[go: up one dir, main page]

JPH06347657A - Produciton of optical waveguide - Google Patents

Produciton of optical waveguide

Info

Publication number
JPH06347657A
JPH06347657A JP13635293A JP13635293A JPH06347657A JP H06347657 A JPH06347657 A JP H06347657A JP 13635293 A JP13635293 A JP 13635293A JP 13635293 A JP13635293 A JP 13635293A JP H06347657 A JPH06347657 A JP H06347657A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
quartz
silica
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13635293A
Other languages
Japanese (ja)
Other versions
JP2739806B2 (en
Inventor
Yutaka Nishimoto
裕 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5136352A priority Critical patent/JP2739806B2/en
Publication of JPH06347657A publication Critical patent/JPH06347657A/en
Application granted granted Critical
Publication of JP2739806B2 publication Critical patent/JP2739806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a process for production of an optical waveguide capable of depositing a quartz material at such a low temp. that quartz material of the thickness necessary for forming the optical waveguide on a large-diameter Si substrate and electrodes, electric wirings, etc., for a semiconductor laser can be previously formed on the Si substrate. CONSTITUTION:Org. material sources, such as thtraethoxysilance, tetramethyl orthosilicate, triethl borate, trimethyl phosphite, trimethlyl phosphate, triethyl phosphate, trimethly borate and tetramethoxy germanium, are used within a chamber 2 in the method of depositing the quartz optical waveguide material by an atm. pressure CVD method. The org. material sources are decomposed by ozone to deposit the quartz optical waveguide material on the substrate 1. Phosphorus (P) is doped at >=3mol% on the quartz optical waveguide material constituting the core clad of the optical waveguide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石英系材料よりなる光
導波路の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an optical waveguide made of a silica material.

【0002】[0002]

【従来の技術】光通信システムの大容量化が進むと同時
に、多機能の高度なシステムが求められている一方で、
光ファイバネットワークの低コスト化の要求が強い。光
導波路は光デバイスの小型化、高集積化、低コスト化に
必要不可欠なものであり、カップラー、スイッチ、フィ
ルタ、変調器などの光導波路のみで構成されるデバイス
に加えて、光導波路が形成された基板の上に半導体レー
ザ、半導体光検出器などのデバイスをハイブリッドに実
装して構成される機能デバイスなど、さまざまな検討が
なされている。現在光導波路を形成する材料としては、
石英系、強誘電体系、有機系、半導体系などが主に扱わ
れている。この中で石英系材料を用いた光導波路は導波
光の伝搬損失が最も小さいため、この光導波路を用いる
ことにより低損失デバイスが容易に実現される。また、
大口径Si基板を用いることができるため、量産が可能
で低コスト化が実現できる特徴を持っている。
2. Description of the Related Art At the same time as the capacity of an optical communication system is increasing, a sophisticated multi-function system is required.
There is a strong demand for cost reduction of optical fiber networks. Optical waveguides are indispensable for downsizing, high integration, and cost reduction of optical devices. In addition to devices consisting of optical waveguides such as couplers, switches, filters, and modulators, optical waveguides are formed. Various studies have been made on functional devices configured by hybridly mounting devices such as a semiconductor laser and a semiconductor photodetector on the formed substrate. Currently, as the material for forming the optical waveguide,
Quartz series, ferroelectric series, organic series, and semiconductor series are mainly dealt with. Among them, the optical waveguide using the silica-based material has the smallest propagation loss of the guided light, so that the low-loss device can be easily realized by using this optical waveguide. Also,
Since a large-diameter Si substrate can be used, it has characteristics that mass production is possible and cost reduction can be realized.

