JPH06341839A - Surveying instrument provided with eccentricity correction function - Google Patents
Surveying instrument provided with eccentricity correction functionInfo
- Publication number
- JPH06341839A JPH06341839A JP15626393A JP15626393A JPH06341839A JP H06341839 A JPH06341839 A JP H06341839A JP 15626393 A JP15626393 A JP 15626393A JP 15626393 A JP15626393 A JP 15626393A JP H06341839 A JPH06341839 A JP H06341839A
- Authority
- JP
- Japan
- Prior art keywords
- point
- eccentricity
- eccentric
- measured
- reference point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、偏心補正機能を備えた
測量機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surveying instrument having an eccentricity correction function.
【従来の技術】従来のトータルステーション等の測量機
により新点の位置を求めるには、すでに位置の分かって
いる点(基準点)から新点への角度と距離を求める。す
なわち、図5及び図6に記載のように、基準点P2(x
2,y2,z2)にトータルステーションを設置し、基準
点P1(x1,y1,z1)から新点P(x,y,z)への
角度と、基準点P2から新点Pへの距離を求めることに
よって未知の新点Pの位置が求められる。いま、図5の
XY平面座標において、基準点P1(x1,y1)と基準
点P2(x2,y2)の座標が知られており、新点P
(x,y)のX軸からの時計回りの角度をα、基準点P
2と新点Pの平面距離をDとすると、新点Pの平面座標
は、 x=x2+D・sinα ・・・・(1) y=y2+D・cosα ・・・・(2) である。また、基準点P2と新点Pを側面からみた図6
の側面図において、新点Pの鉛直座標zは、 z=z2+H ・・・・(3) である。また、トータルステーション等の測量機で直接
に測定できるのは、図5に示す水平角θ、図6に示す鉛
直角V、斜距離Sであり、基準点P2に設置した測量機
の機械高hIと、新点Pの目標高hpは巻尺等で測定でき
るから、前数式(1)(2)(3)における未知数D,
H,αは、 D=S・sinV ・・・・(4) H=S・cosV+hI−hp・・・・(5) α=α0+θ−360゜ ・・・・(6) で与えられる。また、式(6)において、α0は基準点
P2から基準点P1への方向角で、式(7)で与えられ
る。式(7)中、nは0、1、2、3象限から選択さ
れ、図ではn=3である。2. Description of the Related Art In order to obtain the position of a new point with a conventional surveying instrument such as a total station, the angle and distance from a point (reference point) whose position is already known to the new point are obtained. That is, as shown in FIGS. 5 and 6, the reference point P2 (x
(2, y2, z2) set up a total station to find the angle from the reference point P1 (x1, y1, z1) to the new point P (x, y, z) and the distance from the reference point P2 to the new point P. Thus, the position of the unknown new point P is obtained. Now, in the XY plane coordinates of FIG. 5, the coordinates of the reference point P1 (x1, y1) and the reference point P2 (x2, y2) are known, and the new point P
The clockwise angle of the (x, y) from the X axis is α, and the reference point P
When the plane distance between 2 and the new point P is D, the plane coordinates of the new point P are as follows: x = x2 + D · sinα ··· (1) y = y2 + D · cosα ··· (2). FIG. 6 is a side view of the reference point P2 and the new point P.
, The vertical coordinate z of the new point P is z = z2 + H ... (3). Moreover, what can be directly measured by a surveying instrument such as a total station is the horizontal angle θ shown in FIG. 5, the vertical angle V shown in FIG. 6, and the oblique distance S, and the machine height hI of the surveying instrument installed at the reference point P2. , The target height hp of the new point P can be measured with a tape measure or the like, and therefore the unknown number D in the above formulas (1), (2) and (3),
H and α are given by D = S · sinV (4) H = S · cosV + hI-hp (5) α = α0 + θ-360 ° (6) Further, in the equation (6), α0 is a direction angle from the reference point P2 to the reference point P1 and is given by the equation (7). In Expression (7), n is selected from 0, 1, 2, and 3 quadrants, and n = 3 in the figure.
【数1】 従来、新点Pの位置(座標)は、事務所等へ戻ってから
計算機等を用いて計算している。[Equation 1] Conventionally, the position (coordinates) of the new point P is calculated using a computer or the like after returning to the office or the like.
【0002】[0002]
【発明が解決しようとする課題】上記のように基準点か
ら新点Pの位置を測量するには、基準点P1と基準点P
2、基準点P2と新点Pの間は視通がなければならない。
しかしながら、基準点P1と基準点P2は、それを設置し
た時からの時間的経過に伴う環境変化(建物や樹木)等
により、利用する時点で視通がとれない場合が多い(三
角点のまわりの樹木など)。このようなときに、測量機
から基準点P1が視通できるように、測量機を基準点P2
からずらした偏心点に設置して新点Pへの角度と距離を
測定し、この測定の前あるいは後で、測量機が基準点P
2からどれくらいずれた位置であったかを表す偏心要素
(偏心距離と偏心方向)を測定することによって、偏心
位置で測定した角度・距離を、本点(基準点P2)で測
定した場合の値に変換し(偏心補正)、計算により新点
位置を事務所に戻ることなく現地で直ちに求めることが
できれば便利である。従来のトータルステーション等の
測量機は、前記視通のある基準点から新点Pを測量した
ときの座標計算機能を持っているが、偏心のある場合に
は計算できず、現地で次々に新点を求めることができな
い課題があった。In order to measure the position of the new point P from the reference point as described above, the reference points P1 and P
2. There must be a line of sight between the reference point P2 and the new point P.
However, the reference points P1 and P2 are often invisible at the time of use due to environmental changes (buildings and trees) with the passage of time from the time they were installed (around the triangle points). Trees etc.). In such a case, the surveying instrument should be set to the reference point P2 so that the surveying instrument can see the reference point P1.
It is installed at an offset eccentric point and the angle and distance to the new point P are measured. Before or after this measurement, the surveying instrument sets the reference point P
By measuring the eccentricity element (eccentricity distance and eccentricity direction) that shows how much the position was from 2, the angle / distance measured at the eccentricity position is converted to the value when measured at the main point (reference point P2). However, it is convenient if the new point position can be immediately calculated on site without returning to the office (correction of eccentricity). A conventional surveying instrument such as a total station has a coordinate calculation function when a new point P is measured from the above-referenced reference point, but when the eccentricity is present, calculation cannot be performed, and new points are successively found on site. There was a problem that could not be asked.
【0003】[0003]
【課題を解決するための手段】そこで本発明は、既知の
基準点である本点に対して偏心した偏心点に設置して未
知の新点を測量可能な測量機において、基準点の座標
と、本点と偏心点との間の距離と方向等からなる偏心要
素と、偏心点で測定した新点の測定値とを入力すること
によって、偏心点で測定した測定値を本点で観測したよ
うに偏心補正計算する演算装置を設けたことを特徴とす
る偏心補正機能を備えた測量機を提供しようとするもの
である。また、本発明は、既知の基準点の入力手段と、
既知の基準点である本点と該本点に対して偏心した偏心
点との間の距離と方向等からなる偏心要素の入力手段
と、前記既知の基準点座標(値)と偏心要素を記憶する
メモリ装置と、メモリ装置から入力された基準点座標
(値)と偏心要素に基づき偏心点で測定した測定値を本
点で観測したように偏心補正計算する演算装置とを有す
る偏心補正機能を備えた測量機を提供しようとするもの
である。Therefore, according to the present invention, in a surveying instrument capable of surveying an unknown new point by installing it at an eccentric point which is eccentric with respect to the main point which is a known reference point, , The eccentric element consisting of the distance and direction between the main point and the eccentric point, and the measured value of the new point measured at the eccentric point are input to observe the measured value at the eccentric point at the main point. Thus, an object of the present invention is to provide a surveying instrument having an eccentricity correction function, which is characterized in that an arithmetic unit for performing eccentricity correction calculation is provided. Further, the present invention is a known reference point input means,
Input means for an eccentric element consisting of a distance and a direction between a main point which is a known reference point and an eccentric point eccentric to the main point, and the known reference point coordinates (value) and the eccentric element are stored. An eccentricity correction function having a memory device for performing eccentricity correction calculation as if the measurement value measured at the eccentric point is observed at the main point based on the reference point coordinates (value) and the eccentricity element input from the memory device. It is intended to provide a surveying instrument equipped with it.
【0004】[0004]
【作用】上記の本発明に係る偏心補正機能を備えた測量
機によれば、基準点P2に測量機を設置しようとして
も、基準点P1と基準点P2、又は、基準点P2と新点P
の間に視通がないようなときに、測量機から基準点P1
と新点Pが視通できるように、測量機を基準点P2から
ずらした偏心点に設置して新点Pへの角度と距離を測定
し、この測定の前あるいは後で、測量機が基準点P2か
らどれくらいずれた位置であったかを表す偏心要素(偏
心距離と偏心方向)を測定することによって、測量機の
備える演算装置に、前記基準点P1、P2の座標と、本点
と偏心点との間の距離と方向等からなる偏心要素と、偏
心点で測定した新点Pの測定値とを入力することによっ
て、偏心点で測定した測定値を本点で観測したように偏
心補正計算することができ、測量機の設置場所でリアル
タイムに未知の新点を求めることができる。また、本発
明は、入力した既知の基準点座標(値)と偏心要素をメ
モリ装置に記憶させ、演算装置において、メモリ装置か
ら入力された基準点座標(値)と偏心要素に基づき偏心
点で測定した測定値を本点で観測したように偏心補正計
算することができ、偏心位置において次々とリアルタイ
ムで基準点からの未知の新点を求めることができる。ま
た、本発明は、測量機の設置の際に、測量機を基準点か
ら外れた偏心位置に設置したとしても、基準点からの偏
心要素が分かってさえいれば、測量機を鉛直に設置する
だけで、測定した測定値を基準点で観測したように偏心
補正計算することができ、測量機の中心を基準点の鉛直
線上に一致させる従来からの熟練を要する作業が不要と
なる。According to the surveying instrument having the eccentricity correction function according to the present invention, even if the surveying instrument is installed at the reference point P2, the reference point P1 and the reference point P2 or the reference point P2 and the new point P are provided.
When there is no line of sight between the surveying instrument and the reference point P1
The surveying instrument is installed at an eccentric point offset from the reference point P2 so that the new point P can be seen through and the angle and distance to the new point P are measured. By measuring an eccentric element (eccentric distance and eccentric direction) indicating how much the position is from the point P2, the coordinates of the reference points P1 and P2, the main point and the eccentric point are provided to the arithmetic unit included in the surveying instrument. By inputting the eccentricity element consisting of the distance and the direction between the points and the measurement value of the new point P measured at the eccentric point, the eccentricity correction calculation is performed as if the measurement value measured at the eccentric point was observed at the main point. It is possible to obtain an unknown new point in real time at the place where the surveying instrument is installed. Further, according to the present invention, the input known reference point coordinates (value) and the eccentric element are stored in the memory device, and the arithmetic unit determines the eccentric point based on the reference point coordinate (value) and the eccentric element input from the memory device. Eccentricity correction calculation can be performed as if the measured value was observed at the main point, and unknown new points from the reference point can be obtained in real time one after another at the eccentric position. Further, according to the present invention, when the surveying instrument is installed, even if the surveying instrument is installed at an eccentric position deviating from the reference point, the surveying instrument is installed vertically as long as the eccentric element from the reference point is known. Only by doing so, the eccentricity correction calculation can be performed as if the measured value was observed at the reference point, and the work that requires the conventional skill of aligning the center of the surveying instrument with the vertical line of the reference point becomes unnecessary.
【0005】[0005]
【実施例】以下図示する実施例により、本発明を詳細に
説明する。先ず、図2及び図3において、本発明の原理
を説明すると、トータルステーション等の測量機を本点
(基準点P2)(x2,y2,z2)に設置して新点P
(x,y,z)を測量しようとしても、基準点P1(x
1,y1,z1)と基準点P2、又は、基準点P2と新点P
の間に視通がないようなときには、測量機から基準点P
1と新点Pが視通できるように、測量機を基準点P2から
ずらした偏心点Eに設置して新点Pへの水平角度θ’と
距離S’と鉛直角V’を測定し、この測定の前あるいは
後で、測量機が基準点P2からどれくらいずれた位置で
あったかを表す偏心要素(偏心距離eと偏心方向ψと比
高h)を測定することによって、測量機の備える演算装
置に、前記基準点P1、P2の座標(x1,y1,z1)
(x2,y2,z2)と、本点と偏心点との間の距離と方
向等からなる偏心要素(偏心距離eと偏心方向ψと比高
h)と、偏心点で測定した新点Pの測定値(水平角度
θ’と距離S’と鉛直角V’)とを入力することによっ
て、偏心点Eで測定した測定値を本点(x2,y2,z
2)で観測したように偏心補正計算することができるよ
うにしたものである。The present invention will be described in detail with reference to the embodiments shown below. First, referring to FIGS. 2 and 3, the principle of the present invention will be described. A surveying instrument such as a total station is installed at the main point (reference point P2) (x2, y2, z2) and a new point P is set.
Even when trying to measure (x, y, z), the reference point P1 (x
1, y1, z1) and reference point P2, or reference point P2 and new point P
If there is no line of sight between the surveying instrument and the reference point P
A surveying instrument is installed at an eccentric point E deviated from a reference point P2 so that 1 and the new point P can be seen through, and a horizontal angle θ ′, a distance S ′ and a vertical angle V ′ to the new point P are measured, Before or after this measurement, an eccentric element (eccentric distance e, eccentric direction ψ, and specific height h) representing how far the surveying instrument is located from the reference point P2 is measured, thereby providing an arithmetic unit equipped with the surveying instrument. And the coordinates (x1, y1, z1) of the reference points P1 and P2.
(X2, y2, z2) and the eccentric element (eccentric distance e, eccentric direction ψ and specific height h) consisting of the distance and direction between the main point and the eccentric point, and the new point P measured at the eccentric point. By inputting the measured values (horizontal angle θ ′, distance S ′, and vertical angle V ′), the measured value measured at the eccentric point E is set to the main point (x2, y2, z
The eccentricity correction calculation can be performed as observed in 2).
【0006】すなわち、仮に、図5及び図6に記載のよ
うに、基準点P2(x2,y2,z2)にトータルステーシ
ョンを設置し、基準点P1(x1,y1,z1)から新点P
(x,y,z)への角度と、基準点P2から新点Pへの
距離を求めることによって未知の新点P(x,y,z)
の位置が求められるのであれば、いま、図2のXY平面
座標において、仮に、新点P(x,y)のX軸からの時
計回りの角度をα、基準点P2と新点Pの平面距離をD
とすると、新点Pの平面座標は、 x=x2+D・sinα ・・・・(1) y=y2+D・cosα ・・・・(2) である。また、基準点P2と新点Pを側面からみた図3
の側面図において、新点Pの鉛直座標zは、 z=z2’+H’=z2+h+H’・・・(3)’ である。また、トータルステーション等の測量機で直接
に測定できるのは、図2に示す水平角θ’、図3に示す
鉛直角V’、斜距離S’であり、偏心点Eに設置した測
量機の機械高hI’と、新点Pの目標高hp’は巻尺等で
測定でき、偏心要素の測定は、偏心の大きさによって、
例えば、偏心方向ψでは、トータルステーション(ある
いはトランシット)で測定するか、平板にプロットして
分度器で測定することができ、偏心距離eでは、巻尺で
測定するか、トータルステーション(あるいは光波測距
儀)で測定することができ、比高hでは、レベルで測定
するか、トータルステーションで鉛直角・斜距離を測定
して比高計算する等の適宜な測定方法によって求めるこ
とができる。That is, tentatively, as shown in FIGS. 5 and 6, a total station is installed at a reference point P2 (x2, y2, z2), and a new point P is established from the reference point P1 (x1, y1, z1).
An unknown new point P (x, y, z) is obtained by obtaining the angle to (x, y, z) and the distance from the reference point P2 to the new point P.
If the position of P is obtained, the angle of the new point P (x, y) from the X axis in the clockwise direction on the XY plane coordinates in FIG. 2 is α, and the plane of the reference point P2 and the new point P. Distance D
Then, the plane coordinates of the new point P are as follows: x = x2 + D · sinα ··· (1) y = y2 + D · cosα ··· (2). FIG. 3 is a side view of the reference point P2 and the new point P.
, The vertical coordinate z of the new point P is z = z2 '+ H' = z2 + h + H '... (3)'. Moreover, what can be directly measured by a surveying instrument such as a total station is the horizontal angle θ ′ shown in FIG. 2, the vertical angle V ′ and the oblique distance S ′ shown in FIG. 3, and the machine of the surveying instrument installed at the eccentric point E. The height hI 'and the target height hp' of the new point P can be measured with a tape measure or the like, and the measurement of the eccentric element depends on the size of the eccentricity.
For example, in the eccentric direction ψ, it can be measured with a total station (or transit), or can be plotted on a flat plate and measured with a protractor, and with the eccentricity e, it can be measured with a tape measure or with a total station (or an optical rangefinder). The specific height h can be measured by an appropriate measuring method such as a level measurement or a vertical height / oblique distance measurement at a total station to calculate the specific height.
【0007】前数式(1)(2)(3)’における未知
数は、D,H’,αであるが、これらはいずれも幾何学
の原理で求めることができる。Dは図2の基準点P2、
偏心点E、新点Pのなす三角形から、余弦定理により次
式(8)により与えられる。The unknowns in the above equations (1), (2) and (3) 'are D, H', and α, and all of them can be obtained by the principle of geometry. D is the reference point P2 in FIG.
From the triangle formed by the eccentric point E and the new point P, it is given by the following equation (8) by the cosine theorem.
【数2】 この(8)式で、D’は、図3から、次式(4)’で与
えられる。 D’=S’・sinV’ ・・・・(4)’ また、H’は、図3から次式(5)’で与えられる。 H’=S’・cosV’+hI’−hp・・・(5)’ また、αは、図5を参照すると、図2においても次式
(6)で与えられ、 α=α0+θ−360゜ ・・・・(6) 前式(6)において、α0は基準点P2から基準点P1へ
の方向角で、式(7)で与えられる。式(7)中、nは
0、1、2、3象限から選択され、図ではn=3であ
る。[Equation 2] In this equation (8), D ′ is given by the following equation (4) ′ from FIG. D '= S' * sinV '... (4)' Moreover, H'is given by following Formula (5) 'from FIG. H ′ = S ′ · cosV ′ + hI′−hp (5) ′ Further, referring to FIG. 5, α is also given by the following equation (6) in FIG. 2, and α = α0 + θ−360 °. (6) In the above equation (6), α0 is a direction angle from the reference point P2 to the reference point P1 and is given by the equation (7). In Expression (7), n is selected from 0, 1, 2, and 3 quadrants, and n = 3 in the figure.
【数3】 式(6)で角度θは、図3を参照して次式(9)で与え
られる。 θ=θ’−a0 +a1 ・・・・(9) 式(9)において、a0、a1は次式(10)、(11)
でそれぞれ与えられる。[Equation 3] The angle θ in the equation (6) is given by the following equation (9) with reference to FIG. θ = θ'-a0 + a1 (9) In the formula (9), a0 and a1 are the following formulas (10) and (11).
Are given respectively.
【数4】 [Equation 4]
【数5】 前式(10)において、D0は次式(12)で与えら
れ、前式(11)におけるDは前式(8)で与えられ
る。[Equation 5] In the equation (10), D0 is given by the following equation (12), and D in the equation (11) is given by the equation (8).
【数6】 [Equation 6]
【0008】上記の各数式からなる演算原理に基づいて
本発明に係る演算装置は構成されており、図1におい
て、1は本発明に係る演算装置の偏心補正計算部で、与
えられた基準点P1(x1,y1,z1)、基準点P2(x
2,y2,z2)及び測定値(水平角θ’、鉛直角V’、
斜距離S’、機械高hI’、目標高hp)と偏心要素測定
値(偏心距離eと偏心方向ψと比高h)に基づいて、前
記式(4)’(5)’(6)乃至(12)の偏心補正計
算を行うように構成してある。即ち、偏心補正計算部1
では、式(4)’からD’が得られ、それに基づいて式
(8)によりDが得らる。そのDを用いて式(10)か
らa0が得られ、また、式(12)からD0が得られ、そ
のD0を用いて式(11)からa1が得られ、式(9)に
前記a0、a1を代入してθが得られる。この式(9)の
θと、式(7)の演算結果α0を式(6)に代入してα
が得られる。また、式(5)’からH’が得られる。2
は本発明に係る演算装置の座標計算部で、前記偏心補正
計算部1に接続され、偏心補正計算部1の演算結果であ
るD、α、H’に基づいて、式(1)(2)(3)’の
演算を行い、新点Pの座標(x,y,z)を得るもので
ある。3は上記偏心補正計算部1に接続され、上記偏心
補正計算部1で得られた個々の偏心補正値D、θ等を適
宜表示・出力する表示・出力部で、矢標9で示すよう
に、必要とする偏心補正値D、θ等を測量現場にてリア
ルタイムに得ることにより、例えば、測量と同時的に杭
打ち作業等を直ちに行うことができるように構成してあ
る。4は上記座標計算部2に接続され、上記座標計算部
2で得られた新点Pの座標(x,y,z)を表示・出力
する新点座標の表示・出力部で、得られた新点Pを基準
点P2として次々に新点の座標を測量する場合、矢標1
0で示すように、本発明に係るメモリ装置の基準点記憶
部6に出力することができるように構成してある。5
は、本発明に係るメモリ装置の偏心要素等の記憶部で、
前記偏心要素(偏心距離eと偏心方向ψと比高h)と機
械高hI’、目標高hpの測定値を内部メモリとして記憶
し、前記基準点記憶部6と共に、前記演算装置の偏心補
正計算部1にその情報値を出力することができるように
接続してある。7は前記機械高hI’、目標高hpの測定
値を、偏心要素等の記憶部5に出力するように接続した
機械高等入力部である。なお、図では省略したが、偏心
要素等の記憶部5及び前記基準点記憶部6には、キーボ
ード等を介して、偏心要素や基準点の座標を外部入力す
ることができるように構成してあることは勿論である。
8は本発明に係るトータルステーション等の測量機の偏
心点における測定値(水平角θ’、鉛直角V’、斜距離
S’)を前記演算装置の偏心補正計算部1に出力するよ
うに設けた偏心測定値入力部で、測量機において測量が
完了すると直ちにその測定値を偏心補正計算部1に出力
するように構成してある。An arithmetic unit according to the present invention is constructed based on the arithmetic principle composed of each of the above mathematical expressions. In FIG. 1, reference numeral 1 denotes an eccentricity correction calculator of the arithmetic unit according to the present invention. P1 (x1, y1, z1), reference point P2 (x
2, y2, z2) and measured values (horizontal angle θ ', vertical angle V',
Based on the oblique distance S ′, the machine height hI ′, the target height hp) and the eccentric element measurement values (the eccentric distance e, the eccentric direction ψ, and the specific height h), the equations (4) ′ (5) ′ (6) to The eccentricity correction calculation of (12) is performed. That is, the eccentricity correction calculation unit 1
Then, D'is obtained from the equation (4) 'and D is obtained from the equation (8) based on it. The D is used to obtain a0 from the equation (10), the D0 is obtained from the equation (12), the D0 is used to obtain the a1 from the equation (11), and the a0 is given to the equation (9). By substituting a1, θ can be obtained. Substituting θ in equation (9) and the calculation result α0 in equation (7) into equation (6), α
Is obtained. Further, H'is obtained from the equation (5) '. Two
Is a coordinate calculation unit of the arithmetic device according to the present invention, which is connected to the eccentricity correction calculation unit 1 and is based on the calculation results D, α, and H ′ of the eccentricity correction calculation unit 1, and the formulas (1) and (2) The calculation of (3) ′ is performed to obtain the coordinates (x, y, z) of the new point P. Reference numeral 3 denotes a display / output unit that is connected to the eccentricity correction calculation unit 1 and appropriately displays / outputs the individual eccentricity correction values D, θ, etc. obtained by the eccentricity correction calculation unit 1, as indicated by arrow 9. By obtaining the required eccentricity correction values D, θ, etc. in real time at the surveying site, for example, the pile driving work and the like can be immediately performed simultaneously with the surveying. Reference numeral 4 denotes a new point coordinate display / output unit which is connected to the coordinate calculation unit 2 and displays / outputs the coordinates (x, y, z) of the new point P obtained by the coordinate calculation unit 2. When measuring the coordinates of the new points one after another with the new point P as the reference point P2, the arrow mark 1
As indicated by 0, the data can be output to the reference point storage unit 6 of the memory device according to the present invention. 5
Is a storage unit such as an eccentric element of the memory device according to the present invention,
The measured values of the eccentric element (eccentric distance e, eccentric direction ψ, specific height h), machine height hI ′, and target height hp are stored as an internal memory, and the eccentricity correction calculation of the arithmetic unit is performed together with the reference point storage unit 6. It is connected to the section 1 so that the information value can be output. Reference numeral 7 denotes a machine height input section connected so as to output the measured values of the machine height hI ′ and the target height hp to the storage section 5 such as an eccentric element. Although not shown in the drawing, the eccentric element storage unit 5 and the reference point storage unit 6 are configured so that the coordinates of the eccentric element and the reference point can be externally input via a keyboard or the like. Of course there is.
Reference numeral 8 is provided so as to output measured values (horizontal angle θ ′, vertical angle V ′, oblique distance S ′) at an eccentric point of a surveying instrument such as a total station according to the present invention to the eccentricity correction calculation unit 1 of the arithmetic unit. The eccentricity measurement value input unit is configured to output the measurement value to the eccentricity correction calculation unit 1 as soon as the surveying is completed by the surveying instrument.
【0009】上記の本発明に係る偏心補正機能を備えた
測量機によれば、上記図1の実施例において、本点(基
準点P2)に測量機を設置した場合、基準点P1と基準点
P2、又は、基準点P2と新点Pの間に視通ができないよ
うなときに、測量機から基準点P1と新点Pが視通する
ことができる、基準点P2からずらした偏心点Eに、測
量機を設置し、予め、本発明に係るメモリ装置の偏心要
素等の記憶部5及び基準点記憶部6に、内部メモリとし
て、基準点P1、P2の座標(x1,y1,z1)、(x2,
y2,z2)及び偏心要素測定値(偏心距離eと偏心方向
ψと比高h)や(機械高hI’、目標高hp)の測定値
を、機械高等入力部7等を介して、記憶させておき、偏
心点Eから新点P(x,y,z)を測量すれば、その測
定値(水平角θ’、鉛直角V’、斜距離S’)は、偏心
測定値入力部8を介して偏心補正計算部1に入力され
て、その演算結果は直ちに、座標計算部2と偏心補正値
表示・出力部3に出力され、偏心点で測定した測定値を
本点で観測したように偏心補正計算することができ、測
量機の設置場所でリアルタイムに未知の新点を求めるこ
とができる。また、本発明は、上記座標計算部2で得ら
れた新点Pの座標(x,y,z)を表示・出力する新点
座標の表示・出力部4から、矢標10で示すように、本
発明に係るメモリ装置の基準点記憶部6に出力すること
ができ、得られた新点Pを基準点P2(x2,y2,z2)
とし、先の基準点P2を基準点P1(x1,y1,z1)と
して、次々に新点の座標を測量することができ、メモリ
装置から入力された基準点と偏心要素等に基づき偏心点
で測定した測定値を本点で観測したように偏心補正計算
することができ、偏心位置において次々とリアルタイム
で基準点からの未知の新点を求めることができる。ま
た、本発明は、測量機の設置の際に、測量機を基準点P
2から外れた偏心点Eに設置したとしても、基準点P2か
らの偏心要素(偏心距離eと偏心方向ψと比高h)や
(機械高hI’、目標高hp)の測定値をメモリ装置5、
6に入力しさえすれば、偏心点Eに測量機を鉛直に設置
するだけで、測定した測定値(水平角θ’、鉛直角
V’、斜距離S’)を基準点P2で観測したように演算
装置1、2で偏心補正計算することができ、測量機の中
心を基準点P2の鉛直線上に一致させる従来からの熟練
を要する作業を不要とすることができる。According to the surveying instrument having the eccentricity correction function according to the present invention, when the surveying instrument is installed at the main point (reference point P2) in the embodiment of FIG. 1, the reference point P1 and the reference point are set. P2 or an eccentric point E deviated from the reference point P2, which allows the reference point P1 and the new point P to be seen from the surveying instrument when the sight point cannot be seen between the reference point P2 and the new point P. A surveying instrument is installed in the storage unit 5 and the reference point storage unit 6 of the eccentric element of the memory device according to the present invention, and the coordinates (x1, y1, z1) of the reference points P1 and P2 are stored in the internal memory in advance. , (X2,
y2, z2) and eccentric element measurement values (eccentric distance e, eccentric direction ψ and specific height h) and (mechanical height hI ′, target height hp) measured values are stored via the mechanical height input unit 7 or the like. If the new point P (x, y, z) is measured from the eccentric point E, the measured values (horizontal angle θ ′, vertical angle V ′, oblique distance S ′) are measured by the eccentric measured value input unit 8. It is input to the eccentricity correction calculation unit 1 via the, and the calculation result is immediately output to the coordinate calculation unit 2 and the eccentricity correction value display / output unit 3 so that the measured value measured at the eccentric point is observed at the main point. Eccentricity correction can be calculated and unknown new points can be obtained in real time at the installation location of the surveying instrument. Further, according to the present invention, as indicated by an arrow mark 10 from the new point coordinate display / output section 4 for displaying / outputting the coordinates (x, y, z) of the new point P obtained by the coordinate calculating section 2, , The new point P which can be output to the reference point storage unit 6 of the memory device according to the present invention and which is the reference point P2 (x2, y2, z2).
With the reference point P2 as the reference point P1 (x1, y1, z1), the coordinates of new points can be measured one after another, and the eccentric point is calculated based on the reference point and the eccentric element input from the memory device. Eccentricity correction calculation can be performed as if the measured value was observed at the main point, and unknown new points from the reference point can be obtained in real time one after another at the eccentric position. Further, according to the present invention, when installing the surveying instrument, the surveying instrument is set to the reference point P.
Even if it is installed at the eccentric point E deviating from 2, the measured values of the eccentric element (eccentric distance e, eccentric direction ψ and specific height h) and (machine height hI ′, target height hp) from the reference point P2 are stored in the memory device. 5,
All you have to do is to install the surveying instrument vertically at the eccentric point E, and the measured values (horizontal angle θ ', vertical angle V', oblique distance S ') will be observed at the reference point P2. In addition, the eccentricity correction calculation can be performed by the arithmetic units 1 and 2, and the work that requires the conventional skill for aligning the center of the surveying instrument with the vertical line of the reference point P2 can be eliminated.
【0010】[0010]
【効果】以上の通り、本発明に係る偏心補正機能を備え
た測量機によれば、既知の基準点である本点に対して偏
心した偏心点に設置して未知の新点を測量可能な測量機
において、基準点の座標と、本点と偏心点との間の距離
と方向等からなる偏心要素と、偏心点で測定した新点の
測定値とを入力することによって、偏心点で測定した測
定値を本点で観測したように偏心補正計算する演算装置
を設けた構成を有するから、基準点を設置した時からの
時間的経過に伴う環境変化(建物や樹木)等により、利
用する時点で測量機を設置すべき基準点から方向を定め
るべき三角点等の基準点の視通がとれない場合等に、測
量機から基準点が視通できるように、測量機を基準点か
らずらした偏心点に設置して新点への角度と距離を測定
することによって、偏心点で測定した測定値を本点で観
測したように偏心補正して新点の測定値を得ることがで
き、測量機を偏心した場所に設置してリアルタイムに未
知の新点を求めることができる効果がある。また、本発
明に係る偏心補正機能を備えた測量機によれば、既知の
基準点座標(値)の入力手段と、既知の基準点である本
点と該本点に対して偏心した偏心点との間の距離と方向
等からなる偏心要素の入力手段と、前記既知の基準点と
偏心要素を記憶するメモリ装置と、メモリ装置から入力
された基準点と偏心要素に基づき偏心点で測定した測定
値を本点で観測したように偏心補正計算する演算装置と
を有することにより、入力した既知の基準点と偏心要素
をメモリ装置に記憶させ、演算装置において、メモリ装
置から入力された基準点と偏心要素に基づき偏心点で測
定した測定値を本点で観測したように偏心補正計算する
ことができるから、偏心位置において次々とリアルタイ
ムで基準点から視通したように未知の新点を求めること
ができる効果がある。また、本発明に係る偏心補正機能
を備えた測量機によれば、測量機の設置の際に、測量機
を基準点から外れた偏心位置に設置したとしても、基準
点からの偏心要素が分かってさえいれば、測量機を鉛直
に設置するだけで、測定した測定値を基準点で観測した
ように偏心補正計算することができ、測量機の中心を基
準点の鉛直線上に一致させる従来からの熟練を要する作
業を不要とすることができる効果がある。[Effect] As described above, according to the surveying instrument having the eccentricity correction function according to the present invention, the unknown new point can be surveyed by installing it at the eccentric point eccentric to the main point which is the known reference point. Measurement at the eccentric point by inputting the coordinates of the reference point, the eccentric element consisting of the distance and direction between the main point and the eccentric point, and the measured value of the new point measured at the eccentric point in the surveying instrument Since it has a configuration with an arithmetic unit that calculates the eccentricity correction as if the measured value was observed at this point, it can be used depending on the environmental changes (buildings and trees) with the passage of time since the reference point was installed. If the reference point, such as a triangular point, whose direction should be determined from the reference point at which the surveying instrument should be installed at a time, cannot be seen, shift the surveying instrument from the reference point so that the surveying instrument can see the reference point. By installing it at an eccentric point and measuring the angle and distance to the new point It is possible to correct the eccentricity of the measurement value measured at the eccentric point to obtain the measurement value of the new point, and install the surveying instrument at the eccentric place to obtain the unknown new point in real time. There is an effect that can be done. Further, according to the surveying instrument having the eccentricity correction function according to the present invention, the known reference point coordinate (value) input means, the known reference point main point, and the eccentric point eccentric with respect to the original point Eccentric element input means consisting of distance and direction between the, and the like, a memory device for storing the known reference point and the eccentric element, and measured at the eccentric point based on the reference point and the eccentric element input from the memory device. By having an arithmetic unit for calculating the eccentricity correction as if the measured value was observed at the main point, the input known reference point and the eccentricity element are stored in the memory device, and in the arithmetic device, the reference point input from the memory device. Based on the eccentricity element, the eccentricity correction calculation can be performed as if the measurement value measured at the eccentric point was observed at the main point, and the unknown new point is obtained at the eccentric position one after another from the reference point in real time one after another. It is possible There is an effect. Further, according to the surveying instrument having the eccentricity correction function according to the present invention, when the surveying instrument is installed, even if the surveying instrument is installed at an eccentric position deviating from the reference point, the eccentricity element from the reference point is known. As long as it is installed, it is possible to calculate the eccentricity correction just by installing the surveying instrument vertically, as if the measured value was observed at the reference point, and to align the center of the surveying instrument with the vertical line of the reference point. There is an effect that the work which requires the skill of can be made unnecessary.
【図1】本発明の一実施例の要部の構成を概略して示す
概略ブロック説明図。FIG. 1 is a schematic block diagram schematically showing a configuration of a main part of an embodiment of the present invention.
【図2】本発明の一実施態様における偏心補正計算原理
を説明する概略平面図。FIG. 2 is a schematic plan view illustrating an eccentricity correction calculation principle according to an embodiment of the present invention.
【図3】図2の偏心補正計算原理を説明する概略側面
図。FIG. 3 is a schematic side view illustrating the principle of eccentricity correction calculation of FIG.
【図4】図2の偏心補正計算原理を説明する概略正面
図。FIG. 4 is a schematic front view illustrating the principle of eccentricity correction calculation of FIG.
【図5】本発明の偏心補正計算原理を説明するため従来
の基準点から新点を求める計算原理を説明する概略平面
図。FIG. 5 is a schematic plan view illustrating a calculation principle for obtaining a new point from a conventional reference point for explaining the eccentricity correction calculation principle of the present invention.
【図6】図5の計算原理を説明する概略側面図。6 is a schematic side view illustrating the calculation principle of FIG.
1・・・演算装置の偏心補正計算部 2・・・演算装置の座標計算部 3・・・偏心補正値表示・出力部 4・・・座標表示・出力部 5・・・メモリ装置の偏心要素等の記憶部 6・・・メモリ装置の基準点記憶部 7・・・機械高等入力部 8・・・偏心測定値入力部 9・・・偏心補正値表示出力矢標 10・・・座標表示出力矢標 1 ... Eccentricity correction calculation unit of arithmetic device 2 ... Coordinate calculation unit of arithmetic device 3 ... Eccentricity correction value display / output unit 4 ... Coordinate display / output unit 5 ... Eccentricity element of memory device Etc. Storage unit 6 ... Memory device reference point storage unit 7 ... Machine height input unit 8 ... Eccentricity measurement value input unit 9 ... Eccentricity correction value display output arrow mark 10 ... Coordinates display output Arrow
Claims (2)
偏心した偏心点に設置して未知の新点を測量可能な測量
機において、基準点の座標と、本点と偏心点との間の距
離と方向等からなる偏心要素と、偏心点で測定した新点
の測定値とを入力することによって、偏心点で測定した
測定値を本点で観測したように偏心補正計算する演算装
置を設けたことを特徴とする偏心補正機能を備えた測量
機。1. In a surveying instrument capable of measuring an unknown new point by installing it at an eccentric point which is eccentric with respect to a main point which is a known reference point, between the coordinates of the reference point and the main point and the eccentric point. By inputting the eccentricity element consisting of the distance and direction, etc. and the measured value of the new point measured at the eccentric point, an arithmetic device for calculating the eccentricity correction as if the measured value measured at the eccentric point was observed at the main point A surveying instrument equipped with an eccentricity correction function characterized by being provided.
段と、既知の基準点である本点と該本点に対して偏心し
た偏心点との間の距離と方向等からなる偏心要素の入力
手段と、前記既知の基準点座標(値)と偏心要素を記憶
するメモリ装置と、メモリ装置から入力された基準点座
標(値)と偏心要素に基づき偏心点で測定した測定値を
本点で観測したように偏心補正計算する演算装置とを有
する偏心補正機能を備えた測量機。2. An eccentric element comprising a known reference point coordinate (value) input means and a distance and direction between a main point which is a known reference point and an eccentric point which is eccentric to the main point. Input means, a memory device for storing the known reference point coordinates (value) and the eccentricity element, and a measurement value measured at the eccentric point based on the reference point coordinates (value) and the eccentricity element input from the memory device. A surveying instrument equipped with an eccentricity correction function, which has an arithmetic unit for calculating eccentricity correction as observed in 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15626393A JPH06341839A (en) | 1993-06-02 | 1993-06-02 | Surveying instrument provided with eccentricity correction function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15626393A JPH06341839A (en) | 1993-06-02 | 1993-06-02 | Surveying instrument provided with eccentricity correction function |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06341839A true JPH06341839A (en) | 1994-12-13 |
Family
ID=15623987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15626393A Pending JPH06341839A (en) | 1993-06-02 | 1993-06-02 | Surveying instrument provided with eccentricity correction function |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06341839A (en) |
-
1993
- 1993-06-02 JP JP15626393A patent/JPH06341839A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2098820B1 (en) | Geographical data collecting device | |
US7200945B2 (en) | Surveying instrument | |
US20060167648A1 (en) | 3-Dimensional measurement device and electronic storage medium | |
CN104236522A (en) | Three-dimensional visualization measuring system | |
CN1693854B (en) | Measuring method and measuring system | |
CN108267115A (en) | A kind of double indirection point distance-measuring devices and its measuring method | |
CN101726294A (en) | Method and system for positioning | |
EP3961151B1 (en) | Surveying system, staking assistance method, and staking assistance program | |
JP4024719B2 (en) | Electronic surveying instrument | |
CN111780748B (en) | Heading machine pose deviation rectifying method and system based on binocular vision and strapdown inertial navigation | |
JP2004317237A (en) | Surveying equipment | |
JPH08254409A (en) | Three-dimensional shape measurement analysis method | |
CN110332926B (en) | Method for automatically calculating other accurate coordinate points based on known coordinate points | |
JP2916977B2 (en) | Surveying instrument with eccentricity correction function | |
JP4359083B2 (en) | Surveying system | |
JPH06341839A (en) | Surveying instrument provided with eccentricity correction function | |
CN109489685B (en) | Method for quickly calibrating mounting angles and scale coefficients of mileage instrument and inertial navigation | |
CN106092041B (en) | A kind of high method and device of survey based on mobile terminal | |
TW469392B (en) | Computer-aided synchronous measuring method | |
JP3932240B2 (en) | Display method of direction of compass in computer plane survey system | |
JPH0694460A (en) | Data display apparatus | |
JP3247143B2 (en) | Positioning / posture surveying device for moving objects | |
JPS6219712A (en) | Positioning method | |
JP2627702B2 (en) | Three-dimensional positioning and shape measurement method for structures etc. | |
JP2001174261A (en) | Measuring apparatus for internal corner or the like by using reflecting prism or the like |