体として好ましい化合物は下記一般式
(I)で表わされる。
The compound preferable as the charge transfer complex is represented by the following general formula (I).

[A][TCNQ]nXm(I) 例えば、下記の化合物が挙げられる。[A] [TCNQ] nXm (I) For example, the following compounds may be mentioned.

上記におけるRは、疎水性部位であり、アルキル基、ア
リール基またはアルキルアリール基であり、好ましいも
のは炭素数5〜30のアルキル基である。R1は、低級ア
ルキル基であり、nおよびqは0、1または2、mは0
または1であり、Xは臭素イオン等のハロゲンイオンや
過塩素酸イオンの如きアニオン基である。Yは酸素また
は硫黄である。
R in the above is a hydrophobic moiety and is an alkyl group, an aryl group or an alkylaryl group, and a preferable one is an alkyl group having 5 to 30 carbon atoms. R 1 is a lower alkyl group, n and q are 0, 1 or 2, m is 0
Alternatively, it is 1 and X is an anion group such as halogen ion such as bromine ion or perchlorate ion. Y is oxygen or sulfur.

以上の如き化合物は更に、アルキル基中に二重結合や三
重結合等の重合性基を有してもよく、また複素環上に1
個以上のアルキル基、アルケニル基、シアノ基、アルコ
キシ基、ハロゲン等の置換基を有し得るものである。
The compound as described above may further have a polymerizable group such as a double bond or a triple bond in the alkyl group, and may have 1 or more substituents on the heterocycle.
It may have one or more substituents such as an alkyl group, an alkenyl group, a cyano group, an alkoxy group and a halogen.

またTCNQは下記式で表わされる化合物である。Further, TCNQ is a compound represented by the following formula.

上記式中のa〜dの位置にはアルキル基、アルケニル
基、ハロゲン原子等の任意の置換基を有し得るものであ
る。
It may have an arbitrary substituent such as an alkyl group, an alkenyl group and a halogen atom at positions a to d in the above formula.

本発明者は、以上の如き例示される化合物を包含する電
荷移動錯体について鋭意研究のところ、これらの電荷移
動錯体は公知の方法によって任意の表面形状の基板上に
単分子膜またはその累積膜として形成することが容易で
あり、且つこのような単分子膜またはその累積膜は、表
面平滑な基板上に形成すると膜の垂直方向に対しては高
い絶縁性を有し且つ膜の水平方向に対しては高い導電性
を有し、非常に優れた導電性の異方性を示すものである
が、このままでは電気回路等の有機導電媒体としては使
用できないが、上記の基板として、その表面が微細な凹
凸形状を有するものであるときは、これらの有機導電層
の膜の水平方向における導電性が著しく変化し、基板の
凹凸形状に対応して導電性の差を示す結果、種々の電気
素子として有用であることを知見した。
The present inventor has earnestly studied charge transfer complexes including the above-exemplified compounds, and these charge transfer complexes are formed as a monomolecular film or a cumulative film thereof on a substrate having an arbitrary surface shape by a known method. When formed on a substrate having a smooth surface, such a monomolecular film or a cumulative film thereof is easy to form and has a high insulating property in the vertical direction of the film and a horizontal direction in the film. It has high conductivity and shows very excellent conductivity anisotropy, but it cannot be used as it is as an organic conductive medium for electric circuits, but as the above substrate, its surface is fine. When the organic conductive layer has a large unevenness, the conductivity of the film of these organic conductive layers changes significantly in the horizontal direction, and as a result of showing a difference in conductivity corresponding to the uneven shape of the substrate, various electrical elements are obtained. Useful and It was finding the Rukoto.

本発明において、前記の電荷移動錯体を使用して、任意
の凹凸形状を有する基板の表面に導電層を形成する好ま
しい方法は、前記のLB法である。
In the present invention, the LB method is a preferred method for forming a conductive layer on the surface of a substrate having an arbitrary uneven shape by using the above charge transfer complex.

