JPH0634577B2 - Power supply - Google Patents
Power supplyInfo
- Publication number
- JPH0634577B2 JPH0634577B2 JP62019453A JP1945387A JPH0634577B2 JP H0634577 B2 JPH0634577 B2 JP H0634577B2 JP 62019453 A JP62019453 A JP 62019453A JP 1945387 A JP1945387 A JP 1945387A JP H0634577 B2 JPH0634577 B2 JP H0634577B2
- Authority
- JP
- Japan
- Prior art keywords
- inverter
- circuit
- power supply
- switch
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4258—Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/337—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
- H02M3/3376—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
- Stand-By Power Supply Arrangements (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、周波数変換又は電気的絶縁を図るためのイン
バータを含む電源装置に関するものである。TECHNICAL FIELD The present invention relates to a power supply device including an inverter for frequency conversion or electrical insulation.
[従来の技術] インバータの直流電源は一般に整流回路で構成されてい
る。この整流回路を商用交流電源に接続した場合、入力
電圧は正弦波であるが、入力電流は必ずしも正弦波にな
らず且つ力率が1にならない。[Prior Art] A DC power supply for an inverter is generally composed of a rectifier circuit. When this rectifier circuit is connected to a commercial AC power supply, the input voltage is a sine wave, but the input current is not necessarily a sine wave and the power factor is not 1.
整流回路の入力電流波形を正弦波に近似させ且つ力率を
1に近づけるために、整流回路の入力又は出力電源ライ
ンにリアクトルを接続し、このリアクトルよりも後段で
電源ライン間をスイッチで短絡して入力電流波形を制御
することは、例えば、電気学会論文誌B第105巻第2
号第174頁の高橋勲他1名の「単相整流回路の入力電
流波形改善」等で知られている。In order to approximate the input current waveform of the rectifier circuit to a sine wave and bring the power factor close to 1, connect a reactor to the input or output power supply line of the rectifier circuit, and short the power supply line with a switch at a stage subsequent to this reactor. Controlling the input current waveform by, for example, the Institute of Electrical Engineers of Japan, B, Vol. 105, No. 2
It is known for "Improving the input current waveform of a single-phase rectifier circuit" by Isao Takahashi et al.
[発明が解決しようとする問題点] しかし、従来の電流波形改善方式では独立に短絡スイッ
チを設け、これを制御しなければならないので、電源装
置が必然的にコスト高になる。[Problems to be Solved by the Invention] However, in the conventional current waveform improving method, the power supply device inevitably has a high cost because the short-circuit switch has to be independently provided and controlled.
そこで、本発明の目的は、インバータを含む電源装置の
入力電流波形を容易に改善することにある。Therefore, an object of the present invention is to easily improve the input current waveform of a power supply device including an inverter.
[問題点を解決するための手段] 上記目的を達成するための本発明は、交流電源端子と、
この交流電源端子に接続された整流回路と、直流を交流
に交換するための複数のスイッチを含み、前記整流回路
に接続されているインバータと、前記交流電源端子と前
記整流回路との間又は前記整流回路と前記インバータと
の間の電源ラインに直列に接続されたリアクトルと、前
記交流電源端子を通って流れる電流を正弦波に近似させ
るように前記インバータの対の直流入力ライン間を前記
インバータのスイッチによって間欠的に短絡させると共
に、前記インバータから交流出力電圧が得られるように
前記インバータのスイッチを制御する回路とから成る電
源装置に係わるものである。[Means for Solving the Problems] The present invention for achieving the above object includes an AC power supply terminal,
A rectifier circuit connected to the AC power supply terminal, a plurality of switches for exchanging DC into AC, and an inverter connected to the rectifier circuit, between the AC power supply terminal and the rectifier circuit, or A reactor connected in series to a power supply line between the rectifier circuit and the inverter, and between the pair of DC input lines of the inverter so that the current flowing through the AC power supply terminal approximates a sine wave. The present invention relates to a power supply device including a circuit for intermittently short-circuiting with a switch and controlling a switch of the inverter so that an AC output voltage is obtained from the inverter.
