[go: up one dir, main page]

JPH06340754A - Method for providing polymer molding with electrical conductivity - Google Patents

Method for providing polymer molding with electrical conductivity

Info

Publication number
JPH06340754A
JPH06340754A JP4265528A JP26552892A JPH06340754A JP H06340754 A JPH06340754 A JP H06340754A JP 4265528 A JP4265528 A JP 4265528A JP 26552892 A JP26552892 A JP 26552892A JP H06340754 A JPH06340754 A JP H06340754A
Authority
JP
Japan
Prior art keywords
polymer
amine compound
aromatic amine
polycyclic aromatic
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4265528A
Other languages
Japanese (ja)
Other versions
JP3343373B2 (en
Inventor
Seizo Miyata
清蔵 宮田
Ryuichi Yamamoto
隆一 山本
Masazumi Hasegawa
正積 長谷川
Yoshiyuki Miyaki
義行 宮木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP26552892A priority Critical patent/JP3343373B2/en
Publication of JPH06340754A publication Critical patent/JPH06340754A/en
Application granted granted Critical
Publication of JP3343373B2 publication Critical patent/JP3343373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

(57)【要約】 【目的】 高分子材料本来の透明性あるいは色彩、機械
的物性を損なうことなく、安定な導電性を付与する方法
を提供する。 【構成】 絶縁性の高分子成形体(基材)に多環式芳香
族アミン化合物を付着または含浸させた後、酸化剤を含
有する溶液に接触させて、多環式芳香族アミン化合物を
基材内部または表面上で酸化重合させることを特徴とす
る高分子成形体への導電性付与方法。
(57) [Abstract] [Purpose] To provide a method for imparting stable conductivity without impairing the transparency, color or mechanical properties inherent in polymer materials. [Structure] An insulating polymer molding (base material) is attached or impregnated with a polycyclic aromatic amine compound, and then contacted with a solution containing an oxidizing agent to form a polycyclic aromatic amine compound-containing group. A method for imparting conductivity to a polymer molded article, which comprises oxidatively polymerizing the material inside or on the surface thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子成形体への導電
性の付与方法に関する。特に本発明は、導電性が長時間
持続し、気温や湿度などの環境変化に影響されない導電
性高分子成形体を提供するものであり、特に帯電防止材
料として、電子・電気製品や建築分野などに有用であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for imparting conductivity to a polymer molding. In particular, the present invention provides a conductive polymer molded body that has long-lasting conductivity and is not affected by environmental changes such as temperature and humidity. In particular, it is used as an antistatic material in electronic and electric products and the construction field. Useful for.

【0002】[0002]

【従来の技術】近年、電気・電子機器の急速な発展に伴
い、静電気に敏感な部品類が多方面で使用されるように
なり、静電気管理技術の重要性が高まってきた。そし
て、電気・電子機器本体やそれらが置かれている室内の
机や床に使用される汎用高分子やエンジニヤリングプラ
スチックスのほとんどすべては本来絶縁性の材料である
ため、これら高分子材料に生じる静電気が電子部品の正
常な動作を害するという問題がクローズアップされてい
る。特に、乾燥状態において高分子材料に生じる電位は
大きく、環境に影響されない帯電防止性(即ち導電性)
材料が望まれている。また、ブラウン管などの表示装置
には透明な帯電防止材料が必要となる。
2. Description of the Related Art In recent years, with the rapid development of electric and electronic equipment, static sensitive parts have come to be used in various fields, and static control technology has become more important. Almost all general-purpose polymers and engineering plastics used for electric / electronic devices and indoor desks and floors in which they are placed are inherently insulating materials, so these polymer materials occur. The problem that static electricity impairs the normal operation of electronic components has been highlighted. In particular, the potential generated in the polymer material in the dry state is large, and the antistatic property (that is, conductivity) that is not affected by the environment
Materials are desired. Further, a display device such as a cathode ray tube requires a transparent antistatic material.

【0003】従来、樹脂に導電性を持たせるには、カー
ボンブラックやカーボン繊維を樹脂に添加する方法(例
えば、特公平3−50792号公報)、鉄,銅,ニッケ
ル,ステンレスなどの金属粉や繊維を樹脂に添加する方
法、カチオン系,アニオン系,非イオン系の各種界面活
性剤を樹脂に練り込む方法(例えば、特開昭58−12
5741号公報、特開昭64−24845号公報、特開
平1−135857号公報)などが知られている。
Conventionally, in order to make a resin conductive, a method of adding carbon black or carbon fibers to the resin (for example, Japanese Patent Publication No. 3-50792), metal powders such as iron, copper, nickel and stainless steel, A method of adding fibers to a resin, and a method of kneading various cationic, anionic and nonionic surfactants into the resin (for example, JP-A-58-12).
5741, JP-A-64-24845, JP-A-1-135857) and the like are known.

【0004】しかし、カーボンや金属を樹脂に添加する
方法では、透明性樹脂を得るのが困難であり、色相も制
限される。また、樹脂の機械的物性を低下させる原因と
なる。一方、界面活性剤を用いる方法では、湿度や温度
などの外部環境によって帯電防止効果が影響を受けやす
く、その持続性も劣る。
However, it is difficult to obtain a transparent resin and the hue is limited by the method of adding carbon or metal to the resin. It also causes the mechanical properties of the resin to deteriorate. On the other hand, in the method using a surfactant, the antistatic effect is easily affected by the external environment such as humidity and temperature, and its durability is poor.

【0005】一方、導電性有機重合体の製造方法として
は、代表的なモノマーであるピロール、アニリン、チオ
フェンなどの電解酸化重合法と化学酸化重合法が知られ
ている。電解酸化重合法は、適当な溶媒に指示電解質と
重合しようとするモノマーを溶解し、この溶液に挿入し
た電極間に定電圧を印加して陽極上に導電性有機重合体
を生成させるものである。この方法によれば、10S/
cm以上の高い導電性を得ることが可能であるが、大量
生産および大型製品の生産が難しく製造費用も高い。さ
らに、基材がすでに導電性でなければないないため、こ
の方法の利用範囲は狭い。
On the other hand, as a method for producing a conductive organic polymer, an electrolytic oxidative polymerization method using a typical monomer such as pyrrole, aniline and thiophene and a chemical oxidative polymerization method are known. The electrolytic oxidative polymerization method is a method in which an indicator electrolyte and a monomer to be polymerized are dissolved in a suitable solvent, and a constant voltage is applied between electrodes inserted in this solution to form a conductive organic polymer on the anode. . According to this method, 10S /
Although it is possible to obtain a high conductivity of cm or more, it is difficult to mass-produce large-scale products and large-scale products, and the manufacturing cost is high. Moreover, the scope of this method is narrow, since the substrate must already be electrically conductive.