LB法は、例えば、前記の電荷移動錯体の如く分子内に
親水性部位と疎水性部位とを有する構造の分子におい
て、両者のバランス(両親媒性のバランス)が適度に保
たれている時、分子は水面上で親水性基を下に向けて単
分子の層になることを利用して単分子膜またはその累積
膜を作成する方法である。
The LB method is, for example, in a molecule having a structure having a hydrophilic site and a hydrophobic site in the molecule such as the above charge transfer complex, when the balance between them (the amphipathic balance) is appropriately maintained, This is a method for producing a monomolecular film or a cumulative film thereof by utilizing the fact that a molecule forms a monomolecular layer with a hydrophilic group facing downward on the water surface.

水面上の単分子層は二次元系の特徴を有し、分子がまば
らに散開しているときは、一分子当り面積Aと表面圧π
との間に二次元理想気体の式、 πA=kT が成り立ち、“気体膜”となる。ここに、kはボルツマ
ン定数、Tは絶対温度である。Aを十分小さくすれば分
子間相互作用が強まり、二次元固体の“凝縮膜(または
固体膜)”になる。凝縮膜はガラスや樹脂の如き種々の
材質や形状を有する任意の物体の表面へ一層ずつ移すこ
とができる。
The monolayer on the water surface has the characteristic of a two-dimensional system. When the molecules are scattered, the area A per molecule and the surface pressure π
The two-dimensional ideal gas equation, πA = kT, holds between and and becomes a “gas film”. Here, k is the Boltzmann constant and T is the absolute temperature. If A is made sufficiently small, intermolecular interaction will be strengthened, and a two-dimensional solid "condensed film (or solid film)" will be formed. The condensation film can be transferred layer by layer to the surface of any object having various materials and shapes such as glass and resin.

具体的な製法としては、例えば、以下に示す方法を挙げ
ることができる。
Specific methods include, for example, the following methods.

所望の電荷移動錯体をクロロホルム、ベンゼン、アセト
ニトリル等の溶剤に溶解させる。次に添付図面の第1図
に示す如き適当な装置を用いて、電荷移動錯体の溶液を
水相1上に展開させて電荷移動錯体を膜状に形成させ
る。
The desired charge transfer complex is dissolved in a solvent such as chloroform, benzene or acetonitrile. Next, using a suitable apparatus as shown in FIG. 1 of the accompanying drawings, the solution of the charge transfer complex is spread on the aqueous phase 1 to form the charge transfer complex in the form of a film.

次にこの展開層が水相上を自由に拡散して広がりすぎな
いように仕切板(または浮子)3を設け、展開面積を制
限して膜物質の集合状態を制御し、その集合状態に比例
した表面圧πを得る。この仕切板3を動かし、展開面積
を縮小して膜物質の集合状態を制御し、表面圧を徐々に
上昇させ、膜の製造に適する表面圧πを設定することが
できる。この表面圧を維持しながら、静かに清浄な基板
2を垂直に上昇または下降させることにより電荷移動錯
体の単分子膜が基板2上に移し取られる。このような単
分子膜は第2a図または第2b図に模式的に示す如く分
子が秩序正しく配列した膜である。
Next, a partition plate (or float) 3 is provided to prevent the spreading layer from freely diffusing over the water phase and spreading too much, limiting the spreading area to control the aggregation state of the membrane substance, and proportional to the aggregation state. The obtained surface pressure π is obtained. The partition plate 3 can be moved to reduce the development area to control the aggregated state of the membrane substances, gradually increase the surface pressure, and set the surface pressure π suitable for the production of the membrane. While maintaining this surface pressure, the monomolecular film of the charge transfer complex is transferred onto the substrate 2 by gently raising or lowering the clean substrate 2 vertically. Such a monomolecular film is a film in which molecules are arranged in an orderly manner as schematically shown in FIG. 2a or 2b.