[作 用] 上記発明において、インバータのスイッチによってこの
入力ラインが短絡されると、インバータから出力電圧が
得られなくなるが、リアクトルに電圧が印加され、リア
クトルにエネルギーが蓄積される。インバータのスイッ
チによる短絡を解除し、インバータの負荷に電圧を提供
するようにインバータのスイッチを制御すると、通常の
インバータ動作となる。インバータのスイッチによって
入力電源ライン間を短絡する時間幅を制御すると、交流
入力電流の振幅の制御即ち波形を制御することができ
る。[Operation] In the above invention, when the input line is short-circuited by the switch of the inverter, the output voltage cannot be obtained from the inverter, but the voltage is applied to the reactor and the energy is accumulated in the reactor. When the inverter switch is controlled so that the inverter switch short circuit is removed and the inverter load is supplied with voltage, normal inverter operation is achieved. By controlling the time width during which the input power supply lines are short-circuited by the switch of the inverter, it is possible to control the amplitude of the AC input current, that is, the waveform.
[実施例] 次に、第1図〜第4図に基づいて本発明の実施例に係わ
る電源装置を説明する。第1図の商用交流電源端子1,
2にはリアクトル3とコンデンサ4とから成る高調波成
分除去用フィルタ回路5が接続されている。フィルタ回
路5の出力ライン6に接続されたリアクトル7は電流制
御に使用される。ブリッジ接続された4つのダイオード
8,9,10,11から成る整流回路12の一対の交流
入力端子は電流制御のリアクトル7とフィルタ回路5と
を介して電源端子1,2に接続されている。整流回路1
2の直流出力端子に接続された一対の直流ライン13,
14間には、第1、第2、第3及び第4のスイッチQ
1,Q2,Q3,Q4をブリッジ接続したインバータ1
5が接続されている。各スイッチQ1,Q2,Q3,Q
4はFETで構成され、ここに並列にダイオードD1,
D2,D3,D4が接続されている。なお、一対の直流
ライン13,14間には、図示は省略されているが、帰
還電流を吸収するためにダイオードを介してバリスタと
コンデンサとの並列回路が接続されている。インバータ
15は出力トランス16を含み、このトランス16の1
次巻線線17の一端が第1及び第2のスイッチQ1,Q
2の間に接続され、他端が第3及び第4のスイッチQ
3,Q4の間に接続されている。2次巻線18には、ダ
イオード19,20,21,22から成る出力整流回路
23が接続されている。出力整流回路23の対の出力ラ
イン間には平滑コンデンサ24が接続されている。直流
出力端子25,26間には、例えばインバータ等の負荷
回路が接続される。[Embodiment] Next, a power supply device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4. Commercial AC power supply terminal 1 in FIG.
A harmonic component removing filter circuit 5 including a reactor 3 and a capacitor 4 is connected to 2. The reactor 7 connected to the output line 6 of the filter circuit 5 is used for current control. A pair of AC input terminals of the rectifier circuit 12 composed of four diodes 8, 9, 10, 11 connected in a bridge are connected to power supply terminals 1 and 2 via a current control reactor 7 and a filter circuit 5. Rectifier circuit 1
A pair of DC lines 13 connected to the DC output terminals of 2;
Between 14 are the first, second, third and fourth switches Q.
Inverter 1 with bridge connection of 1, Q2, Q3, Q4
5 is connected. Switches Q1, Q2, Q3, Q
4 is composed of a FET, and a diode D1,
D2, D3 and D4 are connected. Although not shown, a parallel circuit of a varistor and a capacitor is connected between the pair of DC lines 13 and 14 via a diode in order to absorb a feedback current. The inverter 15 includes an output transformer 16, and one of the transformers 16
One end of the next winding wire 17 has first and second switches Q1, Q
2 and the other end is a third and a fourth switch Q.