【0003】図3は光導波路の構造を示す断面図であ
り、Si基板1上に石英系材料による光導波路(以後、
石英系光導波路と呼ぶ)は、通常、クラッド4−コア3
−クラッド4の3層からなる。低損失光導波路を得るに
はクラッド厚として10μm前後が必要であり、また、
コア厚としては光ファイバとの高効率結合を考慮すると
5μm前後が必要である。従って、低損失な光導波路を
実現するためには3層の合計で少なくとも25μm前後
の膜厚が必要となる。
FIG. 3 is a sectional view showing the structure of an optical waveguide. An optical waveguide made of a silica-based material (hereinafter,
The silica-based optical waveguide) is usually a clad 4-core 3
-Consisting of three layers of cladding 4. In order to obtain a low loss optical waveguide, the cladding thickness needs to be around 10 μm.
Considering high efficiency coupling with the optical fiber, the core thickness needs to be about 5 μm. Therefore, in order to realize a low-loss optical waveguide, the total thickness of the three layers is required to be at least about 25 μm.

【0004】現在、主に検討されている石英系材料の堆
積方法は火焔堆積法やシランガスを用いたCVD法であ
る。火焔堆積法は石英の粉を基板の上に堆積した後に、
1500℃前後の熱処理により石英を透明化し、光導波
路を形成する。従って、熱歪が大きいため、石英膜にク
ラックが発生しやすく、6インチなどの大口径Si基板
に適用することは困難である。また、半導体レーザなど
のデバイスをSi基板の上に実装するデバイスにおい
て、あらかじめ半導体レーザ用の電極や電気配線などを
Si基板に形成しておくことはできない。一方、シラン
ガスを用いたCVD法は緻密な石英膜が形成できる反
面、膜歪が大きいため、2インチや3インチなどの小口
径のSi基板を用いれば、低損失な光導波路が実現可能
であるが、6から8インチのSi基板を用いた場合の堆
積膜厚の限界は数μmであり、従って量産が可能で低コ
ストな光導波路デバイスをシランガスを用いたCVD法
で実現することは困難である。
Currently, the silica-based material deposition methods that are mainly studied are the flame deposition method and the CVD method using silane gas. The flame deposition method involves depositing quartz powder on the substrate,
Quartz is made transparent by heat treatment at about 1500 ° C. to form an optical waveguide. Therefore, since the thermal strain is large, cracks are likely to occur in the quartz film, and it is difficult to apply it to a large-diameter Si substrate such as 6 inches. Further, in a device in which a device such as a semiconductor laser is mounted on a Si substrate, it is not possible to previously form electrodes and electric wiring for the semiconductor laser on the Si substrate. On the other hand, the CVD method using silane gas can form a dense quartz film, but has a large film strain, so that a low-loss optical waveguide can be realized by using a Si substrate having a small diameter such as 2 inches or 3 inches. However, the limit of the deposited film thickness when using a 6 to 8 inch Si substrate is several μm, and therefore it is difficult to realize a mass-produced and low-cost optical waveguide device by the CVD method using silane gas. is there.

【0005】[0005]

【発明が解決しようとする課題】前述したように、従来
の石英系光導波路用の石英系材料の堆積では、大口径S
i基板上に光導波路形成に必要な厚さの石英系材料を堆
積することは困難であった。また、高温処理が必要なた
め、あらかじめ半導体レーザ用の電極や電気配線などを
Si基板に形成しておくことはできないという欠点があ
る。
As described above, in the conventional deposition of the silica-based material for the silica-based optical waveguide, the large diameter S is used.
It was difficult to deposit a silica-based material having a thickness necessary for forming an optical waveguide on an i substrate. Further, since high temperature treatment is required, there is a drawback that electrodes for semiconductor lasers, electric wiring, and the like cannot be formed in advance on the Si substrate.

【0006】本発明の目的は、低温でかつ大口径Si基
板上に光導波路形成に必要な厚さの石英系材料が堆積で
きる光導波路の製造方法、また光導波路を形成するSi
に光導波路を形成する前に、あらかじめMOSなどの電
子デバイスや電気配線などの各種の金属パターンを形成
することを可能にする低温で行える光導波路の製造方法
を提供することにある。
An object of the present invention is to provide a method of manufacturing an optical waveguide in which a silica-based material having a thickness necessary for forming the optical waveguide can be deposited on a large-diameter Si substrate at a low temperature, and a Si for forming the optical waveguide.
Another object of the present invention is to provide a method for manufacturing an optical waveguide which can be formed at a low temperature so that various metal patterns such as electronic devices such as MOS and electric wiring can be formed in advance before forming the optical waveguide.

【0007】[0007]

【課題を解決するための手段】本発明による光導波路の
製造方法は、石英系材料よりなる光導波路において、常
圧CVD法により石英系光導波路材料を堆積する際に、
石英系材料のソースとしてテトラエトキシシラン、テト
ラメチルオルソシリケート、トリエチルボレート、トリ
メチルホスファイト、トリメチルホスフェート、トリエ
チルホスフェート、トリメチルボレート、テトラメトキ
シゲルマニウムのうちの少なくとも1種以上の有機材料
ソースを用い、これらの有機材料ソースをオゾンにより
分解し、石英系光導波路材料を堆積し、その際に石英系
材料に3mol%以上のPをドーピングする。
A method of manufacturing an optical waveguide according to the present invention is an optical waveguide made of a silica-based material, in which a silica-based optical waveguide material is deposited by atmospheric pressure CVD,
At least one organic material source selected from the group consisting of tetraethoxysilane, tetramethylorthosilicate, triethylborate, trimethylphosphite, trimethylphosphate, triethylphosphate, trimethylborate, and tetramethoxygermanium is used as a quartz-based material source. The organic material source is decomposed by ozone to deposit a silica optical waveguide material, and at this time, the silica material is doped with 3 mol% or more of P.

【0008】[0008]

【作用】本発明による光導波路の製造方法は、テトラエ
トキシシラン、テトラメチルオルソシリケート、トリエ
チルボレート、トリメチルホスファイト、トリメチルホ
スフェート、トリエチルホスフェート、トリメチルボレ
ート、テトラメトキシゲルマニウムなどの有機材料ソー
スを用い、これらの有機材料ソースをオゾンにより分解
し、石英系光導波路材料を堆積する方法を用い、かつ石
英系材料に3mol%以上のPをドーピングするため、
200℃から500℃程度の低温での厚い膜の堆積、並
びに膜歪が小さい膜の堆積が可能になる。
The method for producing an optical waveguide according to the present invention uses an organic material source such as tetraethoxysilane, tetramethylorthosilicate, triethylborate, trimethylphosphite, trimethylphosphate, triethylphosphate, trimethylborate, tetramethoxygermanium, etc. In order to dope the silica-based material with 3 mol% or more of P by decomposing the organic material source with ozone and depositing the silica-based optical waveguide material,
It is possible to deposit a thick film at a low temperature of about 200 ° C. to 500 ° C. and a film with a small film strain.

【0009】[0009]

【実施例】次に本発明の実施例について図面を参照して
説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0010】図1は本発明の一実施例に係わる光導波路
の製造方法を示す図である。図1において石英系材料を
堆積するための有機材料ソースは、気体状態で、ヒータ
ー5により200℃から500℃程度の加熱された基板
1が設置された常圧反応チャンバー2に運ばれる。同様
にオゾン(O3 )及び酸素(O2 )も常圧反応チャンバ
ー2に運ばれる。基板1表面で有機材料ソースはオゾン
により分解されるとともに、酸化などの化学反応が起こ
り、基板1表面に石英系材料が堆積される。つまり、常
圧CVD法である。
FIG. 1 is a diagram showing a method of manufacturing an optical waveguide according to an embodiment of the present invention. In FIG. 1, the organic material source for depositing the quartz-based material is conveyed in a gaseous state to the atmospheric pressure reaction chamber 2 in which the substrate 1 heated by the heater 5 at about 200 to 500 ° C. is installed. Similarly, ozone (O 3 ) and oxygen (O 2 ) are also carried to the atmospheric reaction chamber 2. The organic material source is decomposed by ozone on the surface of the substrate 1, and a chemical reaction such as oxidation occurs, and a quartz material is deposited on the surface of the substrate 1. That is, it is the atmospheric pressure CVD method.

【0011】ノンドープのSiO2 (以後、NSGと呼
ぶ)を堆積するときは、有機材料ソースとしてテトラエ
トキシシラン(Si(OC2 5 4 )やテトラメチル
オルソシリケートなどのSi系の有機材料ソースを用い
る。SiO2 に燐(P)、ゲルマニウム(Ge)、ボロ
ン(B)などのドーパントをドーピングされた石英系材
料を得るときには、Si系の有機材料ソースと各ドーパ
ント系の有機材料ソースとを混合して、同時に常圧反応
チャンバー2に運べば、所望の石英系材料が得られる。
たとえば、ゲルマニウム(Ge)がドーピングされたS
iO2 (以後、GeSGと呼ぶ)を堆積するときは、有
機材料ソースとしてテトラエトキシシランやテトラメチ
ルオルソシリケートなどのSi系の有機材料ソースとテ
トラメトキシゲルマニウム(Ge(OCH3 4 )など
のGe系の有機材料ソースを同時に反応チャンバー2に
運べば、GeSGの堆積が得られる。ゲルマニウム(G
e)、燐(P)、ボロン(B)のドーパントがドーピン
グされたSiO2 (以後、GeBPSGと呼ぶ)、ゲル
マニウム(Ge)、燐(P)のドーパントがドーピング
されたSiO2 (以後、GePSGと呼ぶ)、燐
(P)、ボロン(B)のドーパントがドーピングされた
SiO2 (以後、BPSGと呼ぶ)、燐(P)のドーパ
ントがドーピングされたSiO2 (以後、PSGと呼
ぶ)も同様な手法で得られる。B系の有機ソースとして
はトリエチルボレート(B(OC2 5 3 )、トリメ
チルボレート(B(OCH3 3 )などがあり、P系の
有機ソースとしてはトリメチルホスファイト(PO(O
CH3 3 )、トリメチルホスフェート(PO(OCH
3 3 )、トリエチルホスフェート(PO(OC
2 5 3 )などが用いられる。
When non-doped SiO 2 (hereinafter referred to as NSG) is deposited, a Si-based organic material source such as tetraethoxysilane (Si (OC 2 H 5 ) 4 ) or tetramethylorthosilicate is used as an organic material source. To use. When obtaining a silica-based material in which SiO 2 is doped with a dopant such as phosphorus (P), germanium (Ge), or boron (B), a Si-based organic material source and each dopant-based organic material source are mixed. At the same time, if it is transferred to the atmospheric pressure reaction chamber 2, the desired quartz material can be obtained.
For example, germanium (Ge) -doped S
When io 2 (hereinafter referred to as GeSG) is deposited, a Si-based organic material source such as tetraethoxysilane or tetramethylorthosilicate as an organic material source and Ge such as tetramethoxygermanium (Ge (OCH 3 ) 4 ) are used. If the organic material sources of the system are simultaneously brought into the reaction chamber 2, a GeSG deposition is obtained. Germanium (G
e), phosphorus (P), boron (B) SiO 2 (hereafter the dopant is doping, referred to as the GeBPSG), germanium (Ge), SiO 2 (hereafter the dopant of phosphorus (P) is doped, and GePSG The same applies to SiO 2 doped with a dopant of phosphorus (P) and boron (B) (hereinafter referred to as BPSG), and SiO 2 doped with a dopant of phosphorus (P) (hereinafter referred to as PSG). Obtained by the method. B-based organic sources include triethyl borate (B (OC 2 H 5 ) 3 ) and trimethyl borate (B (OCH 3 ) 3 ), and P-based organic sources include trimethyl phosphite (PO (O
CH 3 ) 3 ), trimethyl phosphate (PO (OCH
3 ) 3 ), triethyl phosphate (PO (OC
2 H 5 ) 3 ) or the like is used.

【0012】このような、有機ソースを用いた常圧CV
Dは膜歪が小さく、また200℃から500℃程度の低
温での堆積であるので熱的な歪が小さい。従って、光導
波路に必要な25μm程度の厚い膜を堆積できる可能性
がある。発明者はドーパント材、並びにドーパントのド
ーピング量の検討により、石英系材料に3mol%以上
のPをドーピングすることにより、6インチSi基板に
25μm以上の厚い石英系材料を堆積できることを見い
だした。また、この厚膜を堆積できるのはPSGに限ら
ず、石英系材料に3mol%以上のPをドーピングして
おけば、BやGeなどの他のドーパントがドーピングさ
れていても、すなわちBPSG、GePSG、GePS
Gなどの石英系材料でも、6インチSi基板に25μm
以上の厚い石英系材料を堆積できることを見いだした。
Atmospheric pressure CV using such an organic source
Film D has a small film strain, and because it is deposited at a low temperature of about 200 ° C. to 500 ° C., it has a small thermal strain. Therefore, there is a possibility that a thick film of about 25 μm necessary for the optical waveguide can be deposited. The inventor has studied the dopant material and the doping amount of the dopant, and found that a silica material having a thickness of 25 μm or more can be deposited on a 6-inch Si substrate by doping the silica material with P of 3 mol% or more. The thick film can be deposited not only on PSG, but if the silica-based material is doped with 3 mol% or more of P, even if another dopant such as B or Ge is doped, that is, BPSG or GePSG. , GePS
Even if it is a silica-based material such as G, it is 25 μm on a 6-inch Si substrate.
It was found that the above thick quartz-based material can be deposited.

【0013】図2は、本発明により6インチSi基板に
30μmの厚さで堆積されたBPSGの膜厚分布を示す
特性図である。(a)は膜厚分布を示す斜視図、(b)
は膜厚分布を示す断面図である。
FIG. 2 is a characteristic diagram showing the film thickness distribution of BPSG deposited to a thickness of 30 μm on a 6-inch Si substrate according to the present invention. (A) is a perspective view showing a film thickness distribution, (b)
FIG. 4 is a cross-sectional view showing a film thickness distribution.

【0014】従って、図3の光導波路の断面図におい
て、本発明による光導波路の製造方法を用いた光導波路
では、コア3及びクラッド4の両者の石英系光導波路材
料に3mol%以上のPをドーピングしている。コアの
屈折率をクラッドに比べて大きくすることは、P、G
e、Bなどのドーパント量をクラッドに比べて多くして
やれば容易に実現できる。
Therefore, in the sectional view of the optical waveguide shown in FIG. 3, in the optical waveguide using the optical waveguide manufacturing method of the present invention, 3 mol% or more of P is added to the silica optical waveguide material of both the core 3 and the clad 4. Doping. Increasing the refractive index of the core to be larger than that of the clad is P, G
This can be easily realized by increasing the amount of dopants such as e and B as compared with the clad.

【0015】以上説明したように、本発明による光導波
路の製造方法では、200℃から500℃程度の低温
で、6から8インチの大口径Si基板上に光導波路形成
に必要な30μm以上の厚さの石英系材料が堆積でき光
導波路デバイスの大量生産が可能になり、低コスト化が
得られるとともに、大規模な光導波路回路が構成できる
ようになる。また、半導体レーザ、半導体光検出器、光
スイッチをSi基板上にハイブリッドに集積する光IC
などの製作において、光導波路形成前にSi基板上に電
気配線などの各種の金属パターンやMOSなどの電子デ
バイスをあらかじめ形成することができる。
As described above, in the method of manufacturing an optical waveguide according to the present invention, at a low temperature of about 200 ° C. to 500 ° C., a thickness of 30 μm or more required for forming an optical waveguide on a large diameter Si substrate of 6 to 8 inches. The silica-based material can be deposited, mass production of optical waveguide devices becomes possible, cost can be reduced, and large-scale optical waveguide circuits can be configured. Also, an optical IC in which a semiconductor laser, a semiconductor photodetector, and an optical switch are hybridly integrated on a Si substrate.
In manufacturing such as, various metal patterns such as electric wiring and electronic devices such as MOS can be previously formed on the Si substrate before forming the optical waveguide.

【0016】[0016]

【発明の効果】本発明によれば、6から8インチの大口
径Si基板上に光導波路形成に必要な30μm以上の厚
さの石英系材料が堆積でき、光導波路デバイスの大量生
産が可能になり、低コスト化が得られるとともに、大規
模な光導波路回路が構成できるようになる。また、低温
での石英材料の堆積ができるため、半導体レーザ、半導
体光検出器、光スイッチをSi基板上にハイブリッドに
集積する光ICなどの製作において、光導波路形成前に
Si基板上に電気配線などの各種の金属パターンやMO
Sなどの電子デバイスをあらかじめ形成することができ
る。
According to the present invention, a silica-based material having a thickness of 30 μm or more, which is necessary for forming an optical waveguide, can be deposited on a large-diameter Si substrate of 6 to 8 inches, which enables mass production of optical waveguide devices. Therefore, the cost can be reduced, and a large-scale optical waveguide circuit can be configured. Further, since the quartz material can be deposited at a low temperature, in the fabrication of an optical IC or the like in which a semiconductor laser, a semiconductor photodetector, and an optical switch are hybridly integrated on the Si substrate, electric wiring is formed on the Si substrate before forming an optical waveguide. Various metal patterns such as MO and MO
Electronic devices such as S can be preformed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光導波路の製造方法を示す工程図
である。
FIG. 1 is a process drawing showing a method for manufacturing an optical waveguide according to the present invention.

【図2】本発明により6インチSi基板上に30μmの
厚さで堆積された石英系材料の膜厚分布を示す特性図で
ある。
FIG. 2 is a characteristic diagram showing a film thickness distribution of a silica-based material deposited to a thickness of 30 μm on a 6-inch Si substrate according to the present invention.

【図3】本発明による光導波路の製造方法により形成さ
れる光導波路の構造を示す断面図である。
FIG. 3 is a cross-sectional view showing the structure of an optical waveguide formed by the method for manufacturing an optical waveguide according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 反応チャンバー 3 コア 4 クラッド 5 ヒーター 1 substrate 2 reaction chamber 3 core 4 clad 5 heater

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】石英系材料よりなる光導波路の製造方法に
おいて、 常圧CVD法により石英系光導波路材料を堆積すること
を特徴とする光導波路の製造方法。
1. A method of manufacturing an optical waveguide comprising a silica-based material, characterized in that the silica-based optical waveguide material is deposited by atmospheric pressure CVD.
【請求項2】請求項1記載の光導波路の製造方法におい
て、 テトラエトキシシラン、テトラメチルオルソシリケー
ト、トリエチルボレート、トリメチルホスファイト、ト
リメチルホスフェート、トリエチルホスフェート、トリ
メチルボレート、テトラメトキシゲルマニウムのうちの
少なくとも1種以上の有機材料ソースを用いることを特
徴とする光導波路の製造方法。
2. The method for producing an optical waveguide according to claim 1, wherein at least one of tetraethoxysilane, tetramethylorthosilicate, triethylborate, trimethylphosphite, trimethylphosphate, triethylphosphate, trimethylborate and tetramethoxygermanium. A method for manufacturing an optical waveguide, which comprises using at least one organic material source.
【請求項3】請求項2記載の光導波路の製造方法におい
て、 前記有機材料ソースをオゾンにより分解し、石英系光導
波路材料を堆積することを特徴とする光導波路の製造方
法。
3. The method of manufacturing an optical waveguide according to claim 2, wherein the organic material source is decomposed with ozone, and a silica optical waveguide material is deposited.
【請求項4】請求項1,2または3記載の光導波路の製
造方法において、 光導波路のコア及びクラッドをなす石英系光導波路材料
に3mol%以上の燐(P)をドーピングすることを特
徴とする光導波路の製造方法。
4. The method of manufacturing an optical waveguide according to claim 1, 2 or 3, wherein the silica-based optical waveguide material forming the core and the clad of the optical waveguide is doped with 3 mol% or more of phosphorus (P). A method for manufacturing an optical waveguide.
JP5136352A 1993-06-08 1993-06-08 Manufacturing method of optical waveguide Expired - Lifetime JP2739806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5136352A JP2739806B2 (en) 1993-06-08 1993-06-08 Manufacturing method of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5136352A JP2739806B2 (en) 1993-06-08 1993-06-08 Manufacturing method of optical waveguide

Publications (2)

Publication Number Publication Date
JPH06347657A true JPH06347657A (en) 1994-12-22
JP2739806B2 JP2739806B2 (en) 1998-04-15

Family

ID=15173185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5136352A Expired - Lifetime JP2739806B2 (en) 1993-06-08 1993-06-08 Manufacturing method of optical waveguide

Country Status (1)

Country Link
JP (1) JP2739806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803589A1 (en) * 1995-11-09 1997-10-29 Nec Corporation Method of manufacturing optical waveguide having no void
JP2002274871A (en) * 2001-03-15 2002-09-25 Asahi Denka Kogyo Kk Method for producing silicate glass layer for optical waveguide and CVD raw material used therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500272A (en) * 1985-06-21 1988-01-28 ブリティシュ・テレコミュニケ−ションズ・パブリック・リミテッド・カンパニ Method of manufacturing optical waveguide
JPS63303305A (en) * 1987-06-03 1988-12-09 Fujikura Ltd Quartz base thin film waveguide
JPH03220506A (en) * 1990-01-26 1991-09-27 Hitachi Cable Ltd Method for forming glass film for optical waveguide and method for manufacturing optical waveguide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500272A (en) * 1985-06-21 1988-01-28 ブリティシュ・テレコミュニケ−ションズ・パブリック・リミテッド・カンパニ Method of manufacturing optical waveguide
JPS63303305A (en) * 1987-06-03 1988-12-09 Fujikura Ltd Quartz base thin film waveguide
JPH03220506A (en) * 1990-01-26 1991-09-27 Hitachi Cable Ltd Method for forming glass film for optical waveguide and method for manufacturing optical waveguide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803589A1 (en) * 1995-11-09 1997-10-29 Nec Corporation Method of manufacturing optical waveguide having no void
JP2002274871A (en) * 2001-03-15 2002-09-25 Asahi Denka Kogyo Kk Method for producing silicate glass layer for optical waveguide and CVD raw material used therefor

Also Published As

Publication number Publication date
JP2739806B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
CN104635298B (en) A kind of planar optical waveguide and preparation method thereof
US6618537B2 (en) Optical waveguide structures and methods of fabrication
US5519803A (en) Optical waveguide
CN101859001B (en) Silicon dioxide optical waveguide device based on B-Ge-codoped upper cladding and preparation method thereof
US9354395B2 (en) Optical waveguide element and method of producing the same
JP3001406B2 (en) Manufacturing method of optical waveguide
JP2004301911A (en) Optical waveguide, method for manufacturing the same, and optical waveguide device
JP2739806B2 (en) Manufacturing method of optical waveguide
Syms Silica-on silicon integrated optics
JP3070018B2 (en) Quartz optical waveguide and method of manufacturing the same
KR100219715B1 (en) Rare earth ion doped optical waveguide manufacturing method
US20020064360A1 (en) Optical waveguide and a method for producing it
JP3097698B2 (en) Manufacturing method of optical waveguide
JP3950588B2 (en) Manufacturing method of optical waveguide device
JP2927597B2 (en) Manufacturing method of glass waveguide
JP2007271948A (en) Manufacturing method of optical waveguide
JPS63184707A (en) Manufacture of planar light waveguide
JP4241415B2 (en) Optical waveguide film forming method
JP3971524B2 (en) Manufacturing method of optical waveguide
JP2842874B2 (en) Manufacturing method of waveguide type optical device
KR100221550B1 (en) Thick film forming method using oxide particle
KR20020089871A (en) An optical waveguide device and fabrication method therefor
JP2603652B2 (en) Optical waveguide manufacturing method
JPH0677088B2 (en) Method of manufacturing planar optical waveguide
JPH05241035A (en) Optical waveguide and production thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 15

EXPY Cancellation because of completion of term