電荷移動錯体の単分子膜は以上で製造されるが、前記の
操作を繰り返すことにより所望の累積数の累積膜が形成
される。電荷移動錯体の単分子膜を基板上に移すには、
上述した垂直浸漬法の他、水平付着法、回転円筒法等の
方法でも可能である。
Although the monomolecular film of the charge transfer complex is produced as described above, a desired cumulative number of cumulative films is formed by repeating the above-mentioned operation. To transfer the charge transfer complex monolayer onto the substrate,
In addition to the vertical dipping method described above, a horizontal attachment method, a rotating cylinder method, or the like is also possible.

水平付着法は、基板を水面に水平に接触させて単分子膜
を移しとる方法であり、回転円筒法は円筒形の基板を水
面上を回転させて単分子膜を基板表面に移しとる方法で
ある。
The horizontal attachment method is a method of transferring the monomolecular film by horizontally contacting the substrate with the water surface, and the rotating cylinder method is a method of rotating the cylindrical substrate on the water surface to transfer the monomolecular film to the substrate surface. is there.

前述した垂直浸漬法では、表面が親水性である基板を水
面を横切る方向に水中から引き上げると電荷移動錯体の
親水性基が基板側に向いた電荷移動錯体の単分子膜が基
板上に形成される(第2b図)。前述のように基板を上
下させると、各行程ごとに一枚ずつ単分子膜が積み重な
って累積膜が形成される。製膜分子の向きが引上行程と
浸漬行程で逆になるので、この方法によると単分子膜の
各層間は電荷移動錯体の疎水基と疎水基が向かいあうY
型膜が形成される(第3a図)。これに対し、水平付着
法は、電荷移動錯体の疎水性基が基板側に向いた単分子
膜が基板上に形成される(第2a図)。この方法では、
単分子膜を累積しても製膜分子の向きの交代はなく全て
の層において、疎水性基が基板側に向いたX型膜が形成
される(第3b図)。反対に全ての層において親水性基
が基板側に向いた累積膜はZ型膜と呼ばれる(第3c
図)。
In the above-mentioned vertical immersion method, when a substrate whose surface is hydrophilic is pulled up from the water in a direction crossing the water surface, a monomolecular film of the charge transfer complex in which the hydrophilic groups of the charge transfer complex face the substrate is formed on the substrate. (Fig. 2b). When the substrate is moved up and down as described above, the monomolecular films are stacked one by one in each step to form a cumulative film. Since the directions of the film-forming molecules are opposite in the pulling up process and the dipping process, according to this method, the hydrophobic groups of the charge transfer complex and the hydrophobic groups face each other between the layers of the monomolecular film.
A mold film is formed (Fig. 3a). On the other hand, in the horizontal attachment method, a monomolecular film in which the hydrophobic groups of the charge transfer complex face the substrate is formed on the substrate (Fig. 2a). in this way,
Even if the monomolecular film is accumulated, there is no change in the direction of the film-forming molecules, and in all the layers, an X-type film in which the hydrophobic group faces the substrate is formed (Fig. 3b). On the contrary, a cumulative film in which hydrophilic groups in all layers face the substrate is called a Z-type film (3c).
Figure).

単分子膜を基板上に移す方法は、上記方法に限定される
わけではなく、大面積基板を用いる時には、ロールから
水相中に基板を押し出していく方法なども採り得る。ま
た、前述した親水性基および疎水性基の基板への向きは
原則であり、基板の表面処理等によって変えることもで
きる。
The method of transferring the monomolecular film onto the substrate is not limited to the above method, and when a large-area substrate is used, a method of extruding the substrate from a roll into the aqueous phase may be employed. Further, the orientations of the hydrophilic group and the hydrophobic group described above to the substrate are in principle, and can be changed by surface treatment of the substrate.

以上の如くして前記電荷移動錯体の単分子膜またはその
累積膜からなる導電層が基板上に形成される。
As described above, the conductive layer composed of the monomolecular film of the charge transfer complex or its accumulated film is formed on the substrate.