It is connected between 3 and Q4. An output rectifying circuit 23 including diodes 19, 20, 21, 22 is connected to the secondary winding 18. A smoothing capacitor 24 is connected between the pair of output lines of the output rectifying circuit 23. A load circuit such as an inverter is connected between the DC output terminals 25 and 26.
インバータ15における第1〜第4のスイッチQ1〜Q
4は、インバータ駆動されると共に、短絡制御される。
短絡制御は、第1のスイッチQ1と第2のスイッチQ2
とを同時にオン状態にすること、及び第3のスイッチQ
3と第4のスイッチQ4とを同時にオン状態にすること
によって行う。First to fourth switches Q1 to Q in the inverter 15
4 is driven by an inverter and is short-circuit controlled.
Short circuit control is performed by the first switch Q1 and the second switch Q2.
Turning on and at the same time, and the third switch Q
This is done by turning on the third and fourth switches Q4 at the same time.
インバータ15のインバータ制御と短絡制御との両方を
行うために、コンデンサ6の出力側の電流i2を検出す
るための電流検出器27がフィルタ回路5と整流回路1
2との間に設けられている。また、検出電流i2と比較
するための基準正弦波を得るために商用交流電源端子
1,2に入力電圧検出回路28が接続されている。イン
バータ15の出力電圧に対応する直流出力電圧を検出す
るために直流出力端子25,26に出力電圧検出回路3
1が接続されている。In order to perform both the inverter control of the inverter 15 and the short-circuit control, the current detector 27 for detecting the current i2 on the output side of the capacitor 6 has a filter circuit 5 and a rectifier circuit 1.
It is provided between the two. An input voltage detection circuit 28 is connected to the commercial AC power supply terminals 1 and 2 in order to obtain a reference sine wave for comparison with the detected current i2. In order to detect the DC output voltage corresponding to the output voltage of the inverter 15, the output voltage detection circuit 3 is connected to the DC output terminals 25 and 26.
1 is connected.
電流検出器27は絶対値回路34を介して第1の誤差増
幅器35の一方の入力端子(反転入力端子)に接続され
ている。入力電圧検出回路28の出力ラインは絶対値回
路36と係数回路即ち乗算回路37とを介して第1の誤
差増幅器35の他方の入力端子(非反転入力端子)に接
続されている。第1の誤差増幅器35はリプル成分を含
む電流i2と正弦波電圧との差に対応した出力を発生す
る。The current detector 27 is connected to one input terminal (inverting input terminal) of the first error amplifier 35 via the absolute value circuit 34. The output line of the input voltage detection circuit 28 is connected to the other input terminal (non-inverting input terminal) of the first error amplifier 35 via an absolute value circuit 36 and a coefficient circuit, that is, a multiplication circuit 37. The first error amplifier 35 generates an output corresponding to the difference between the current i2 including the ripple component and the sine wave voltage.
出力電圧を一定に保つようにインバータ15を制御する
ために、出力電圧検出回路31の出力ラインが第2の誤
差増幅器38の一方の入力端子(反転入力)に接続さ
れ、この誤差増幅器38の他方の入力端子(反転入力)
に基準電圧源39が接続されている。この第2の誤差増
幅器38は検出電圧と基準電圧との差に対応した出力電
圧を発生し、乗算器37に送る。乗算器37は絶対値回
路36から与えられる基準正弦波波形の振幅に第2の誤
差振幅器38の出力を掛けた値を第1の誤差振幅器35
の非反転入力端子に与える。In order to control the inverter 15 so as to keep the output voltage constant, the output line of the output voltage detection circuit 31 is connected to one input terminal (inverting input) of the second error amplifier 38, and the other of the error amplifier 38 is connected. Input terminal (reverse input)
A reference voltage source 39 is connected to. The second error amplifier 38 generates an output voltage corresponding to the difference between the detected voltage and the reference voltage and sends it to the multiplier 37. The multiplier 37 multiplies a value obtained by multiplying the amplitude of the reference sine wave waveform given from the absolute value circuit 36 by the output of the second error amplitude unit 38, and outputs the value of the first error amplitude unit 35.
Input to the non-inverting input terminal of.
電圧比較器40の一方の入力端子(反転入力)はローパ
スフィルタ43を介して第1の誤差増幅器35の出力端
子に接続され、他方の入力端子(非反転入力)はのこぎ
り波発生回路41に接続されている。この比較器40は
両入力の比較出力を2値形式で出力する。One input terminal (inverting input) of the voltage comparator 40 is connected to the output terminal of the first error amplifier 35 via the low pass filter 43, and the other input terminal (non-inverting input) is connected to the sawtooth wave generation circuit 41. Has been done. The comparator 40 outputs the comparison output of both inputs in a binary format.
比較器40の出力端子に接続されたスイッチ制御信号形
成回路42は、比較器40の出力に基づいてスイッチQ
1〜Q4の制御信号を形成する。この制御信号形成回路
42の出力ラインは、図示が省略されているが、各スイ
ッチQ1〜Q4の制御端子(ゲート)に接続されてい
る。The switch control signal forming circuit 42 connected to the output terminal of the comparator 40 switches the switch Q based on the output of the comparator 40.
1 to Q4 control signals are formed. Although not shown, the output line of the control signal forming circuit 42 is connected to the control terminals (gates) of the switches Q1 to Q4.
(動作) 次に、第1図の回路の動作を第2図〜第4図を参照して
説明する。インバータ15によって周波数変換するため
にのこぎり波発生回路41から発生させるのこぎり波の
繰り返し周波数を交流電源端子1,2から供給する交流
の周波数よりも十分に高く設定する。従って、第1図の
電流はi2は、インバータ15のスイッチQ1〜Q4の
オン・オフ制御に対応して第4図に示す如く高い周波数
のリプルを含んだ波形になる。しかし、フィルタ回路5
を有するので、高調波成分が除去され、入力電流i1は
第3図に示すような近似正弦波になる。(Operation) Next, the operation of the circuit shown in FIG. 1 will be described with reference to FIGS. The frequency of the sawtooth wave generated by the sawtooth wave generation circuit 41 for frequency conversion by the inverter 15 is set sufficiently higher than the frequency of the alternating current supplied from the alternating-current power supply terminals 1 and 2. Therefore, the current i2 in FIG. 1 has a waveform including ripples of high frequency as shown in FIG. 4 corresponding to ON / OFF control of the switches Q1 to Q4 of the inverter 15. However, the filter circuit 5
, The harmonic component is removed, and the input current i1 becomes an approximate sine wave as shown in FIG.
第1図の回路を動作させる場合には、のこぎり波発生回
路41から第2図(A)に示すのこぎり波A2と、第2
図(B)の第1のスイッチQ1の制御信号と、第2図
(C)の第3のスイッチQ3の制御信号とを互いに同期
させて固定的に発生させる。一般的なインバータでは、
第2のスイッチQ2には第2図(B)に示す第1のスイ
ッチQ1の制御信号の位相反転信号を加え、第4のスイ
ッチQ4には第2図(C)に示す第3スイッチQ3の制
御信号の位相反転信号を加えるが、本発明に従うインバ
ータ15では、第2図(D)(E)に示す如く、第1及
び第3のスイッチQ1,Q3に対して180度より大き
な位相差を有する制御信号を第2及び第4のスイッチQ
2,Q4に加える。When the circuit of FIG. 1 is operated, the sawtooth wave generation circuit 41 causes the sawtooth wave A2 shown in FIG.
The control signal of the first switch Q1 shown in FIG. 2B and the control signal of the third switch Q3 shown in FIG. 2C are fixedly generated in synchronization with each other. In a typical inverter,
A phase inversion signal of the control signal of the first switch Q1 shown in FIG. 2B is applied to the second switch Q2, and a fourth switch Q4 is provided with a third switch Q3 of the third switch Q3 shown in FIG. 2C. A phase inversion signal of the control signal is added, but in the inverter 15 according to the present invention, as shown in FIGS. 2D and 2E, a phase difference larger than 180 degrees is generated with respect to the first and third switches Q1 and Q3. A control signal having a second and a fourth switch Q
2, add to Q4.
第2図(D)(E)の制御信号は、第1の誤差増幅器3
5及び比較器40に基づいて形成される。誤差増幅器3
5の一方の入力端子に第2図(F)に示すリプルを含む
電流検出信号F1が入力し、他方の入力端子に乗算器3
7から第2図(F)に示す基準正弦波F2が入力する
と、誤差増幅器35の出力端子に接続されたローパスフ
ィルタ43の出力段に入力電流i2の情報と出力電圧の
情報とを含んだ信号A1が得られる。第2図(A)に示
すように信号A1とのこぎり波発生回路41から得られ
る第2図(A)ののこぎり波A2とが比較器40で比較
されると、信号A1をのこぎり波A2が横切るごとに比
較器40の出力が転換する。即ち、信号A1よりものこ
ぎり波A2が高くなるt1〜t2、t3〜t4等の期間
に比較器40の出力が高レベルになる。制御信号形成回
路42は、比較器40の出力に基づいて、第2図(D)
(E)に示す第2及び第4のスイッチQ2,Q4の制御
信号を形成する。即ち、t1で比較器40の出力が反転
することに応答して第2のスイッチQ2の制御信号を低
レベルに戻し、逆に第4のスイッチQ4の制御信号を高
レベルに反転させる。t3時点で再び比較器40の出力
が高レベルに転換した時に第2のスイッチQ2の制御信
号を高レベルに転換させ、第4のスイッチQ4の制御信
号を低レベルに転換させる。のこぎり波A2が信号A1
のレベルを高い方から低い方向に向って横切るt2,t
4等の時点は第2及び第4のスイッチQ2,Q4の制御
信号に無関係である。従って、第2図(D)(E)の第
2及び第4のスイッチQ2,Q4の制御信号は、t1,
t3,t5でトリガされるフリップフロップで形成す
る。The control signals of FIGS. 2D and 2E are the same as those of the first error amplifier 3
5 and the comparator 40. Error amplifier 3
The current detection signal F1 including the ripple shown in FIG. 2 (F) is input to one input terminal of the multiplier 5, and the multiplier 3 is input to the other input terminal.
When the reference sine wave F2 shown in FIG. 2 (F) is input from 7 to the output stage of the low pass filter 43 connected to the output terminal of the error amplifier 35, a signal including the information of the input current i2 and the information of the output voltage. A1 is obtained. As shown in FIG. 2 (A), when the signal A1 and the sawtooth wave A2 of FIG. 2 (A) obtained from the sawtooth wave generation circuit 41 are compared by the comparator 40, the sawtooth wave A2 crosses the signal A1. The output of the comparator 40 changes every time. That is, the output of the comparator 40 becomes high level during the period of t1 to t2, t3 to t4, etc. when the sawtooth wave A2 is higher than the signal A1. The control signal forming circuit 42, based on the output of the comparator 40, is shown in FIG.
The control signals for the second and fourth switches Q2 and Q4 shown in (E) are formed. That is, in response to the output of the comparator 40 being inverted at t1, the control signal of the second switch Q2 is returned to the low level, and conversely, the control signal of the fourth switch Q4 is inverted to the high level. When the output of the comparator 40 changes to the high level again at time t3, the control signal of the second switch Q2 is changed to the high level and the control signal of the fourth switch Q4 is changed to the low level. Sawtooth wave A2 is signal A1
Across the level of t2, t from higher to lower
Time points such as 4 are independent of the control signals of the second and fourth switches Q2, Q4. Therefore, the control signals of the second and fourth switches Q2 and Q4 in FIGS.
It is formed by flip-flops triggered at t3 and t5.
t0〜t1、t4〜t5期間には、第1及び第2のスイ
ッチQ1,Q2が共にオン状態になるので、直流ライン
13,14間がこのスイッチQ1Q2で短絡される。こ
の結果、リアクトルを通って流れ込む電流i2が第2図
のt1〜t2に示すように増大する。t1〜t2期間に
なると、第2のスイッチQ2がオフになるため、短絡が
解除され、第1のスイッチQ1と出力トランス16の1
次巻線17と第4のトランジスタQ4とから成る回路が
形成されるので、電流i2は減少する。なお、この時、
交流電源電圧とリアクトル7の電圧との和が整流回路1
2に入力する。During the periods of t0 to t1 and t4 to t5, the first and second switches Q1 and Q2 are both turned on, so that the DC lines 13 and 14 are short-circuited by the switch Q1Q2. As a result, the current i2 flowing through the reactor increases as indicated by t1 to t2 in FIG. In the period from t1 to t2, the second switch Q2 is turned off, so that the short circuit is released and the first switch Q1 and the output transformer 16
Since the circuit composed of the secondary winding 17 and the fourth transistor Q4 is formed, the current i2 decreases. At this time,
The sum of the AC power supply voltage and the voltage of the reactor 7 is the rectifier circuit 1
Enter 2.
t2〜t3で第3のスイッチQ3と第4のスイッチQ4
とが同時にオン状態になると、再び短絡回路が形成さ
れ、電流i2は再び増大する。しかし、t3で第4のス
イッチQ4がオフになると、第3のスイチQ3と1次巻
線17と第2のスイッチQ2とから成る回路が形成さ
れ、再び電流i2は減少する。交流電源電圧は正弦波で
変化し、これが基準として誤差増幅器35に与えられて
いるので、電流i2も正弦波電圧に沿って変化する。イ
ンバータ15が出力電圧を発生しないt0〜t1、t2
〜t3、t4〜t5等の期間であっても、スイッチQ1
〜Q4で短絡回路が形成されているので、リアクトル7
を通って電流が流れる。このため、入力電流i2の波形
を正弦波に近似させることができる。At t2 to t3, the third switch Q3 and the fourth switch Q4
When and are simultaneously turned on, a short circuit is formed again, and the current i2 increases again. However, when the fourth switch Q4 is turned off at t3, a circuit including the third switch Q3, the primary winding 17 and the second switch Q2 is formed, and the current i2 decreases again. The AC power supply voltage changes with a sine wave, and since this is given to the error amplifier 35 as a reference, the current i2 also changes along the sine wave voltage. The inverter 15 does not generate an output voltage t0 to t1, t2
Up to t3, t4 to t5, etc., the switch Q1
Since a short circuit is formed at ~ Q4, the reactor 7
An electric current flows through it. Therefore, the waveform of the input current i2 can be approximated to a sine wave.
直流出力電圧検出回路31の検出値が変化すると、第2
の誤差増幅器38の出力レベルが変化し、乗算器37の
出力のレベル即ち基準正弦波の増幅が変化し、第1の誤
差増幅器35の出力レベルも変化し、短絡時間幅α即ち
インバータの出力電圧幅が変化し、電圧が調整される。When the detection value of the DC output voltage detection circuit 31 changes, the second
The output level of the error amplifier 38 changes, the output level of the multiplier 37, that is, the amplification of the reference sine wave changes, the output level of the first error amplifier 35 changes, and the short circuit time width α, that is, the output voltage of the inverter. The width changes and the voltage is adjusted.
[変形例] 本発明は上述の実施例に限定されるものでなく、例えば
次の変形が可能なものである。[Modification] The present invention is not limited to the above-described embodiments, and the following modifications are possible, for example.
(1)第1図に示す如く、整流回路12の出力側にリア
クトル7を移してもよい。(1) As shown in FIG. 1, the reactor 7 may be moved to the output side of the rectifier circuit 12.
(2)第6図に示す如く、一対のスイッチQ1,Q2を
トランス16の1次巻線17の両端に接続し、センタタ
ップに整流回路12を接続する場合にも適用可能であ
る。(2) As shown in FIG. 6, it is also applicable to a case where a pair of switches Q1 and Q2 are connected to both ends of the primary winding 17 of the transformer 16 and the rectifier circuit 12 is connected to the center tap.
[発明の効果] 本発明によれば、インバータの直流電源としての整流回
路の入力電流の波形改善とインバータの制御との両方を
簡単な回路構成で達成することができる。[Advantages of the Invention] According to the present invention, both the improvement of the waveform of the input current of the rectifier circuit as the DC power source of the inverter and the control of the inverter can be achieved with a simple circuit configuration.
第1図は本発明の実施例に係わる電源装置を示す回路
図、 第2図は第1図の各部の電圧を示す波形図、 第3図は第1図の入力電流の波形図、 第4図は第1図のフィルタ回路よりも後段の電流を示す
波形図、 第5図は変形例の電源装置の一部を示す回路図、 第6図は別の変形例の電源装置の一部を示す回路図であ
る。 1,2……電源端子、7……リアクトル、12……整流
回路、13,14……直流ライン、Q1〜Q4……スイ
ッチ、15……インバータ。FIG. 1 is a circuit diagram showing a power supply device according to an embodiment of the present invention, FIG. 2 is a waveform diagram showing the voltage of each part of FIG. 1, FIG. 3 is a waveform diagram of the input current of FIG. FIG. 5 is a waveform diagram showing a current at a stage subsequent to the filter circuit of FIG. 1, FIG. 5 is a circuit diagram showing a part of a power supply device of a modification, and FIG. 6 is a part of a power supply device of another modification. It is a circuit diagram shown. 1, 2 ... Power supply terminal, 7 ... Reactor, 12 ... Rectifier circuit, 13, 14 ... DC line, Q1-Q4 ... Switch, 15 ... Inverter.
Claims (1)
記整流回路に接続されているインバータと、 前記交流電源端子と前記整流回路との間又は前記整流回
路と前記インバータとの間の電源ラインに直列に接続さ
れたリアクトルと、 前記交流電源端子を通って流れる電流を正弦波に近似さ
せるように前記インバータの対の直流入力ライン間を前
記インバータのスイッチによって間欠的に短絡させると
共に、前記インバータから交流出力電圧が得られるよう
に前記インバータのスイッチを制御する回路と から成る電源装置。1. An AC power supply terminal, a rectifier circuit connected to the AC power supply terminal, an inverter including a plurality of switches for exchanging DC to AC, and an AC power supply connected to the rectifier circuit. A reactor connected in series to a power supply line between a terminal and the rectifier circuit or between the rectifier circuit and the inverter, and a current of the inverter that approximates a sine wave to the current flowing through the AC power supply terminal. A power supply device comprising: a circuit for intermittently short-circuiting a pair of DC input lines by a switch of the inverter and controlling a switch of the inverter so that an AC output voltage is obtained from the inverter.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62019453A JPH0634577B2 (en) | 1987-01-29 | 1987-01-29 | Power supply |
KR1019870014298A KR910003789B1 (en) | 1987-01-29 | 1987-12-15 | Power supply |
FR8800986A FR2610461A1 (en) | 1987-01-29 | 1988-01-28 | AC/DC/AC electronic converter |
KR1019880003385A KR910003798B1 (en) | 1987-01-29 | 1988-03-28 | Magnetic recording and playback device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62019453A JPH0634577B2 (en) | 1987-01-29 | 1987-01-29 | Power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63190557A JPS63190557A (en) | 1988-08-08 |
JPH0634577B2 true JPH0634577B2 (en) | 1994-05-02 |
Family
ID=11999738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62019453A Expired - Lifetime JPH0634577B2 (en) | 1987-01-29 | 1987-01-29 | Power supply |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH0634577B2 (en) |
KR (1) | KR910003789B1 (en) |