【0006】化学酸化法は酸化剤を使用してモノマーを
酸化し、重合する方法である。この一つの方法は、モノ
マーを適当な溶媒に溶かし、適当な酸化剤により重合す
る方法である。この方法は電解酸化重合法にくらべ、安
価に重合体が得られ大量生産性に富むが、一般に導電性
が低く、重合体が粉末で得られ、しかもその重合体は一
般に不溶不融であるため成形性に著しく劣るという欠点
を持つ。
The chemical oxidation method is a method of oxidizing and polymerizing a monomer by using an oxidizing agent. One method is to dissolve the monomer in a suitable solvent and polymerize it with a suitable oxidizing agent. Compared with the electrolytic oxidative polymerization method, this method can obtain a polymer at a low cost and is rich in mass productivity, but generally has low conductivity, the polymer is obtained as a powder, and the polymer is generally insoluble and infusible. It has the drawback of being extremely inferior in moldability.

【0007】導電性高分子のこのような欠点を改良する
ため、高分子成形体にモノマーを含浸させた後、これを
酸化剤で重合し、導電性複合成形体を作製する方法が開
示されている(特開昭62−167329号公報および
特開昭62−167330号公報)。しかしながら、透
明性が良い導電性高分子被膜を成形体の表面に形成させ
る確立された方法はない。
In order to improve such a defect of the conductive polymer, a method of impregnating a polymer molding with a monomer and then polymerizing the monomer with an oxidizing agent to prepare a conductive composite molding is disclosed. (JP-A-62-167329 and JP-A-62-167330). However, there is no established method for forming a conductive polymer film having good transparency on the surface of a molded body.

【0008】また、多環式芳香族アミン化合物の製造方
法としては、ナフチルアミンの電気化学的酸化重合の例
が報告されているに過ぎず(文献例:Electroc
him.Acta、32、1223(1987)、J.
Chem.Soc.Jpn.、11、2038(198
7)、J.Electroanal.Chem.、12
5、459(1981))、化学的酸化重合の報告はま
だない。
As a method for producing a polycyclic aromatic amine compound, only an example of electrochemical oxidative polymerization of naphthylamine has been reported (Reference example: Electroc).
him. Acta, 32, 1223 (1987), J. Am.
Chem. Soc. Jpn. , 11, 2038 (198
7), J. Electroanal. Chem. , 12
5, 459 (1981)), there is no report of chemical oxidative polymerization.

【0009】[0009]

【発明が解決しようとする課題】本発明は、絶縁性の高
分子材料に導電性を付与する従来の方法の問題点を解決
し、高分子材料本来の透明性あるいは色彩、機械的物性
を損なうことなく、安定な導電性を付与する方法を提供
する。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the conventional method of imparting conductivity to an insulating polymer material, and impairs the original transparency, color or mechanical properties of the polymer material. A method for imparting stable conductivity is provided.

【0010】[0010]

【課題を解決するための手段】本発明者らは、多環式芳
香族アミン化合物(モノマー)を用い、これを溶媒に溶
解して得た溶液を基材である絶縁性の高分子成形体に接
触させることにより基材にモノマーを含浸せしめ、この
後、これを酸化剤を含有する溶液に接してモノマーを酸
化重合させることにより、基材の透明性あるいは色彩、
機械的物性を損なうことなく、安定な導電性が付与され
ることを見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention used a polycyclic aromatic amine compound (monomer) and dissolved it in a solvent to obtain a solution, which was an insulating polymer molded article as a base material. The base material is impregnated with the monomer by contacting with, and thereafter, the transparency or color of the base material is increased by contacting the base material with a solution containing an oxidant to oxidatively polymerize the monomer.
The inventors have found that stable conductivity is imparted without impairing mechanical properties, and have reached the present invention.

【0011】即ち本発明は、絶縁性の高分子成形体(基
材)に導電性を付与する方法において、絶縁性の高分子
成形体(基材)に多環式芳香族アミン化合物を付着また
は含浸させた後、酸化剤を含有する溶液に接触させて、
多環式アミン化合物を基材内部または表面上で酸化重合
させることを特徴とする高分子成形体への導電性付与方
法に関する。
That is, the present invention provides a method for imparting conductivity to an insulating polymer molded body (base material), in which a polycyclic aromatic amine compound is attached to the insulating polymer molded body (base material). After impregnation, contact with a solution containing an oxidant,
The present invention relates to a method for imparting conductivity to a polymer molding, which comprises subjecting a polycyclic amine compound to oxidative polymerization inside or on the surface of a substrate.

【0012】本発明で用いられる多環式芳香族アミン化
合物の例としては、1−アミノナフタレンなどのアミノ
ナフタレン類、1−アミノアントラセンなどのアミノア
ントラセン類、5−アミノキノリンなどのアミノキノリ
ン類、5−アミノイソキノリンなどのアミノイソキノリ
ン類、アミノアクリジン類、アミノキナリジン類等が挙
げられる。また、芳香族環に炭素数1〜20のアルキル
基やアルコキシ基を導入したこれらの化合物も使用可能
である。これらの化合物の酸化重合により得られた重合
体は、ポリピロールやポリアニリンに比べて、可視領域
における光の吸収が少ないため透明性に優れた導電性被
膜を形成する。
Examples of the polycyclic aromatic amine compound used in the present invention include aminonaphthalenes such as 1-aminonaphthalene, aminoanthracenes such as 1-aminoanthracene, aminoquinolines such as 5-aminoquinoline, and the like. Examples thereof include aminoisoquinolines such as 5-aminoisoquinoline, aminoacridines, and aminoquinaridines. Also, these compounds in which an alkyl group or an alkoxy group having 1 to 20 carbon atoms is introduced into an aromatic ring can be used. The polymers obtained by the oxidative polymerization of these compounds form a conductive film having excellent transparency because they absorb less light in the visible region than polypyrrole and polyaniline.