本発明において、上記の如き電荷移動錯体の単分子膜ま
たはその累積膜からなる有機導電層を形成するための基
板は、金属、ガラス、セラミックス、プラスチック材料
等いずれの材料でもよく、更に耐熱性の著しく低い生体
材料も使用できる。金属の如き導電性材料も使用できる
のは、上述の通り、単分子膜または累積膜が膜に垂直な
方向では十分な絶縁性を有していることによる。
In the present invention, the substrate for forming the organic conductive layer composed of the monomolecular film of the charge transfer complex or the cumulative film thereof as described above may be any material such as metal, glass, ceramics, plastic material, etc. Remarkably low biomaterials can also be used. A conductive material such as a metal can be used because, as described above, the monomolecular film or the cumulative film has a sufficient insulating property in the direction perpendicular to the film.

上記の如き基板は、任意の形状でよく、平板状であるの
が好ましいが、平板に何ら限定されない。すなわち本発
明においては、基板の表面がいかなる形状であってもそ
の形状通りに膜を形成し得る利点を有するからである。
The substrate as described above may have any shape and is preferably a flat plate, but is not limited to a flat plate. That is, the present invention has an advantage that a film can be formed according to any shape of the surface of the substrate.

以上の如き基板はその少なくとも1部の表面に任意の形
状の微細な凹凸形状を有するものであり、このような凹
凸形状は従来公知のいずれの方法によっても形成でき
る。例えば、基板が合成樹脂製である場合には、所望の
微細な凹凸形状面を有する型を用いてその凹凸形状を転
写する方法、基板が金属やセラミックである場合には、
従来の印刷版技術やIC技術で汎用されているホトエッ
チング方法、上記の基板やその他の基板において、その
所望の表面に感光性樹脂層を形成し、マスクパターンを
通して露光して現像し、感光性樹脂層の厚みにより凹凸
形状を形成する方法等任意の方法が利用できる。また形
成される凹凸形状は、直線状あるいは曲線状あるいはそ
の組合せの如く連続性を有するが好ましい。またこれら
の凹凸形状、特に直線状や曲線状の凹凸形状において
は、それらの線の間隔、すなわちピッチ幅があまり広す
ぎるときは、その上に形成される有機導電層の導電性の
差が発生し難くなるので、それらのピッチ幅は0.1〜
100μm程度が好適である。
At least a part of the surface of the substrate as described above has a fine uneven shape of an arbitrary shape, and such an uneven shape can be formed by any conventionally known method. For example, when the substrate is made of synthetic resin, a method of transferring the uneven shape using a mold having a desired fine uneven surface, when the substrate is a metal or ceramic,
In the photo-etching method generally used in conventional printing plate technology and IC technology, a photosensitive resin layer is formed on the desired surface of the above-mentioned substrate and other substrates, exposed through a mask pattern, developed, and exposed to light. Any method such as a method of forming an uneven shape depending on the thickness of the resin layer can be used. Further, it is preferable that the formed irregularities have continuity such as a linear shape, a curved shape or a combination thereof. Further, in these uneven shapes, particularly in the case of linear or curved uneven shapes, when the spacing between the lines, that is, the pitch width is too wide, a difference in conductivity of the organic conductive layer formed thereon occurs. Since it is difficult to do so, the pitch width of them is 0.1
About 100 μm is preferable.

また、上記の如き線状の凹凸形状の凹部および凸部、す
なわち谷と山の形状は特に限定されない。しかしなが
ら、それらの高低差、すなわち溝の深さはあまり浅すぎ
ると前述の如き導電性の差が小さくなるので、一般的に
は0.1〜100μm程度の深さが好ましい。
Further, the shapes of the concave and convex portions having the linear uneven shape as described above, that is, the shapes of the valleys and the peaks are not particularly limited. However, if the difference in height between them, that is, the depth of the groove is too shallow, the difference in conductivity as described above becomes small. Therefore, a depth of about 0.1 to 100 μm is generally preferable.