FR (1) | FR2610461A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5134307A (en) * | 1989-05-18 | 1992-07-28 | Hirotami Nakano | Uninterruptible power supply apparatus and isolating method thereof |
JP2721922B2 (en) * | 1989-12-29 | 1998-03-04 | 勲 高橋 | Switching regulator |
JP2683839B2 (en) * | 1990-06-05 | 1997-12-03 | サンケン電気株式会社 | Power supply |
JPH0449848A (en) * | 1990-06-19 | 1992-02-19 | Fujitsu Denso Ltd | Switching regulator |
JPH0488886A (en) * | 1990-07-27 | 1992-03-23 | Matsushita Electric Ind Co Ltd | Inverter |
JPH0496687A (en) * | 1990-08-09 | 1992-03-30 | Syst Hoomuzu:Kk | Frequency converter |
US5222015A (en) * | 1991-05-31 | 1993-06-22 | Kabushiki Kaisha Toshiba | Inverter power supply with input power detection means |
CN102035249B (en) * | 2010-11-24 | 2013-06-19 | 四川电力试验研究院 | Direct current power supply emergency system of transformer substation based on lithium iron battery |
JP6277087B2 (en) * | 2014-08-25 | 2018-02-07 | 東芝インフラシステムズ株式会社 | Power converter |
JP6277143B2 (en) * | 2015-02-06 | 2018-02-07 | 東芝インフラシステムズ株式会社 | Power supply and AC adapter |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4109307A (en) * | 1977-05-04 | 1978-08-22 | Gte Sylvania Incorporated | High power factor conversion circuitry |
US4591963A (en) * | 1984-04-23 | 1986-05-27 | At&T Bell Laboratories | Technique for reducing line current harmonics at input to power supply acting as nonlinear load |
-
1987
- 1987-01-29 JP JP62019453A patent/JPH0634577B2/en not_active Expired - Lifetime
- 1987-12-15 KR KR1019870014298A patent/KR910003789B1/en not_active IP Right Cessation
-
1988
- 1988-01-28 FR FR8800986A patent/FR2610461A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
KR910003789B1 (en) | 1991-06-12 |
JPS63190557A (en) | 1988-08-08 |
KR880009469A (en) | 1988-09-15 |
FR2610461A1 (en) | 1988-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3392128B2 (en) | Resonant inverter | |
US9007796B2 (en) | Power conversion with current sensing coupled through saturating element | |
JPH0729747Y2 (en) | AC / DC converter | |
EP0162081A1 (en) | Ripple reduction circuit for an inverter | |
JPH0634577B2 (en) | Power supply | |
JPH07131984A (en) | Dc power supply equipment | |
JP3183559B2 (en) | AC electronic load device | |
JP2784951B2 (en) | Power supply | |
JP3363171B2 (en) | Generator with parallel operation function | |
JP2632586B2 (en) | Container with lid | |
JP4275223B2 (en) | Power supply | |
JP2632587B2 (en) | Power supply | |
JPH02168864A (en) | Dc power supply device | |
Kanuch et al. | Design and measurement of a frequency converter with SPWM modulation of output voltage for a two-phase induction motor | |
JP3501548B2 (en) | Demagnetization prevention circuit of high frequency transformer | |
JP3274208B2 (en) | Deflection control method | |
JPH0652998B2 (en) | Method and device for controlling control voltage of three-phase inverter for AC motor power supply | |
JPH0720371B2 (en) | DC power supply | |
JP2600814B2 (en) | Output transformer demagnetization prevention device | |
JPS61293170A (en) | power converter | |
JP3400096B2 (en) | Sine wave rectifier circuit | |
JPS63314176A (en) | Variable voltage/variable frequency power apparatus | |
JPH06105559A (en) | System interconnection inverter | |
KR930003008B1 (en) | Pulse width modulation inverter control system by switching angle characteristic linearization method | |
JPH05300734A (en) | Switching regulator |