【0013】本発明において、基材に多環式芳香族アミ
ン化合物を付着または含浸させた後、酸化剤を含有する
溶液に接触させる方法として、具体的に以下の方法が挙
げられる。即ち、最初に、基材である絶縁性の高分子成
形体を上記多環式芳香族アミン化合物(モノマー)を1
種以上含有する溶液に接触させ(拡散工程)、次いで、
モノマーおよび溶媒が付着または含浸した基材を不完全
に乾燥し(乾燥工程)、酸化剤を含有する溶液にその基
材を接触させモノマーを重合させる工程(酸化重合工
程)を含むものである。
In the present invention, as a method for adhering or impregnating a polycyclic aromatic amine compound on a substrate and then contacting it with a solution containing an oxidizing agent, the following methods are specifically mentioned. That is, first, the insulating polymer molded body which is the base material is added to the above polycyclic aromatic amine compound (monomer) in an amount of 1: 1.
Contact with a solution containing more than one species (diffusion step), and then
It includes a step of incompletely drying the base material to which the monomer and the solvent are attached or impregnated (drying step), and bringing the base material into contact with a solution containing an oxidizing agent to polymerize the monomer (oxidative polymerization step).

【0014】本発明の拡散工程のモノマーを含有する溶
液において、使用する溶媒は、基材を構成する高分子を
溶解しない溶媒(非溶媒)、2種類以上の非溶媒の混合
物、基材を構成する高分子を溶解する溶媒(良溶媒)と
1種類以上の非溶媒の混合物のいずれかであり、これら
はいずれも揮発性である必要がある。ここで、非溶媒と
は基材を構成する高分子を溶解しないかあるいは膨潤は
させるが溶解はしない溶媒であり、良溶媒とは基材を構
成する高分子を溶解し均一な溶液を与える溶媒である。
これらの具体的な種類は高分子によって異なる(参考文
献、「ポリマーハンドブック」第三版、JOHN WI
LEY & SONS、1989年)。例えば、基材が
ポリ塩化ビニルである場合、良溶媒は、シクロヘキサノ
ン、ニトロベンゼン、酢酸ブチル、ジクロロエタン、テ
トラヒドロフラン、メチルイソブチルケトン、メチルエ
チルケトン、ジメチルホルムアミドなどであり、非溶媒
は、メタノール、エタノール、n−ブタノール、エチレ
ングリコール、n−ヘキサン、ベンゼン、アセトンなど
である。
In the solution containing the monomer of the diffusion step of the present invention, the solvent used is a solvent (non-solvent) that does not dissolve the polymer constituting the substrate, a mixture of two or more non-solvents, and the substrate. Is a mixture of a solvent (good solvent) for dissolving the polymer to be used and one or more kinds of non-solvents, and it is necessary that all of them are volatile. Here, the non-solvent is a solvent that does not dissolve or swells the polymer that constitutes the substrate, but does not dissolve, and the good solvent is a solvent that dissolves the polymer that constitutes the substrate and gives a uniform solution. Is.
The specific types of these differ depending on the polymer (references, "Polymer Handbook", Third Edition, JOHN WI).
LEY & SONS, 1989). For example, when the base material is polyvinyl chloride, the good solvent is cyclohexanone, nitrobenzene, butyl acetate, dichloroethane, tetrahydrofuran, methyl isobutyl ketone, methyl ethyl ketone, dimethylformamide, etc., and the non-solvent is methanol, ethanol, n-butanol. , Ethylene glycol, n-hexane, benzene, acetone and the like.

【0015】拡散工程において使用する溶媒が、非溶媒
と良溶媒の混合物である場合は、良溶媒の含有率は5体
積%未満であることが望ましい。さらに望ましくは2体
積%未満である。ただし、ここで言う非溶媒と良溶媒
は、それぞれ単一の溶媒である必要はなく、複数の溶媒
の混合物であってもよい。溶媒の組成がこれらの条件を
満足しない場合は、最終的に得られる高分子成形体の導
電性が低くなったり、表面が不均一になったり、着色な
どにより透明性が悪くなる危険性が高い。
When the solvent used in the diffusion step is a mixture of a non-solvent and a good solvent, the good solvent content is preferably less than 5% by volume. More preferably, it is less than 2% by volume. However, the non-solvent and the good solvent mentioned here do not have to be single solvents, and may be a mixture of a plurality of solvents. If the composition of the solvent does not satisfy these conditions, there is a high risk that the conductivity of the finally obtained polymer molded article will be low, the surface will be uneven, and the transparency will deteriorate due to coloring etc. .

【0016】さらに本発明で、モノマー溶液に使用する
溶媒は、基材の高分子に対して親和性のある非溶媒を体
積比で5〜50%含有することが望ましい。ここで言う
基材の高分子に対して親和性のある非溶媒とは、溶解度
パラメータが基材高分子の溶解度パラメータの−5(M
Pa)1/2〜+5(MPa)1/2の範囲に入る非溶
媒であり、さらに望ましくは−3(MPa)1/2〜+
3(MPa)1/2の範囲に入る非溶媒である。
Further, in the present invention, the solvent used for the monomer solution preferably contains a non-solvent having an affinity for the base polymer in an amount of 5 to 50% by volume. The non-solvent having an affinity for the base polymer here means that the solubility parameter is -5 (M
Pa) 1/2 to +5 (MPa) 1/2 , which is a non-solvent, more preferably -3 (MPa) 1/2 to +.
It is a non-solvent in the range of 3 (MPa) 1/2 .

【0017】また、拡散工程において、モノマーを含有
する溶液のモノマーの濃度は0.5〜20重量%である
ことが望ましく、さらに望ましくは1〜10重量%であ
る。基材の高分子成形体とこのモノマー溶液を接触させ
る時間は、20秒〜30分であることが望ましく、さら
に望ましくは1分〜10分である。この接触時間が20
秒より短い場合は、基材へのモノマーの含浸が不十分と
なり、最終的に導電性の高い高分子成形体が得られず、
接触時間が30分より長い場合は、基材の変形が生じた
り、最終的に得られる高分子成形体の透明性が悪くなる
ことがあるばかりでなく、製造コストの増加を招く。
In the diffusion step, the concentration of the monomer in the solution containing the monomer is preferably 0.5 to 20% by weight, more preferably 1 to 10% by weight. The time for bringing the polymer molding of the base material into contact with this monomer solution is preferably 20 seconds to 30 minutes, more preferably 1 minute to 10 minutes. This contact time is 20
If it is shorter than a second, the impregnation of the base material with the monomer becomes insufficient, and finally a polymer molded body having high conductivity cannot be obtained.
If the contact time is longer than 30 minutes, not only the base material may be deformed, the transparency of the finally obtained polymer molded article may be deteriorated, but also the manufacturing cost is increased.

【0018】本発明においては、基材にモノマー溶液を
接触させた後は、溶媒等で洗浄することなく、そのまま
空気中などに常圧下放置し、適当な時間乾燥(即ち、自
然乾燥)させる必要がある。この際、乾燥の最初の段階
で、ガスの吹き付け、ロール、ブラシ、スエーパー等に
よりすばやく基材表面上に付着した過剰のモノマー溶液
を除去することが望ましい。
In the present invention, after the monomer solution is brought into contact with the base material, it is necessary to leave it in the air as it is under normal pressure without being washed with a solvent or the like, and dry it for a proper time (that is, naturally dry it). There is. At this time, in the first stage of drying, it is desirable to quickly remove the excess monomer solution adhering to the surface of the substrate by blowing gas, using a roll, a brush, a sweeper or the like.

【0019】基材を乾燥させずに酸化重合を行った場合
は、最終的に導電性の高い高分子成形体を得ることが難
しく、また、乾燥時間が長すぎる場合も、最終的に導電
性の高い高分子成形体を得ることができない。乾燥は、
空気中でよいが、酸素、窒素、アルゴン、ヘリウム、二
酸化炭素から選ばれる一種類以上のガスを主成分とする
ガス雰囲気下で行ってもよい。乾燥時間は、5秒〜5分
の間の最適時間に制御されることが望ましく、さらに望
ましくは10秒〜3分である。また、乾燥温度は、モノ
マーおよび使用する溶媒の沸点より低く、好ましくは6
0℃以下である。
When the oxidative polymerization is carried out without drying the substrate, it is difficult to finally obtain a polymer molded article having high conductivity, and also when the drying time is too long, the conductivity is finally determined. It is not possible to obtain a polymer molded product with high efficiency. Drying
It may be in air, but may be carried out in a gas atmosphere containing at least one gas selected from oxygen, nitrogen, argon, helium, and carbon dioxide as a main component. The drying time is preferably controlled to an optimum time between 5 seconds and 5 minutes, more preferably 10 seconds to 3 minutes. The drying temperature is lower than the boiling points of the monomer and the solvent used, and preferably 6
It is 0 ° C or lower.

【0020】本発明で使用される酸化剤としては、鉄
(III)塩、モリブデン(V)塩、ルテニウム(II
I)塩、クロム酸(IV)塩、重クロム酸(VI)塩お
よび過マンガン酸(VII)塩等の金属系酸化剤、過硫
酸アンモニウム等の過硫酸塩、過酸化水素,過酸化ベン
ゾイル等の過酸化物、ペルオクソ二硫酸,ペルオクソ二
硫酸カリウム等のペルオクソ酸類、次亜塩素酸,次亜塩
素酸カリウム等の塩素酸類がある。
The oxidizing agents used in the present invention include iron (III) salts, molybdenum (V) salts and ruthenium (II) salts.
I) salts, chromic acid (IV) salts, dichromic acid (VI) salts, permanganic acid (VII) salts, and other metal-based oxidizing agents, ammonium persulfate and other persulfates, hydrogen peroxide, benzoyl peroxide, and the like. There are peroxides, peroxo acids such as peroxodisulfate and potassium peroxodisulfate, and chloric acids such as hypochlorous acid and potassium hypochlorite.

【0021】また、酸化反応媒体中にドーピング剤を共
存させることにより高導電性の高分子成形体を得ること
ができる。このようなドーピング剤としては、ルイス
酸、プロトン酸およびこれらの塩がある。プロトン酸に
は、塩酸,硫酸などの無機酸、メタンスルホン酸、エタ
ンスルホン酸、ベンゼンスルホン酸、トルエンスルホン
酸、ドデシルベンゼンスルホン酸などがある。また、ル
イス酸としては、五フッ化ヒ素、五フッ化アンチモン、
三フッ化ホウ素、三塩化ホウ素、塩化第二鉄、塩化第二
スズ、四塩化チタン、塩化亜鉛、塩化第二銅等がある。
Further, a highly conductive polymer molding can be obtained by allowing a doping agent to coexist in the oxidation reaction medium. Such doping agents include Lewis acids, protic acids and salts thereof. Examples of the protic acid include inorganic acids such as hydrochloric acid and sulfuric acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid and dodecylbenzenesulfonic acid. As the Lewis acid, arsenic pentafluoride, antimony pentafluoride,
There are boron trifluoride, boron trichloride, ferric chloride, stannic chloride, titanium tetrachloride, zinc chloride, cupric chloride and the like.

【0022】本発明における高分子成形体は、熱硬化
性、熱可塑性のいずれでも良く、特に限定されない。熱
可塑性樹脂の例を示すと、ポリオレフィン類(ポリエチ
レン、ポリプロピレン、エチレン酢酸ビニル共重合体な
ど)、ポリ塩化ビニル、ポリスチレン、ABS樹脂、ポ
リアミド(ナイロン6、ナイロン66、ナイロン12な
ど)、ポリイミド、ポリエチレンテレフタレート(PE
T)、ポリブチレンテレフタレート(PBT)、光学的
異方性を示すポリエステルを含むポリエステル類、ポリ
カーボネート、ポリエーテルエーテルケトン、ポリエー
テルケトン、ポリオキシメチレン、ポリエチレンオキシ
ド、ポリプロピレンオキシド、ポリフェニレンオキシ
ド、ポリフェニレンサルファイド、ポリサルフォン、ポ
リエーテルサルフォンなどがある。熱硬化性樹脂の例と
しては、フェノール樹脂、不飽和ポリエステル、エポキ
シ樹脂などがある。
The polymer molded article in the present invention may be either thermosetting or thermoplastic and is not particularly limited. Examples of thermoplastic resins include polyolefins (polyethylene, polypropylene, ethylene vinyl acetate copolymer, etc.), polyvinyl chloride, polystyrene, ABS resin, polyamide (nylon 6, nylon 66, nylon 12, etc.), polyimide, polyethylene. Terephthalate (PE
T), polybutylene terephthalate (PBT), polyesters including polyesters showing optical anisotropy, polycarbonate, polyether ether ketone, polyether ketone, polyoxymethylene, polyethylene oxide, polypropylene oxide, polyphenylene oxide, polyphenylene sulfide, There are polysulfone and polyether sulfone. Examples of thermosetting resins include phenolic resins, unsaturated polyesters, epoxy resins and the like.

【0023】これらの高分子成形体には、安定剤,可塑
剤,難燃剤,滑剤などの添加剤、ガラス繊維,ウイスカ
ーなどの補強材、炭酸カルシウム,クレー,シリカ,マ
イカ,タルクなどの無機フィラーが添加されていてもよ
い。
These polymer moldings include stabilizers, plasticizers, flame retardants, additives such as lubricants, reinforcing materials such as glass fibers and whiskers, inorganic fillers such as calcium carbonate, clay, silica, mica and talc. May be added.

【0024】本発明の酸化重合工程の酸化剤を含有する
溶液に使用する溶媒は、酸化剤が単離析出しないもので
あり、酸化剤により酸化反応を受けないものである必要
がある。このような溶媒としては、水、メタノール,エ
タノール,プロパノール,イソプロパノール,ブタノー
ル,ペンタノール,ヘキサノール,オクタノールなどの
脂肪族アルコール、ヘキサフルオロイソプロパノールな
どのようなハロゲン化アルコール、フェノール,クロロ
フェノール,クレゾール,フルオロフェノール等のフェ
ノール類、ジメチルアセトアミド等の極性溶媒が望まし
い。さらに、ベンゼン,トルエン,キシレン,ヘキサ
ン,シクロヘキサンなどの炭化水素、クロロホルムなど
のハロゲン化化合物、各種エーテルなどの非極性溶媒も
候補として挙げることができる。この場合、酸化電位は
溶媒の種類によって異なるので、高い酸化電位を与える
溶媒と低い酸化電位を与える溶媒とを適度に混合して用
いることにより高導電性重合体を得るのに適した酸化電
位に調整することが可能である。また、ここで使用する
溶媒は、基材の高分子成形体を溶解させたり、大きく膨
潤させることのないものである必要がある。
The solvent used for the solution containing the oxidizing agent in the oxidative polymerization step of the present invention must be such that the oxidizing agent is not isolated and precipitated and is not subjected to the oxidation reaction by the oxidizing agent. Examples of such solvents include water, methanol, ethanol, propanol, isopropanol, butanol, pentanol, hexanol, octanol and other aliphatic alcohols, hexafluoroisopropanol and other halogenated alcohols, phenol, chlorophenol, cresol, fluoro. Phenols such as phenol and polar solvents such as dimethylacetamide are preferable. Furthermore, hydrocarbons such as benzene, toluene, xylene, hexane, and cyclohexane, halogenated compounds such as chloroform, and nonpolar solvents such as various ethers can be mentioned as candidates. In this case, since the oxidation potential varies depending on the type of solvent, a solvent that gives a high oxidation potential and a solvent that gives a low oxidation potential are mixed appropriately to obtain an oxidation potential suitable for obtaining a highly conductive polymer. It is possible to adjust. Further, the solvent used here needs to be one that does not dissolve or greatly swell the polymer molding of the base material.

【0025】本発明者らの検討によれば、高分子成形体
表面に生成した導電性重合体の導電性は酸化重合時の酸
化電位に大きく依存する。即ち、酸化電位は大きすぎて
も小さすぎても導電性は低くなる。重合反応時における
酸化電位の制御は、溶媒の種類、酸化剤の酸化体/還元
体比、温度により可能である。酸化剤(例えば、FeC
)の還元体(FeCl)の添加量は酸化体に対し
て50モル%以下、好ましくは0.01〜20モル%で
あり、この時、生成重合体の導電率を大きくする酸化電
位が得られる。
According to the studies made by the present inventors, the conductivity of the conductive polymer formed on the surface of the polymer molded body largely depends on the oxidation potential during the oxidative polymerization. That is, if the oxidation potential is too large or too small, the conductivity becomes low. The oxidation potential during the polymerization reaction can be controlled by the type of solvent, the oxidant / reductant ratio of the oxidant, and the temperature. Oxidizer (eg FeC
The addition amount of the reduced product (FeCl 2 ) of 1 3 ) is 50 mol% or less, preferably 0.01 to 20 mol% with respect to the oxidant. Is obtained.

【0026】酸化重合工程の後、高分子成形体をよく洗
浄し、残存する酸化剤およびその還元体を除去すること
が望ましい。溶媒としては、酸化重合工程で用いられる
ものと同様のものを用いることができる。さらに、洗浄
後、高分子成形体はよく乾燥し、残存する溶媒を除去す
ることが望ましい。得られる導電性高分子成形体に酸化
剤あるいはその還元体または溶媒が残存していると、こ
れを二次成形する際、熱により表面の導電性被膜が変質
する原因となったり、使用時にガスを発生させる原因と
なり不都合である。
After the oxidative polymerization step, it is desirable to thoroughly wash the polymer molding to remove the remaining oxidizing agent and its reduced product. As the solvent, those similar to those used in the oxidative polymerization step can be used. Furthermore, after washing, it is desirable that the polymer molded article be thoroughly dried to remove the residual solvent. If an oxidant or its reduced product or solvent remains in the resulting conductive polymer molded product, it may cause deterioration of the conductive coating film on the surface due to heat during secondary molding of this, or gas during use. It is inconvenient because it causes

【0027】本発明において、基材の色相や透明性を損
なうことなく導電性を付与するためには、表面に形成さ
れる導電性被膜の厚さは0.02μm〜20μmが望ま
しく、さらに望ましくは0.05μm〜5μmである。
被膜の厚さが0.02μmより薄いと十分な導電性が得
られず、20μmより厚い場合は、透明性が悪くなった
り成形時に被膜の切断や剥離が生じ、導電性が損なわれ
易くなるなどの問題が生じる。
In the present invention, in order to impart conductivity without impairing the hue and transparency of the substrate, the thickness of the conductive film formed on the surface is preferably 0.02 μm to 20 μm, more preferably It is 0.05 μm to 5 μm.
If the thickness of the coating is less than 0.02 μm, sufficient conductivity cannot be obtained, and if it is greater than 20 μm, the transparency becomes poor, and the coating may be cut or peeled during molding, and the conductivity is likely to be impaired. Problem arises.

【0028】さらに、本発明においては、上記酸化重合
により生じた導電性高分子を化学的あるいは電気化学的
に還元した後、化学酸化あるいは電解酸化により酸化す
ると共にドーピングを行うことにより帯電防止効果を一
層高めることができる。化学的還元に使用する還元剤と
しては、ヒドラジン,抱水ヒドラジン,フェニルヒドラ
ジン等のヒドラジン類、水素化リチウムアルミニウム,
水素化ホウ素ナトリウム等の水素化金属等を挙げること
ができる。化学還元剤は、通常、重合体の1窒素原子あ
たり1〜10倍モル使用されるが、必ずしもこれに限定
されるものではない。電解還元では、成形体表面を陰極
として0.01〜数十Vの印加電圧で電流を通じること
により脱ドープされる。還元後、中性導電性高分子被膜
は、再度、化学的に酸化剤で再酸化されると共にドーピ
ングがなされる。このような再酸化に用いられる酸化剤
としては、還元された中性重合体を再酸化するに十分な
酸化力を有し、且つドーパントとして有効な電子受容性
を有する化合物ならすべて用いることができる。このよ
うな酸化剤としては、ヨウ素,臭素,塩素などのハロゲ
ン、五フッ化ヒ素,五フッ化アンチモン,三フッ化ホウ
素,三塩化ホウ素,塩化第二鉄,塩化第二スズ,四塩化
チタン,塩化亜鉛,塩化第二銅等のルイス酸、塩酸,硫
酸およびその塩(例えば、硫酸水素カリウム、硫酸ナト
リウム、過塩素酸ナトリウム、過塩素酸カリウム、過塩
素酸鉄等)、またはホウフッ化水素酸およびその塩(例
えば、フッ化ホウ素ナトリウム、フッ化ホウ素カリウ
ム、フッ化ホウ素アンモニウム、フッ化ホウ素テトラア
ルキルアンモニウム等)などを挙げることができる。
Further, in the present invention, the conductive polymer produced by the above-mentioned oxidative polymerization is chemically or electrochemically reduced, and then oxidized by chemical oxidation or electrolytic oxidation and doping is performed to obtain an antistatic effect. It can be further enhanced. Examples of the reducing agent used for the chemical reduction include hydrazine, hydrazine hydrate, hydrazine such as phenylhydrazine, lithium aluminum hydride,
Examples thereof include metal hydrides such as sodium borohydride. The chemical reducing agent is usually used in a molar amount of 1 to 10 times per nitrogen atom of the polymer, but is not necessarily limited thereto. In the electrolytic reduction, the surface of the molded body is used as a cathode to carry out dedoping by passing a current at an applied voltage of 0.01 to several tens of volts. After the reduction, the neutral conductive polymer film is chemically re-oxidized with an oxidant and doped. As the oxidant used for such reoxidation, any compound having an oxidizing power sufficient to reoxidize the reduced neutral polymer and having an electron accepting property effective as a dopant can be used. . Such oxidizing agents include halogens such as iodine, bromine and chlorine, arsenic pentafluoride, antimony pentafluoride, boron trifluoride, boron trichloride, ferric chloride, stannic chloride, titanium tetrachloride, Lewis acids such as zinc chloride and cupric chloride, hydrochloric acid, sulfuric acid and salts thereof (for example, potassium hydrogen sulfate, sodium sulfate, sodium perchlorate, potassium perchlorate, iron perchlorate, etc.), or borofluoric acid. And salts thereof (for example, sodium borofluoride, potassium borofluoride, ammonium borofluoride, tetraalkylammonium borohydride, etc.) and the like.

【0029】以下、実施例を挙げて本発明を説明する
が、本発明はこれらの実施例により何等限定されるもの
ではない。
The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0030】[0030]

【実施例】以下の実施例において、フィルムの表面抵抗
率は、表面抵抗測定機Loresta AP(三菱油化
製)を使用して測定した。
EXAMPLES In the following examples, the surface resistivity of the film was measured using a surface resistance measuring device Loresta AP (manufactured by Mitsubishi Yuka).

【0031】実施例1 ヘキサン90ml、アセトン10mlおよび1−アミノ
ナフタレン3gの混合溶液(拡散溶液)に、50mm×
50mmのサイズで厚さ0.3mmの硬質塩化ビニルフ
ィルムを室温で3分間浸漬することにより、1−アミノ
ナフタレンをフィルム中(両面)に含浸せしめた。この
フィルムを乾燥した空気中で室温下、30秒間放置した
後、1Mの塩化第二鉄および1Mのp−トルエンスルホ
ン酸を含有するアセトニトリル/メタノール(体積比で
85:15)の溶液(酸化溶液)に室温で3分間浸漬す
ることによりフィルムの表面付近に含浸した1−アミノ
ナフタレンを重合した。続いて、フィルムをメタノール
で洗浄することにより残存する塩化鉄を除去し、減圧下
で約10時間乾燥した。
Example 1 In a mixed solution (diffusion solution) of 90 ml of hexane, 10 ml of acetone and 3 g of 1-aminonaphthalene, 50 mm ×
A 1-aminonaphthalene was impregnated into the film (both sides) by immersing a hard vinyl chloride film having a size of 50 mm and a thickness of 0.3 mm for 3 minutes at room temperature. After leaving this film in dry air at room temperature for 30 seconds, a solution of acetonitrile / methanol (volume ratio 85:15) containing 1 M ferric chloride and 1 M p-toluenesulfonic acid (oxidizing solution). 1-aminonaphthalene impregnated in the vicinity of the surface of the film was polymerized by immersing in 1) for 3 minutes at room temperature. Subsequently, the film was washed with methanol to remove residual iron chloride, and dried under reduced pressure for about 10 hours.

【0032】ここで、ヘキサン、アセトン、メタノール
およびアセトニトリルはポリ塩化ビニルの非溶媒であ
る。使用したポリ塩化ビニルフィルムは、塩化ビニル樹
脂(重合度約800)100部、ジエチルスズマレート
3部、MBS樹脂10部、エポキシ化大豆油3部の配合
により得られたものであった。
Here, hexane, acetone, methanol and acetonitrile are non-solvents for polyvinyl chloride. The polyvinyl chloride film used was obtained by blending 100 parts of vinyl chloride resin (degree of polymerization about 800), 3 parts of diethyl tin malate, 10 parts of MBS resin and 3 parts of epoxidized soybean oil.

【0033】得られたフィルムの断面を透過型電子顕微
鏡で観察したところ、表面から深さ約0.1μmの部分
に四酸化オスミウムで染色される連続相が存在している
ことが確かめられ、フィルムの表面抵抗率は約1MΩ/
□であり、静電防止材料として十分に大きな導電性を有
していた。また、光透過率は可視領域(波長500n
m)で70%程度であり、透明性は良好であった。さら
に、JIS K5400に定める碁盤目試験およびセロ
ハンテープによる剥離試験において、フィルム表面の導
電性層の剥離は全く認められなかった。
When the cross section of the obtained film was observed by a transmission electron microscope, it was confirmed that a continuous phase stained with osmium tetroxide was present at a depth of about 0.1 μm from the surface. Has a surface resistivity of about 1 MΩ /
□, and had sufficiently large conductivity as an antistatic material. In addition, the light transmittance is in the visible region (wavelength 500n
m) was about 70%, and the transparency was good. Further, in the cross-cut test and the peeling test using cellophane tape defined in JIS K5400, peeling of the conductive layer on the film surface was not observed at all.

【0034】実施例2 実施例1における1−アミノナフタレンを1−アミノア
ントラセンとした他は、実施例1と同様にポリ塩化ビニ
ルフィルムを処理した。
Example 2 A polyvinyl chloride film was treated in the same manner as in Example 1 except that 1-aminonaphthalene in Example 1 was changed to 1-aminoanthracene.

【0035】得られたフィルムの表面抵抗率は約1.5
MΩ/□であり、静電防止用としては十分であった。ま
た、フィルムの光透過率は可視領域(波長500nm)
で約75%であった。さらに、JIS K5400に定
める碁盤目試験およびセロハンテープによる剥離試験に
おいて、フィルム表面の導電性層の剥離は全く認められ
なかった。
The surface resistivity of the obtained film is about 1.5.
It was MΩ / □, which was sufficient for preventing static electricity. The light transmittance of the film is in the visible range (wavelength 500 nm)
Was about 75%. Further, in the cross-cut test and the peeling test using cellophane tape defined in JIS K5400, peeling of the conductive layer on the film surface was not observed at all.

【0036】実施例3 実施例1における1−アミノナフタレンを5−アミノイ
ソキノリンとした他は、実施例1と同様にポリ塩化ビニ
ルフィルムを処理した。
Example 3 A polyvinyl chloride film was treated in the same manner as in Example 1 except that 5-aminoisoquinoline was used instead of 1-aminonaphthalene in Example 1.

【0037】得られたフィルムの表面抵抗率は約10M
Ω/□であり、フィルムの光透過率は、可視領域(波長
500nm)で約85%であった。さらに、JIS K
5400に定める碁盤目試験およびセロハンテープによ
る剥離試験において、フィルム表面の導電性層の剥離は
全く認められなかった。
The surface resistivity of the obtained film is about 10M.
Ω / □, and the light transmittance of the film was about 85% in the visible region (wavelength 500 nm). Furthermore, JIS K
In the cross-cut test defined by 5400 and the peeling test with cellophane tape, peeling of the conductive layer on the film surface was not observed at all.

【0038】比較例1 実施例1における1−アミノナフタレンをアニリンとし
た他は、実施例1と同様にポリ塩化ビニルフィルムの処
理を行った。得られたフィルムの表面抵抗率は約500
KΩ/□と実施例1より良好であったが、フィルムは緑
がかった黒色を呈していて、波長500nmでの光透過
率は50%程度であった。
Comparative Example 1 A polyvinyl chloride film was treated in the same manner as in Example 1 except that 1-aminonaphthalene in Example 1 was changed to aniline. The surface resistivity of the obtained film is about 500.
KΩ / □ was better than that of Example 1, but the film exhibited a greenish black color and the light transmittance at a wavelength of 500 nm was about 50%.

【0039】比較例2 実施例1における拡散溶液をアセトニトリル94ml、
ニトロベンゼン(ポリ塩化ビニルの良溶媒)6mlおよ
び1−アミノナフタレン3gを溶解してなる溶液とした
他は、実施例1と同様にポリ塩化ビニルフィルムを処理
した。得られたフィルムの表面抵抗率は約10MΩ/□
と低い値であり、表面が不均一で、フィルムの光透過率
は可視領域で約30%程度と悪かった。このフィルム処
理において、乾燥工程を行わなかった場合、フィルムの
表面抵抗率は乾燥工程を行った場合と同程度であった
が、表面はさらに不均一であり、透明性は著しく低下し
た。
Comparative Example 2 94 ml of acetonitrile was used as the diffusion solution in Example 1.
A polyvinyl chloride film was treated in the same manner as in Example 1 except that 6 ml of nitrobenzene (a good solvent for polyvinyl chloride) and 3 g of 1-aminonaphthalene were dissolved. The surface resistivity of the obtained film is about 10 MΩ / □
The surface was non-uniform, and the light transmittance of the film was poor at about 30% in the visible region. In this film treatment, when the drying step was not performed, the surface resistivity of the film was about the same as when the drying step was performed, but the surface was more uneven and the transparency was significantly reduced.

【0040】[0040]

【発明の効果】発明によれば、高分子成形体へ導電性を
容易に付与することができる。このとき、基材の透明性
や色相は、大きく損なわれることはなく、得られる導電
性は長時間持続し、気温や湿度にほとんど影響されな
い。従って、本発明の方法を電子・電気関連部品、ケー
スやICトレーなどの材料あるいは建築材料分野に用い
れば、半導体の静電気による損傷や放電による爆発事故
の防止に極めて有用である。
According to the invention, conductivity can be easily imparted to a polymer molded body. At this time, the transparency and hue of the base material are not significantly impaired, the obtained conductivity lasts for a long time, and is hardly affected by the temperature and humidity. Therefore, when the method of the present invention is used in the field of electronic / electrical parts, materials such as cases and IC trays, or construction materials, it is extremely useful for preventing damage due to static electricity of semiconductors and explosion accidents due to discharge.

フロントページの続き (72)発明者 長谷川 正積 山口県新南陽市政所1丁目17番11−3号 (72)発明者 宮木 義行 三重県四日市市別名3丁目4−10Front page continuation (72) Inventor Masazumi Hasegawa 1-17-11-3, Shinnanyo-shi, Yamaguchi Prefecture (72) Inventor Yoshiyuki Miyaki 3-4-10, Yokkaichi, Mie

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】絶縁性の高分子成形体(基材)に多環式芳
香族アミン化合物を付着または含浸させた後、酸化剤を
含有する溶液に接触させて、多環式芳香族アミン化合物
を基材内部または表面上で酸化重合させることを特徴と
する高分子成形体への導電性付与方法。
1. A polycyclic aromatic amine compound is prepared by adhering or impregnating an insulating polymer molding (base material) with a polycyclic aromatic amine compound, and then contacting it with a solution containing an oxidizing agent. A method for imparting electrical conductivity to a polymer molded article, comprising: oxidatively polymerizing the polymer inside or on the surface of the substrate.
【請求項2】多環式芳香族アミン化合物がアミノナフタ
レン類、アミノアントラセン類、アミノキノリン類また
はアミノイソキノリン類であることを特徴とする請求項
1に記載の高分子成形体への導電性付与方法。
2. A polymer molding according to claim 1, wherein the polycyclic aromatic amine compound is aminonaphthalene, aminoanthracene, aminoquinoline or aminoisoquinoline. Method.
【請求項3】基材を多環式芳香族アミン化合物を含有す
る溶液に接触させる工程(拡散工程)、多環式芳香族ア
ミン化合物および溶媒が付着または含浸した基材を乾燥
する工程(乾燥工程)、酸化剤を含有する溶液に基材を
接触させ多環式芳香族アミン化合物を重合させる工程
(酸化重合工程)を含んでなる請求項1〜2に記載の高
分子成形体への導電性の付与方法。
3. A step of bringing a base material into contact with a solution containing a polycyclic aromatic amine compound (diffusion step), and a step of drying the base material to which the polycyclic aromatic amine compound and the solvent are attached or impregnated (drying Conducting the polymer molded body according to claim 1 or 2, which comprises a step of contacting a substrate with a solution containing an oxidizing agent to polymerize a polycyclic aromatic amine compound (oxidative polymerization step). Method of imparting sex.
【請求項4】酸化剤を含有する溶液が、ドーピング剤と
して、無機または有機のプロトン酸、およびこれらの塩
のいずれかを含有することを特徴とする請求項1〜3に
記載の高分子成形体への導電性の付与方法。
4. The polymer molding according to claim 1, wherein the solution containing an oxidizing agent contains an inorganic or organic protonic acid or a salt thereof as a doping agent. A method of imparting conductivity to a body.
JP26552892A 1992-09-09 1992-09-09 Method for imparting conductivity to polymer molded article Expired - Fee Related JP3343373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26552892A JP3343373B2 (en) 1992-09-09 1992-09-09 Method for imparting conductivity to polymer molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26552892A JP3343373B2 (en) 1992-09-09 1992-09-09 Method for imparting conductivity to polymer molded article

Publications (2)

Publication Number Publication Date
JPH06340754A true JPH06340754A (en) 1994-12-13
JP3343373B2 JP3343373B2 (en) 2002-11-11

Family

ID=17418388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26552892A Expired - Fee Related JP3343373B2 (en) 1992-09-09 1992-09-09 Method for imparting conductivity to polymer molded article

Country Status (1)

Country Link
JP (1) JP3343373B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922161A (en) * 1995-06-30 1999-07-13 Commonwealth Scientific And Industrial Research Organisation Surface treatment of polymers
US6660188B1 (en) 1999-04-13 2003-12-09 Showa Denko K.K. Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof
US6663796B1 (en) 1998-12-25 2003-12-16 Showa Denko K.K. Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof
JP2020161269A (en) * 2019-03-26 2020-10-01 三菱ケミカル株式会社 Method for forming conductive film, method for manufacturing conductor, and method for forming resist pattern

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922161A (en) * 1995-06-30 1999-07-13 Commonwealth Scientific And Industrial Research Organisation Surface treatment of polymers
US6663796B1 (en) 1998-12-25 2003-12-16 Showa Denko K.K. Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof
US6660188B1 (en) 1999-04-13 2003-12-09 Showa Denko K.K. Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof
JP2020161269A (en) * 2019-03-26 2020-10-01 三菱ケミカル株式会社 Method for forming conductive film, method for manufacturing conductor, and method for forming resist pattern

Also Published As

Publication number Publication date
JP3343373B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
Ruckenstein et al. Processable conductive polypyrrole/poly (alkyl methacrylate) composites prepared by an emulsion pathway
Yang et al. Processable conductive composites of polyaniline/poly (alkyl methacrylate) prepared via an emulsion method
US4375427A (en) Thermoplastic conductive polymers
US5232631A (en) Processible forms of electrically conductive polyaniline
Chen et al. Polyalkylthiophenes with the smallest bandgap and the highest intrinsic conductivity
US5624605A (en) Processible forms of electrically conductive polyaniline
Österholm et al. Melt and solution processable poly (3-alkylthiophenes) and their blends
Tieke et al. Conducting polypyrrole-polyimide composite films
EP2014665A2 (en) Selenium containing electrically conductive polymers and method of making them
Armes et al. Synthesis and characterization of aqueous colloidal dispersions of poly (vinyl alcohol)/polyaniline particles
US4617353A (en) Electrically conductive polymer blend
EP2208746A1 (en) Selenium containing electrically conductive polymers and method of making electrically conductive polymers
FI82702B (en) ELLEDANDE PLASTKOMPOSITER, SOM INNEHAOLLER POLY (3-ALKYLTIOFEN)
JPH03229745A (en) Insulation material
Moss et al. A kinetic study of polypyrrole degradation
Wan et al. Transparent and conducting coatings of polyaniline composites
JP3343373B2 (en) Method for imparting conductivity to polymer molded article
JP4318414B2 (en) Method for synthesizing conductive polymer by gas phase polymerization method and product thereof
Yang et al. Preparation and mechanical properties of electrically conductive polypyrrole-poly (ethylene-co-vinyl acetate) composites
Sun et al. Preparation and processing of nanoscale materials by supercritical fluid technology
Yang et al. Polypyrrole—polypropylene composite films: preparation and properties
US5929137A (en) Process for the production of improved dielectric strength materials and the use of materials obtained by this process in the manufacture of power transmission cables
Ruckenstein et al. Synthesis of surface conductive polyurethane films
JP3403429B2 (en) Method for producing conductive polymer molded article
JP3403430B2 (en) Method for producing highly conductive polymer molded article

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070823

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees