JPH06343890A - Pulverizing method by wet process - Google Patents
Pulverizing method by wet processInfo
- Publication number
- JPH06343890A JPH06343890A JP13481793A JP13481793A JPH06343890A JP H06343890 A JPH06343890 A JP H06343890A JP 13481793 A JP13481793 A JP 13481793A JP 13481793 A JP13481793 A JP 13481793A JP H06343890 A JPH06343890 A JP H06343890A
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- pulverized
- stage
- pulverization
- viscosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Crushing And Grinding (AREA)
- Disintegrating Or Milling (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、超微粉体製造設備にお
ける湿式粉砕方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet grinding method in an ultrafine powder manufacturing facility.
【0002】[0002]
【従来の技術】図4は従来の湿式連続ミルの一例を示す
縦断面図,図5は図4のミルによる湿式連続粉砕状況を
示す図である。内壁に攪拌翼(4)を有する外筒(2)
内に、外壁に攪拌翼(3)を有する内筒(1)が配され
て、互に逆方向に回転するようになっている。内筒
(1)と外筒(2)との間に形成された粉砕室(5)内
には粉砕媒体(ボール)(6)が充填されている。内筒
(1)の回転軸を貫通して設けられた原料供給孔(7)
により砕料(被粉砕物)と水等の分散媒とからなる粗粒
スラリーが粉砕室(5)内へ連続供給され、粉砕媒体
(6)によって粉砕される。微粒スラリーは反対側端部
に設置された排出目板(8)により粉砕媒体が分離さ
れ、微粒スラリーのみが粉砕品出口(9)から連続排出
される。この場合、供給される粗粒スラリーの濃度は終
始一定である。2. Description of the Related Art FIG. 4 is a vertical sectional view showing an example of a conventional wet continuous mill, and FIG. 5 is a view showing a wet continuous crushing condition by the mill of FIG. An outer cylinder (2) having a stirring blade (4) on the inner wall
An inner cylinder (1) having an agitating blade (3) on the outer wall is disposed therein so that they rotate in opposite directions. A grinding medium (ball) (6) is filled in the grinding chamber (5) formed between the inner cylinder (1) and the outer cylinder (2). Raw material supply hole (7) provided through the rotating shaft of the inner cylinder (1)
Thus, a coarse-grained slurry composed of a crushed material (material to be crushed) and a dispersion medium such as water is continuously supplied into the crushing chamber (5) and crushed by the crushing medium (6). The finely divided slurry is separated from the grinding medium by the discharge eye plate (8) installed at the opposite end, and only the finely divided slurry is continuously discharged from the ground product outlet (9). In this case, the concentration of the coarse-grained slurry supplied is constant throughout.
【0003】次に図6は従来の湿式回分(バッチ)粉砕
の工程を示す図である。まず工程において粉砕媒体
(6)を充填したミル内部に特定量の砕料と分散媒を仕
込み、次に工程において粉砕し、工程で粉砕品をミ
ル内部から排出する。したがってこの場合も、やはり粉
砕全工程においてスラリーの濃度は一定である。Next, FIG. 6 is a diagram showing a conventional wet batch (batch) grinding process. First, in the step, a specific amount of the crushing material and the dispersion medium are charged into the mill filled with the crushing medium (6), then crushed in the step, and the crushed product is discharged from the inside of the mill in the step. Therefore, also in this case, the concentration of the slurry is constant throughout the entire pulverization process.
【0004】[0004]
【発明が解決しようとする課題】図7は、スラリーの濃
度が一定の場合、その粘度と含有する粉体の平均粒子径
との相関関係を示す図である。スラリーは、含有粉体の
平均粒径が減少するに従って、その粘度は上昇する。ス
ラリーの粘度がある一定値を越えると、ボールの運動は
攪拌翼から受ける剪断力や重力の影響よりも粘度によっ
て支配されるようになり、ボールとスラリーと粉砕機攪
拌翼部分が一緒になって廻り始める、いわゆる共廻り現
象が生じる。この現象が発生すると、ボールの運動エネ
ルギーが粒子に対する粉砕エネルギーとしてほとんど作
用しなくなり、粉砕性が著しく低下する。FIG. 7 is a diagram showing the correlation between the viscosity and the average particle diameter of the powder contained when the concentration of the slurry is constant. The viscosity of the slurry increases as the average particle size of the contained powder decreases. When the viscosity of the slurry exceeds a certain value, the movement of the ball will be governed by the viscosity rather than the effect of the shearing force and gravity received from the stirring blade, and the ball, the slurry and the stirring blade of the crusher will work together. A so-called co-rotation phenomenon occurs, which begins to rotate. When this phenomenon occurs, the kinetic energy of the ball hardly acts as the crushing energy for the particles, and the crushability is significantly reduced.
【0005】図8はスラリーの粘度が上昇し共廻りが発
生して粉砕性が悪化したため、超微粉砕が困難となった
実例を示す図である。図中に△印で示すスラリー粘度が
共廻りの発生しない上限値を越えると、図中に○印で示
す粒径は、その減少速度が低下して、一定値からほとん
ど減少しなくなった。このように、湿式超微粉砕を行な
う場合、微粒化の進行とともに粉砕速度が低下し、目標
微粉を得るために多大な粉砕エネルギーと時間を費やす
ことになる。FIG. 8 is a diagram showing an example in which the ultrafine pulverization becomes difficult because the viscosity of the slurry increases and co-rotation occurs to deteriorate the pulverizability. When the slurry viscosity indicated by Δ in the figure exceeds the upper limit value at which co-rotation does not occur, the particle size indicated by ○ in the figure decreases at a reduced rate and hardly decreases from a constant value. As described above, when the wet ultra-fine pulverization is performed, the pulverization speed decreases as the atomization progresses, and a great amount of pulverizing energy and time are consumed to obtain the target fine powder.
【0006】[0006]
【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、被粉砕物と分散媒との混合物を粉
砕媒体とともに攪拌して上記被粉砕物を微粉砕する方法
において、上記被粉砕物の微粒化が進行するに従って、
段階的に上記混合物を上記分散媒によって希釈すること
を特徴とする湿式粉砕方法を提案するものである。In order to solve the above-mentioned conventional problems, the present invention provides a method for finely pulverizing an object to be pulverized by stirring a mixture of an object to be pulverized and a dispersion medium together with a pulverizing medium, As the atomization of the pulverized material progresses,
The present invention proposes a wet pulverization method characterized by diluting the mixture with the dispersion medium stepwise.
【0007】[0007]
【作用】図9は、スラリー中に含有される粉体の平均粒
径をパラメータとして、スラリー濃度と粘度との相関関
係を示す図である。粉体の平均粒径が同一であっても、
その濃度が高くなると粘度も上昇する。FIG. 9 is a diagram showing the correlation between the slurry concentration and the viscosity, with the average particle size of the powder contained in the slurry as a parameter. Even if the average particle size of the powder is the same,
The higher the concentration, the higher the viscosity.
【0008】本発明の方法においては、被粉砕物と分散
媒との混合スラリーを分散媒で希釈してスラリー濃度を
適宜低下させることにより、スラリー粘度を適正範囲に
維持して、スラリー粘度の高いことが原因で発生する共
廻り現象を抑制するものである。In the method of the present invention, the slurry viscosity is maintained in an appropriate range and the slurry viscosity is high by diluting the mixed slurry of the material to be ground and the dispersion medium with the dispersion medium to appropriately reduce the slurry concentration. This is to suppress the co-rotation phenomenon that occurs due to this.
【0009】[0009]
【実施例】図1は、本発明方法の一実施例として、湿式
バッチ粉砕により珪石を試粉砕した状況を示す図であ
る。まず工程において珪石(砕料)と水(分散媒)を
スラリー濃度が75%になるように仕込む。次に工程
において粉砕を行なう。微粉化が進行するにつれてスラ
リー粘度が上昇し、共廻りが生じて粒径低下速度が減少
する。そこで工程として水を小量追加し、スラリー濃
度を65%に下げることにより粘度を下げ、再び工程
に戻る。このようにして工程を繰り返し、45%ま
で希釈したとき目標粒径に達した。その後、工程で粉
砕スラリーを払い出した。EXAMPLE FIG. 1 is a view showing a state in which silica stone was pulverized by wet batch pulverization as an example of the method of the present invention. First, in a step, silica stone (crushed material) and water (dispersion medium) are charged so that the slurry concentration becomes 75%. Next, crushing is performed in the process. As the pulverization progresses, the viscosity of the slurry increases, co-rotation occurs, and the particle size reduction rate decreases. Therefore, as a process, a small amount of water is added to reduce the viscosity by decreasing the slurry concentration to 65%, and the process is returned to the process again. The process was repeated in this way, and the target particle size was reached when diluted to 45%. Then, the crushed slurry was discharged in the process.
【0010】図2は、上記珪石粉砕試験における粉体粒
径、スラリー粘度、スラリー濃度の変化を示す図であ
る。粉砕を開始すると、微粒化に伴ってスラリー粘度が
上昇し、その上限値 5000cp に近付くにつれて共廻りが
発生し始め、粒径の低下速度が減少した。そこで水を追
加することにより、濃度を65%に下げて粘度を下げる
と、粒径低下速度が増加した。さらに粉砕を継続すると
粒径の低下速度が再び減少したので、更に希釈し濃度を
55%に下げた。このような工程の繰り返しにより、1
μm以下の微粒化が達成できた。なお、上記のような希
釈を行なわなかった場合、平均粒径は最終的に約2μm
よりも小さくはならなかった。FIG. 2 is a diagram showing changes in powder particle diameter, slurry viscosity, and slurry concentration in the silica stone crushing test. When pulverization was started, the slurry viscosity increased with atomization, and as the upper limit value of 5000 cp was approached, co-rotation began to occur and the particle size reduction rate decreased. Therefore, when water was added to reduce the concentration to 65% to reduce the viscosity, the particle size reduction rate increased. When the pulverization was further continued, the decreasing rate of the particle size was decreased again, so that the concentration was further diluted to 55%. By repeating such steps, 1
Atomization of less than μm could be achieved. If the above-mentioned dilution is not carried out, the average particle size will eventually be about 2 μm.
Did not get smaller than.
【0011】図3は、粘度(濃度)の下限値を処理量か
ら規定し、また上限値を共廻り発生防止の面から規定し
た、その相関図である。特にその下限値について説明す
る。希釈が過度に進み濃度が40%以下になると、乾燥
粉体ベースでの処理速度が100kg/hr以下に低下し
て、経済的限界に達する。したがって粉砕の際、スラリ
ー濃度(粘度)は40%以上に維持することが望ましい
ことが言える。このように経済性と粉砕性の両方を考え
て、適正な粉砕濃度範囲内に維持することが重要とな
る。FIG. 3 is a correlation diagram in which the lower limit value of the viscosity (concentration) is defined from the processing amount and the upper limit value is defined from the viewpoint of preventing co-rotation. In particular, the lower limit value will be described. When the dilution proceeds excessively and the concentration becomes 40% or less, the processing rate on a dry powder base decreases to 100 kg / hr or less, and the economical limit is reached. Therefore, it can be said that it is desirable to maintain the slurry concentration (viscosity) at 40% or more during pulverization. In this way, it is important to keep the concentration within an appropriate pulverization concentration range, considering both economical efficiency and pulverizability.
【0012】上記のように、本実施例においては、多段
階希釈を行なうことにより、従来の湿式粉砕方法では達
成することのできなかった微粉砕を達成することができ
た。As described above, in this embodiment, by performing the multi-stage dilution, it was possible to achieve fine pulverization which could not be achieved by the conventional wet pulverization method.
【0013】[0013]
【発明の効果】本発明の方法においては、粉砕媒体を用
いて湿式粉砕を行なうに際し、被粉砕物の微粒化に従っ
て段階的にスラリーを希釈し濃度を下げることによっ
て、スラリー粘度を適正範囲内に保ち粉砕媒体の共廻り
現象を抑制するので、従来の湿式粉砕方法に比べて遙か
に微細に粉砕することができる。また、目標微粉体を得
るために要する粉砕動力・粉砕時間を、従来の方法に比
較して格段に低減することができる。In the method of the present invention, when performing wet pulverization using a pulverizing medium, the slurry viscosity is controlled within a proper range by gradually diluting the slurry and reducing the concentration in accordance with atomization of the material to be pulverized. Since the co-rotation phenomenon of the keeping pulverizing medium is suppressed, it is possible to pulverize much finer than the conventional wet pulverizing method. Further, the grinding power and the grinding time required to obtain the target fine powder can be significantly reduced as compared with the conventional method.
【図1】図1は本発明方法の一実施例として湿式バッチ
粉砕により珪石を試粉砕した状況を示す図である。FIG. 1 is a view showing a state in which silica stone is trially pulverized by wet batch pulverization as one embodiment of the method of the present invention.
【図2】図2は上記珪石粉砕試験における粉体粒径,ス
ラリー粘度,スラリー濃度の変化を示す図である。FIG. 2 is a diagram showing changes in powder particle size, slurry viscosity, and slurry concentration in the above-mentioned silica crushing test.
【図3】図3は粘度(濃度)の上限値・下限値を示す図
である。FIG. 3 is a diagram showing an upper limit value and a lower limit value of viscosity (concentration).
【図4】図4は従来の湿式連続ミルの一例を示す縦断面
図である。FIG. 4 is a vertical cross-sectional view showing an example of a conventional wet continuous mill.
【図5】図5は図4のミルによる湿式連続粉砕状況を示
す図である。5 is a diagram showing a wet continuous pulverization situation by the mill of FIG. 4;
【図6】図6は従来の湿式バッチ粉砕の工程を示す図で
ある。FIG. 6 is a diagram showing a conventional wet batch pulverization process.
【図7】図7はスラリーの粘度と含有する粉体の平均粒
子径との相関関係を示す図である。FIG. 7 is a diagram showing the correlation between the viscosity of the slurry and the average particle diameter of the powder contained therein.
【図8】図8はスラリー粘度が上昇したため超微粉砕が
困難となった実例を示す図である。FIG. 8 is a diagram showing an example in which ultrafine pulverization is difficult due to an increase in slurry viscosity.
【図9】図9は粉体の平均粒径をパラメータとしてスラ
リー濃度と粘度との相関関係を示す図である。FIG. 9 is a diagram showing a correlation between slurry concentration and viscosity with an average particle diameter of powder as a parameter.
(1) 内筒 (2) 外筒 (3),(4) 攪拌翼 (5) 粉砕室 (6) 粉砕媒体(ボール) (7) 原料供給孔 (8) 排出目板 (9) 粉砕品出口 (1) Inner cylinder (2) Outer cylinder (3), (4) Stirring blade (5) Grinding chamber (6) Grinding medium (ball) (7) Raw material supply hole (8) Discharge plate (9) Grinded product outlet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 勝征 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 (72)発明者 天野 五輪麿 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuyuki Ueda 1-1 No. 1 Atsunoura-machi, Nagasaki-shi Nagasaki Shipyard Co., Ltd. Inside the shipyard
Claims (1)
とともに攪拌して上記被粉砕物を微粉砕する方法におい
て、上記被粉砕物の微粒化が進行するに従って、段階的
に上記混合物を上記分散媒によって希釈することを特徴
とする湿式粉砕方法。1. A method of finely pulverizing a material to be pulverized by stirring a mixture of the material to be pulverized and a dispersion medium together with a pulverizing medium, wherein the mixture is stepwise added as atomization of the material to be pulverized progresses. A wet pulverization method, which comprises diluting with the dispersion medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13481793A JPH06343890A (en) | 1993-06-04 | 1993-06-04 | Pulverizing method by wet process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13481793A JPH06343890A (en) | 1993-06-04 | 1993-06-04 | Pulverizing method by wet process |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06343890A true JPH06343890A (en) | 1994-12-20 |
Family
ID=15137182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13481793A Withdrawn JPH06343890A (en) | 1993-06-04 | 1993-06-04 | Pulverizing method by wet process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06343890A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002200432A (en) * | 2000-10-26 | 2002-07-16 | Showa Denko Kk | Wet grinding process and slurry composition produced by the same process |
JP2010125446A (en) * | 2008-12-01 | 2010-06-10 | Daito Doboku:Kk | Attrition mill |
WO2010090836A3 (en) * | 2009-01-20 | 2010-10-28 | Tti Ellebeau, Inc. | Method of manufacturing a rock slurry |
JP2010537813A (en) * | 2007-09-06 | 2010-12-09 | ローワン(マネジメント) プロプライエタリー リミテッド | Crushing mill and crushing method |
JP2019501100A (en) * | 2015-12-03 | 2019-01-17 | ナノテック インストゥルメンツ インコーポレイテッドNanotek Instruments, Inc. | Chemical-free production of graphene materials |
CN110523509A (en) * | 2019-09-06 | 2019-12-03 | 天津市绮彤工艺品有限公司 | A kind of production ceramics self-emptying grinding device |
-
1993
- 1993-06-04 JP JP13481793A patent/JPH06343890A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002200432A (en) * | 2000-10-26 | 2002-07-16 | Showa Denko Kk | Wet grinding process and slurry composition produced by the same process |
JP2010537813A (en) * | 2007-09-06 | 2010-12-09 | ローワン(マネジメント) プロプライエタリー リミテッド | Crushing mill and crushing method |
JP2010125446A (en) * | 2008-12-01 | 2010-06-10 | Daito Doboku:Kk | Attrition mill |
WO2010090836A3 (en) * | 2009-01-20 | 2010-10-28 | Tti Ellebeau, Inc. | Method of manufacturing a rock slurry |
JP2019501100A (en) * | 2015-12-03 | 2019-01-17 | ナノテック インストゥルメンツ インコーポレイテッドNanotek Instruments, Inc. | Chemical-free production of graphene materials |
CN110523509A (en) * | 2019-09-06 | 2019-12-03 | 天津市绮彤工艺品有限公司 | A kind of production ceramics self-emptying grinding device |
CN110523509B (en) * | 2019-09-06 | 2020-05-22 | 潮州新动力净化器有限公司 | Automatic discharging and crushing device for ceramic production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2532231B2 (en) | Energy efficient grinding method and apparatus | |
US4325514A (en) | Comminution of minerals | |
JPS6168145A (en) | Annular gap type ball mill | |
JP2009504387A (en) | Method for increasing the grinding efficiency of ores, minerals and concentrates | |
EP3919179B1 (en) | Grinding and shaping method for vertical grinding machine | |
CN106362842A (en) | A crushing and crushing integrated device | |
JPH089016B2 (en) | Grinding device and grinding method by vertical roller mill | |
KR20250029752A (en) | Method for increasing the yield of rounded graphite particles | |
JPH06343890A (en) | Pulverizing method by wet process | |
JP3447502B2 (en) | Grinding method and equipment | |
JP2579984B2 (en) | Method for producing granular material and apparatus for producing the same | |
JPH08229418A (en) | Method and installation for milling | |
JP2004530551A (en) | Method and apparatus for pulverizing mineral particles | |
US4681268A (en) | Autogenous grinding method | |
US4967967A (en) | Method of high crushing force conical crushing | |
CN107890934A (en) | A kind of method of multi-stage crushing material | |
JP2896663B2 (en) | Method and apparatus for producing fine aggregate for concrete | |
JPS6181488A (en) | Production of coal-water slurry | |
CN2227523Y (en) | LCM vertical rough mill | |
CN214107193U (en) | Production machine that grinds for printing ink | |
CN217221731U (en) | Vertical sand mill | |
JPH03217251A (en) | Vertical crusher | |
CN116209818A (en) | Inter-particle collision crush of heterogeneous materials | |
JP2858684B2 (en) | Crushing equipment | |
JPS62244457A (en) | Crusher and operation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000905 |