本発明の導電媒体は以上の如き凹凸形状を有する基板面
に前述の如き方法で有機導電層を形成することによって
提供されるが、使用した電荷移動錯体が重合性基を有す
る場合には、上記の如く膜を形成後にこれらの膜を重合
硬化させ、膜強度を著しく向上させることもできる。
The conductive medium of the present invention is provided by forming an organic conductive layer on the surface of a substrate having the above-mentioned uneven shape by the method as described above. When the charge transfer complex used has a polymerizable group, It is also possible to remarkably improve the film strength by polymerizing and hardening these films after forming the films as described above.

更に以上の如き本発明の有機導電媒体は、その導電層が
高導電領域と非導電性領域とにパターン化されている結
果、これを陰極としてその表面に金、銀、銅、ニッケル
等の金属をメッキすることにより、導電パターンに対応
したメッキ層を形成することもでき、このようにすれ
ば、導電媒体の許容電気容量や耐熱性も著しく向上させ
ることができる。
Further, as described above, the organic conductive medium of the present invention has a conductive layer patterned into a highly conductive region and a non-conductive region. As a result, a metal such as gold, silver, copper or nickel is formed on the surface as a cathode. It is also possible to form a plating layer corresponding to the conductive pattern by plating with. By doing so, the allowable electric capacity and heat resistance of the conductive medium can be significantly improved.

(作用・効果) 以上の如き本発明によれば、所望の微細な凹凸形状を有
する基板を導電媒体の基板として採用するのみで、有機
導電層に特に高い温度や圧力あるいは光等の苛酷な条件
を適用したり、また各種の酸、アルカリ、有機溶剤等の
強力な薬剤を使用することなく所望の導電パターンを付
与できるので、使用した導電性有機化合物の優れた特性
を何等害することなく、高密度、高集積度等の高性能の
導電媒体が提供される。
(Operation / Effect) According to the present invention as described above, it is only necessary to adopt a substrate having a desired fine uneven shape as the substrate of the conductive medium, and the organic conductive layer is subjected to severe conditions such as particularly high temperature, pressure or light. Or various acids, alkali, since it is possible to impart a desired conductive pattern without using a strong agent such as an organic solvent, without damaging the excellent characteristics of the conductive organic compound used, high A high-performance conductive medium having high density and high integration is provided.

また、本発明によれば、導電パターンの形成にあたり、
基板上の有機導電層を何ら破壊する必要がないので、有
機導電層に何ら悪影響を与えることなく、任意の導電パ
ターンを形成することができるので、高微細加工が可能
であり、優れた電気的特性を有する有機導電媒体が再現
性良く容易に提供することが可能となった。
Further, according to the present invention, in forming the conductive pattern,
Since it is not necessary to destroy the organic conductive layer on the substrate, it is possible to form any conductive pattern without adversely affecting the organic conductive layer, which enables high-fine processing and excellent electrical It has become possible to easily provide an organic conductive medium having characteristics with good reproducibility.

以上の点から、本発明によれば、本発明の有機導電媒体
は従来の高密度電気素子としては勿論、生体を利用する
バイオエレクトロニクスの素子としても大いに期待でき
るものである。
From the above points, according to the present invention, the organic conductive medium of the present invention can be expected not only as a conventional high-density electric element but also as a bioelectronic element utilizing a living body.

次に実施例を挙げて本発明を更に具体的に説明する。Next, the present invention will be described more specifically with reference to examples.

実施例1 i型結晶シリコンウェハ上に、ホトレジスト材OMR
(東京応化工業製)を膜厚1.5μmの厚みになるよう
に塗布および乾燥させた。
Example 1 A photoresist material OMR is formed on an i-type crystalline silicon wafer.
(Manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied and dried to a thickness of 1.5 μm.

次にフォトマスクを介して露光後、現像し、次いでエッ
チング処理を行って、ストライプ状の溝(溝幅1.6μ
m、深さ1.5μm、溝と溝との間隔5μm)を形成し
た。
Next, after exposing through a photomask, developing, and then etching treatment is performed to form stripe-shaped grooves (groove width 1.6 μm).
m, a depth of 1.5 μm, and a groove-to-groove spacing of 5 μm).

上記の電荷移動錯体(1)をベンゼン−アセトニトリル
(容量比1:1)混合溶媒に1mg/mの濃度で溶解し
た後、KHCO3でpH6.8に調整されたCdCl2濃度4×10
−4mol/、水温17℃の水相上に展開した。
The charge transfer complex (1) was dissolved in a mixed solvent of benzene-acetonitrile (volume ratio 1: 1) at a concentration of 1 mg / m, and then CdCl 2 concentration was adjusted to pH 6.8 with KHCO 3 and the concentration was 4 × 10 4.
It was developed on the water phase at -4 mol /, water temperature 17 ° C.

溶媒のアセトニトリルとベンゼンとを蒸発除去した後、
表面圧を20dyne/cmまで高め単分子膜を形成した。表
面圧を一定に保ちながら、上記のシリコンウェハを、水
面を横切る方向に速度3mm/minで静かに基板を浸漬した
後、続いて速度3mm/minで静かに引き上げ2層の単分子
膜を基板の面に累積した。以上の累積操作を再度繰返し
単分子膜の4層が積層された本発明の有機導電媒体を得
た。
After removing the solvents acetonitrile and benzene by evaporation,
The surface pressure was increased to 20 dyne / cm to form a monomolecular film. While keeping the surface pressure constant, the above silicon wafer is gently immersed in the direction across the water surface at a speed of 3 mm / min, and then gently pulled up at a speed of 3 mm / min to form a two-layer monomolecular film on the substrate. Accumulated in terms of. The above accumulation operation was repeated again to obtain an organic conductive medium of the present invention in which four layers of monomolecular films were laminated.

以上の如くして得た本発明の有機導電媒体に電極を設け
て、連続する溝上の2点間の導電率を測定したところ、
約10S/cmであった。一方独立した溝間における導電
率はいずれの点においても10−5S/cm以下であり、極
めて大きな導電性の異方性を示した。
An electrode was provided on the organic conductive medium of the present invention obtained as described above, and the conductivity between two points on a continuous groove was measured.
It was about 10 2 S / cm. On the other hand, the electric conductivity between the independent grooves was 10 −5 S / cm or less at any point, showing extremely large electric conductivity anisotropy.

実施例2〜9 実施例1におけるストライプ状凹凸形状の溝幅(μm)
と単分子膜の累積数を下記第1表の如くしたことを除い
て、他は実施例1と同様にして本発明の種々の有機導電
媒体を作成し、実施例1と同様にしてその溝に沿った2
点間の導電率と溝と交差する2点間の導電率を測定した
ところ、下記第1表の結果を得た。
Examples 2 to 9 Groove width (μm) of stripe-shaped unevenness in Example 1
Various organic conductive media of the present invention were prepared in the same manner as in Example 1 except that the cumulative number of monolayers and monolayers were as shown in Table 1 below, and the grooves thereof were formed in the same manner as in Example 1. 2 along
The conductivity between the points and the conductivity between the two points intersecting the groove were measured, and the results shown in Table 1 below were obtained.

実施例10〜12 実施例1における電荷移動錯体に代えて下記第2表の電
荷移動錯体を使用し、他は実施例1と同様にして種々の
本発明の有機導電媒体を得た。これらの有機導電媒体の
異なる方向の導電率を測定したところ下記第2表の如き
結果を得た。
Examples 10 to 12 Various organic conductive media of the present invention were obtained in the same manner as in Example 1 except that the charge transfer complexes shown in Table 2 below were used in place of the charge transfer complexes in Example 1. When the conductivity of these organic conductive media was measured in different directions, the results shown in Table 2 below were obtained.

上記電荷移動錯体は下記構造のものである。 The charge transfer complex has the following structure.

実施例13 実施例1で得た本発明の有機導電媒体の有機導電層を陰
極とし、硫酸銅水溶液(硫酸銅200g/、硫酸50g/
)中で、温度20〜30℃、陰極電流密度0.5〜
1.5A/dm2の条件で電気銅メッキを行ない、溝に沿
って厚み3μmのメッキ層を形成し、本発明の有機導電
媒体を得た。
Example 13 Using the organic conductive layer of the organic conductive medium of the present invention obtained in Example 1 as a cathode, an aqueous copper sulfate solution (copper sulfate 200 g /, sulfuric acid 50 g /
), The temperature is 20 to 30 ° C., and the cathode current density is 0.5 to
Copper electroplating was carried out under the condition of 1.5 A / dm 2 , and a plating layer having a thickness of 3 μm was formed along the groove to obtain an organic conductive medium of the present invention.

この有機導電媒体の溝に沿った2点間の導電率は10
S/cmであり、一方溝と交差する2点間の導電率は10
−2S/cmであった。
The conductivity between two points along the groove of this organic conductive medium is 10 4
S / cm, and the conductivity between two points intersecting the groove is 10
It was -2 S / cm.

比較例 実施例1において表面平滑な基板を使用したことを除
き、他は実施例1と同様にして導電媒体を得た。この導
電媒体の任意の2点間の導電度はその方向に関係なくい
ずれも約10S/cmであった。
Comparative Example A conductive medium was obtained in the same manner as in Example 1 except that the substrate having a smooth surface was used in Example 1. The conductivity between any two points of this conductive medium was about 10 3 S / cm in any case regardless of the direction.

【図面の簡単な説明】 第1図は本発明の導電媒体の有機導電層を形成する方法
を図解的に示す図である。第2図は単分子膜の模式図で
あり、第3図は累積膜の模式図である。第4図は、本発
明の導電媒体の断面を図解的に示す図である。 1;水相 2;基板 3;浮子 4;単分子膜 5;累積膜 6;親水性部位(導電性部位) 7;疎水性部位 8;凹部 9;凸部 10;有機導電層 11;電極
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically showing a method for forming an organic conductive layer of a conductive medium of the present invention. FIG. 2 is a schematic diagram of a monomolecular film, and FIG. 3 is a schematic diagram of a cumulative film. FIG. 4 is a diagram schematically showing a cross section of the conductive medium of the present invention. 1; Aqueous phase 2; Substrate 3; Float 4; Monolayer film 5; Cumulative film 6; Hydrophilic part (conductive part) 7; Hydrophobic part 8; Recessed part 9; Convex part 10; Organic conductive layer 11; Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河田 春紀 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 富田 佳紀 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 松田 宏 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── (72) Inventor Haruki Kawata 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Yoshinori Tomita 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Incorporated (72) Inventor Hiroshi Matsuda 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】微細な凹凸形状を有する基板表面に有機導
電層が形成されていることを特徴とする有機導電媒体。
1. An organic conductive medium comprising an organic conductive layer formed on the surface of a substrate having fine irregularities.
【請求項2】有機導電層が、1分子中に疎水性部位、親
水性部位および導電性部位を有する有機電荷移動錯体の
単分子膜あるいはその累積膜である特許請求の範囲第
(1)項に記載の有機導電媒体。
2. The organic conductive layer is a monomolecular film of an organic charge transfer complex having a hydrophobic site, a hydrophilic site and a conductive site in one molecule or a cumulative film thereof.
The organic conductive medium according to item (1).
【請求項3】有機電荷移動錯体が、第4級アンモニウム
化合物とテトラシアノキノジメタンとの錯体である特許
請求の範囲第(1)項に記載の有機導電媒体。
3. The organic electroconductive medium according to claim 1, wherein the organic charge transfer complex is a complex of a quaternary ammonium compound and tetracyanoquinodimethane.
【請求項4】微細な凹凸形状を有する基板表面に導電性
有機化合物の単分子膜またはその累積膜を積層すること
を特徴とする有機導電媒体の製造方法。
4. A method for producing an organic conductive medium, which comprises laminating a monomolecular film of a conductive organic compound or a cumulative film thereof on a surface of a substrate having fine irregularities.
JP61213975A 1986-09-12 1986-09-12 Organic conductive medium and manufacturing method thereof Expired - Fee Related JPH0638415B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61213975A JPH0638415B2 (en) 1986-09-12 1986-09-12 Organic conductive medium and manufacturing method thereof
US07/099,345 US4929524A (en) 1986-09-12 1987-09-10 Organic photo conductive medium
DE3789585T DE3789585T2 (en) 1986-09-12 1987-09-11 Leading organic structure.
EP87308072A EP0260152B1 (en) 1986-09-12 1987-09-11 Organic conductive medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61213975A JPH0638415B2 (en) 1986-09-12 1986-09-12 Organic conductive medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6370544A JPS6370544A (en) 1988-03-30
JPH0638415B2 true JPH0638415B2 (en) 1994-05-18

Family

ID=16648166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61213975A Expired - Fee Related JPH0638415B2 (en) 1986-09-12 1986-09-12 Organic conductive medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0638415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093874B2 (en) 2004-10-25 2015-07-28 Novatorque, Inc. Sculpted field pole members and methods of forming the same for electrodynamic machines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817609A (en) * 1981-07-24 1983-02-01 三洋電機株式会社 Solid electrolytic condenser and method of pruducing same
JPH0228886B2 (en) * 1983-07-18 1990-06-27 Showa Denko Kk KOTAIDENKAIKONDENSA

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093874B2 (en) 2004-10-25 2015-07-28 Novatorque, Inc. Sculpted field pole members and methods of forming the same for electrodynamic machines

Also Published As

Publication number Publication date
JPS6370544A (en) 1988-03-30

Similar Documents

Publication Publication Date Title
KR100272702B1 (en) Tunnelling device and method of producing a tunnelling device
US7015142B2 (en) Patterned thin film graphite devices and method for making same
US4586980A (en) Pattern forming method
JPH0766990B2 (en) Organic device and manufacturing method thereof
US9673399B2 (en) Floating evaporative assembly of aligned carbon nanotubes
TW201320154A (en) Method to provide a patterned orientation template for a self-assemblable polymer
US20150064915A1 (en) Methods for providing spaced lithography features on a substrate by self-assembly of block copolymers
EP1551066A1 (en) Material with pattern surface for use as template and process for producing the same
JP2013035748A (en) Method for positioning nanoparticle on substrate
JP2507153B2 (en) Organic device and manufacturing method thereof
US4929524A (en) Organic photo conductive medium
US4780790A (en) Electric device
US7686885B2 (en) Patterned nanorod arrays and methods of making same
US4798740A (en) Polymerizable film and pattern forming method by use thereof
KR900005138B1 (en) Metal catalyst deposition method in solid matrix
US4835083A (en) Method for patterning electroconductive film and patterned electroconductive film
JPH0638415B2 (en) Organic conductive medium and manufacturing method thereof
US20050069645A1 (en) Method of electrolytically depositing materials in a pattern directed by surfactant distribution
JPS6333895A (en) Manufacture of electric circuit
JPS6370579A (en) Organic photoconductive device and its manufacturing method
JPS62247847A (en) Formation of film
JPS62269392A (en) Manufacture of printed wiring unit
JPS6310586A (en) Electric circuit
JPS62269775A (en) Organic electrically conductive medium and its formation
JP3629531B2 (en) Electrode formation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees