JPH06339469A - Electrode material - Google Patents
Electrode materialInfo
- Publication number
- JPH06339469A JPH06339469A JP5263283A JP26328393A JPH06339469A JP H06339469 A JPH06339469 A JP H06339469A JP 5263283 A JP5263283 A JP 5263283A JP 26328393 A JP26328393 A JP 26328393A JP H06339469 A JPH06339469 A JP H06339469A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- average
- fiber
- electrode material
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 23
- 239000000835 fiber Substances 0.000 claims abstract description 44
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 17
- 239000004917 carbon fiber Substances 0.000 claims abstract description 17
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 15
- 239000000919 ceramic Substances 0.000 claims abstract description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- 238000000465 moulding Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 239000011347 resin Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 238000000034 method Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 6
- -1 metal oxide compounds Chemical class 0.000 description 6
- 238000001746 injection moulding Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 4
- 238000013329 compounding Methods 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920001707 polybutylene terephthalate Polymers 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 208000005888 Periodontal Pocket Diseases 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- NFMWFGXCDDYTEG-UHFFFAOYSA-N trimagnesium;diborate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]B([O-])[O-].[O-]B([O-])[O-] NFMWFGXCDDYTEG-UHFFFAOYSA-N 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Landscapes
- Inorganic Fibers (AREA)
- Toilet Supplies (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電極用材料及び該材料を
成形してなる電極用成形物に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material and an electrode molded article obtained by molding the material.
【0002】[0002]
【従来の技術】生体等油性面をもった対象に用いられる
電極、例えば心電図測定用電極には、該油性面に対する
親和性、粘着性、水分による変形等に対応することが要
求される。従来、このような目的に用いられる電極材料
としては水溶性乃至は親水性のポリマーに電解質を含有
させたものや高分子電解質が知られており、これらはい
ずれも含水ゲル状態で用いられている。しかしながら、
これら電極材料には、水による膨潤や溶解により本来の
形状が容易に変形するのが避けられないという欠点があ
り、保管や運搬に際して問題となる上、例えば便座に取
りつけて心電図測定用の電極として使用する場合等には
耐久性が不十分であった。2. Description of the Related Art An electrode used for an object having an oily surface such as a living body, such as an electrode for measuring an electrocardiogram, is required to have compatibility with the oily surface, adhesiveness, deformation due to water, and the like. Conventionally, as an electrode material used for such a purpose, a water-soluble or hydrophilic polymer containing an electrolyte or a polyelectrolyte is known, and these are all used in a hydrogel state. . However,
These electrode materials have the drawback that the original shape cannot be easily deformed due to swelling or dissolution with water, which poses a problem during storage and transportation.For example, they can be attached to a toilet seat and used as an electrode for measuring electrocardiogram. When used, the durability was insufficient.
【0003】この様な欠点を改良する電極材料として、
例えば、ゴム成分中に導電性物質であるカーボンブラッ
ク粒子を分散させた導電性組成物が提案されている(特
開昭63−131406号公報)。斯かる導電性組成物
はマトリックスとしてゴムを用いることにより人体等の
油性面に対する親和性及び粘着性を良好にし、且つ水分
等による変形を防止することを目的としたものである。
しかしながら、上記導電性組成物は、皮膚に対する電気
的な接触抵抗が高いために導電性が所望の範囲に達しな
いという欠点を有している。As an electrode material for improving such drawbacks,
For example, a conductive composition in which carbon black particles, which are a conductive substance, are dispersed in a rubber component has been proposed (JP-A-63-131406). Such a conductive composition is intended to improve the affinity and adhesiveness to an oily surface such as a human body by using rubber as a matrix, and to prevent deformation due to moisture or the like.
However, the electrically conductive composition has a drawback that the electrical conductivity does not reach a desired range because the electrical contact resistance to the skin is high.
【0004】また、ゴム等の連続層中に電解質を水と共
に分散乃至乳化させて導電性組成物とすることも考えら
れるが、この様な方法によってもやはり充分な導電性を
得ることができず、しかも水が系外にブリードし易いと
いう難点も生ずる。It is also conceivable to disperse or emulsify an electrolyte with water in a continuous layer of rubber or the like to obtain a conductive composition, but such a method also fails to obtain sufficient conductivity. Moreover, there is a problem that water easily bleeds out of the system.
【0005】加えて、上記した従来の電極材料はいずれ
も、自由に製品設計することができないばかりか、強度
の点でも不十分であった。In addition, none of the above-mentioned conventional electrode materials can not be freely designed as a product, and are insufficient in strength.
【0006】一方、導電性繊維を含む熱可塑性樹脂組成
物を射出成形すると、成形物表面に導電性繊維の充填比
率が比較的低い厚さ300μm〜400μm程度の表面
スキン層を生じることが知られている。該表面スキン層
が生じる原因は、溶融した熱可塑性樹脂が高い粘性を示
し、金型内流動時には噴水ながれ、いわゆるファウンテ
ィンフローを起こしていることと、射出された樹脂は金
型壁面に瞬間的に熱を奪われて固化するためであると考
えられている。表面スキン層には導電性繊維の充填率が
比較的低いため、その厚さが200μm程度を超えると
表面電気抵抗値が所望の範囲より著しく高くなり、且つ
その抵抗値にもばらつきが生じるため、斯かる表面スキ
ン層を有する成形品を、例えば心電図測定用の電極とし
て用いると正確な測定値を得ることが出来ない。On the other hand, it is known that when a thermoplastic resin composition containing conductive fibers is injection-molded, a surface skin layer having a relatively low filling ratio of conductive fibers and a thickness of about 300 to 400 μm is formed on the surface of the molded product. ing. The cause of the surface skin layer is that the molten thermoplastic resin exhibits a high viscosity, a fountain flows when flowing in the mold, causing so-called fountain flow, and the injected resin is instantaneously on the mold wall surface. It is believed that this is because the heat is taken away by and solidifies. Since the surface skin layer has a relatively low filling rate of conductive fibers, when the thickness exceeds about 200 μm, the surface electric resistance value becomes significantly higher than the desired range, and the resistance value also varies, If a molded product having such a surface skin layer is used as, for example, an electrode for measuring an electrocardiogram, accurate measured values cannot be obtained.
【0007】[0007]
【課題を解決するための手段】本発明者らは、前述のよ
うな従来技術では解決しきれなかった課題を解決すべく
鋭意研究努力を重ねた結果、需要者が要求する導電性と
均一な表面抵抗を具備した上に寸法安定性に優れ、肌触
りがよく、剛性と適度の柔軟性及び曲げ強度を兼備する
電極用材料を得ることに成功し、ここに本発明を完成す
るに至った。Means for Solving the Problems The inventors of the present invention have made diligent research efforts to solve the problems that cannot be solved by the conventional techniques as described above, and as a result, the conductivity and the uniformity required by consumers are obtained. We have succeeded in obtaining an electrode material having not only surface resistance but also excellent dimensional stability, good feel to the touch, and rigidity, moderate flexibility and bending strength, and have completed the present invention.
【0008】即ち、本発明は、平均径が0.01〜3.
0μm、平均長が1〜500μm、平均アスペクト比が
5〜500μm、比抵抗が10-3乃至104 Ω・cmで
あるセラミック繊維及び/又は平均径が0.5〜3.0
μm、平均長が0.5〜20mm、平均アスペクト比が
200〜10000、比抵抗が10-3乃至104 Ω・c
mであるカーボン繊維を1〜50重量%含有し、残部が
熱可塑性樹脂であることを特徴とする電極用材料及び該
材料を成形してなる電極用成形物に係る。That is, according to the present invention, the average diameter is 0.01 to 3.
0 μm, average length 1 to 500 μm, average aspect ratio 5 to 500 μm, specific resistance of ceramic fiber of 10 −3 to 10 4 Ω · cm and / or average diameter of 0.5 to 3.0.
μm, average length 0.5 to 20 mm, average aspect ratio 200 to 10000, specific resistance 10 −3 to 10 4 Ω · c
The present invention relates to an electrode material containing 1 to 50% by weight of carbon fiber of m and the balance being a thermoplastic resin, and an electrode molded article obtained by molding the material.
【0009】本発明では、電極用材料を製造する際に導
電性を付与した微小な繊維状物質、即ちセラミック繊維
及び/又はカーボン繊維を配合した熱可塑性樹脂を使用
することを必須とする。In the present invention, it is indispensable to use a minute fibrous substance to which conductivity is imparted, that is, a thermoplastic resin containing a ceramic fiber and / or a carbon fiber, when producing a material for an electrode.
【0010】本発明で使用されるセラミック繊維として
は、例えばチタン酸アルカリ繊維、チタン酸アルカリ土
類繊維、チタン酸アルミニウム繊維、チタニア繊維、ホ
ウ酸アルミニウム繊維、ホウ酸マグネシウム繊維、アル
ミナ繊維、ケイ酸繊維、窒化ケイ素繊維等の金属酸化物
系化合物や金属窒化物系化合物であって、単結晶又は多
結晶であるものが挙げられるが、本発明はこれらに限定
されるものではない。上記セラミック繊維は、繊維表面
に金属、金属酸化物、カーボン等を付着又は沈着させる
ことによって導電性が付与され得る。繊維表面に金属、
金属酸化物、カーボン等を付着又は沈着させるには、例
えば該繊維を還元ガス雰囲気下で還元焼成する方法、C
VD法(化学蒸着法)、無電解メッキ法、浸漬法、スプ
レーコート法等の公知の方法を広く適用することができ
る。Examples of the ceramic fiber used in the present invention include alkali titanate fiber, alkaline earth titanate fiber, aluminum titanate fiber, titania fiber, aluminum borate fiber, magnesium borate fiber, alumina fiber, and silicic acid. Examples of the compound include metal oxide compounds such as fibers and silicon nitride fibers and metal nitride compounds that are single crystals or polycrystals, but the present invention is not limited thereto. The ceramic fiber may have conductivity by depositing or depositing metal, metal oxide, carbon, or the like on the fiber surface. Metal on the fiber surface,
For attaching or depositing metal oxides, carbon, etc., for example, a method of reducing and firing the fibers in a reducing gas atmosphere, C
Well-known methods such as the VD method (chemical vapor deposition method), the electroless plating method, the dipping method, and the spray coating method can be widely applied.
【0011】また、本発明において、カーボン繊維とし
ては公知の方法、例えば特開平4−185720号公報
に記載の方法で製造されたものを広く用いることができ
る。In the present invention, carbon fibers produced by a known method, for example, the method described in JP-A-4-185720 can be widely used.
【0012】本発明で用いられるセラミック繊維及びカ
ーボン繊維は、比抵抗が10-3乃至104 Ω・cmであ
ることが必要である。またセラミック繊維は、平均径が
0.01〜3.0μm、平均長が1〜500μm、平均
アスペクト比が5〜500の範囲内であり、カーボン繊
維は平均径が0.5〜3.0μm、平均長が0.5〜2
0mm、平均アスペクト比が200〜10000である
ことが必要である。ここに、平均径とは、該繊維が円形
でない場合には相当直径を意味する。The ceramic fiber and carbon fiber used in the present invention must have a specific resistance of 10 −3 to 10 4 Ω · cm. The ceramic fiber has an average diameter of 0.01 to 3.0 μm, an average length of 1 to 500 μm, and an average aspect ratio of 5 to 500. The carbon fiber has an average diameter of 0.5 to 3.0 μm. Average length is 0.5-2
It is necessary that the thickness is 0 mm and the average aspect ratio is 200 to 10,000. Here, the average diameter means an equivalent diameter when the fiber is not circular.
【0013】本発明では、この大きさの繊維を用いるこ
とは、後述する表面スキン層を薄くするためにも重要で
ある。またこの大きさの繊維を用いることにより製造さ
れた電極用材料は、表面平滑性に優れており、対人体用
電極としての好ましい触感をもつ。更に成形品の先端ま
で繊維で補強されるために、製品の細部に強い負荷の加
わる様な用途に使用しても、変形や破損が少ない。上記
よりも大きい繊維を用いると、表面に局部的な表面抵抗
の不均一な部分を生じ易くなり、不適当である。In the present invention, the use of fibers of this size is important for thinning the surface skin layer described later. In addition, the electrode material produced by using the fiber of this size has excellent surface smoothness and has a preferable tactile sensation as an electrode for human body. Further, since the tip of the molded product is reinforced with fibers, even if it is used in applications where a strong load is applied to the details of the product, there is little deformation or damage. The use of fibers larger than the above is unsuitable because it tends to cause local unevenness of the surface resistance on the surface.
【0014】本発明の電極用材料へのセラミック繊維及
び/又はカーボン繊維の配合量は通常1〜50重量%で
あるが、3〜40重量%が好ましく、5〜30重量%が
特に好ましい。配合量が1重量%未満であれば、該樹脂
を添加した効果が乏しくなり、一方逆に50重量%を越
えると、後記する熱可塑性樹脂の特性を阻害するため電
極材料としての特性の調整が困難になる。The compounding amount of the ceramic fiber and / or carbon fiber in the electrode material of the present invention is usually 1 to 50% by weight, preferably 3 to 40% by weight, particularly preferably 5 to 30% by weight. If the blending amount is less than 1% by weight, the effect of adding the resin becomes poor. On the contrary, if the blending amount exceeds 50% by weight, the properties of the thermoplastic resin described below are impaired, so that the properties of the electrode material cannot be adjusted. It will be difficult.
【0015】本発明においては、セラミック繊維やカー
ボン繊維と熱可塑性樹脂との界面接着性を高めたり混合
分散性を高めたりするために、これら繊維に公知の各種
表面処理を施してもよい。例えば、シラン系やチタネー
ト系のカップリング剤等の表面処理剤を用いて表面処理
すればよい。In the present invention, these fibers may be subjected to various known surface treatments in order to enhance the interfacial adhesion between the ceramic resin or carbon fiber and the thermoplastic resin and enhance the mixing / dispersing property. For example, the surface treatment may be performed using a surface treatment agent such as a silane-based or titanate-based coupling agent.
【0016】本発明で使用される熱可塑性樹脂として
は、従来公知のものを広く使用でき、例えばナイロン
6、ナイロン66、ナイロン12、ナイロン6−10、
ナイロン11、ナイロン6−12等のポリアミド樹脂、
芳香族ポリアミド樹脂、ポリアセタール樹脂、ポリブチ
レンテレフタレート(PBT)、ポリエチレンテレフタ
レート(PET)等のポリエステル樹脂、ポリカーボネ
ート樹脂、ポリプロピレン樹脂、アクリロニトリル−ブ
タジエン−スチレン樹脂(ABS樹脂)、ポリエチレン
樹脂、シリコーン樹脂、ポリエステルエラストマー樹
脂、ポリウレタン樹脂等が挙げられる。また、熱可塑性
組成物を発泡させたものも、本発明の熱可塑性樹脂とし
て使用することができる。As the thermoplastic resin used in the present invention, conventionally known ones can be widely used. For example, nylon 6, nylon 66, nylon 12, nylon 6-10,
Polyamide resin such as nylon 11 or nylon 6-12,
Polyester resin such as aromatic polyamide resin, polyacetal resin, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polycarbonate resin, polypropylene resin, acrylonitrile-butadiene-styrene resin (ABS resin), polyethylene resin, silicone resin, polyester elastomer Resin, polyurethane resin, etc. may be mentioned. Moreover, what foamed the thermoplastic composition can also be used as the thermoplastic resin of this invention.
【0017】本発明の電極用材料には、安定剤、酸化防
止剤、滑剤、金属粉、カーボンブラック、通常の太さの
カーボン繊維、成形の際に金型からの離型性を良くする
ための添加剤等の公知の各種配合剤を適宜配合すること
ができる。The electrode material of the present invention includes stabilizers, antioxidants, lubricants, metal powders, carbon black, carbon fibers of ordinary thickness, and for improving the releasability from the mold during molding. Various known compounding agents such as the above-mentioned additives can be appropriately mixed.
【0018】本発明による電極用材料を所望の形状に成
形する際には、射出成形法を採用するのが好ましいが、
その他の公知の成形法を用いて所望の製品を製造するこ
とができる。When the electrode material according to the present invention is molded into a desired shape, it is preferable to use an injection molding method.
Other known molding methods can be used to produce the desired product.
【0019】射出成形法により電極用材料を成形するに
際しては、得られる電極用成形物の表面スキン層を20
0μm以下にするのがよく、望ましくは100μm以下
とするのがよい。表面スキン層が200μm以上である
と、成形物の体積抵抗値と表面抵抗値が部分的に相違す
ることがあり、また表面抵抗値が高くなるため、特に精
度が要求される測定用の電極としては好ましくないため
である。When the electrode material is molded by the injection molding method, the surface skin layer of the obtained electrode molded material is 20
The thickness is preferably 0 μm or less, and more preferably 100 μm or less. If the surface skin layer is 200 μm or more, the volume resistance value and the surface resistance value of the molded product may partially differ, and the surface resistance value becomes high. Is not preferable.
【0020】本発明者らは、表面スキン層の形成にはセ
ラミック繊維やカーボン繊維の樹脂に対する配合比率、
射出成形時の射出圧力、射出温度、成形(材料)温度、
射出速度、金型温度等の条件が関係しており、これらを
適宜調整することによってスキン層の厚さが200μm
以下である成形品を得ることができることを見い出し
た。The inventors of the present invention used a ceramic fiber or carbon fiber compounding ratio to the resin to form the surface skin layer,
Injection pressure, injection temperature, molding (material) temperature during injection molding,
Conditions such as injection speed and mold temperature are related, and the thickness of the skin layer can be 200 μm by adjusting these conditions appropriately.
It has been found that the following moldings can be obtained.
【0021】これらの条件は、用いる熱可塑性樹脂によ
って異なるが、射出圧力は通常より高めがよく、射出量
は通常より低めの方がよい。金型温度については通常よ
りも高めとするのがよい。表1に日精樹脂工業(株)製
のFS150射出成形機による主要な樹脂についての好
ましい条件を示す。These conditions differ depending on the thermoplastic resin used, but the injection pressure should be higher than usual and the injection amount should be lower than usual. The mold temperature is preferably higher than usual. Table 1 shows preferable conditions for main resins by an FS150 injection molding machine manufactured by Nissei Plastic Industry Co., Ltd.
【0022】[0022]
【表1】 [Table 1]
【0023】本発明電極用材料を成形してなる成形物
は、各種の測定用電極として用いることができる。例え
ば、便座に取り付けて、心電図測定用電極として用いる
ことができる。その際、本成形物は、便座の皮膚と接触
しうる部分の少なくとも1箇所に取り付ければよい。具
体的な設置例を図1に示した。The molded product obtained by molding the electrode material of the present invention can be used as various measuring electrodes. For example, it can be attached to a toilet seat and used as an electrocardiogram measurement electrode. At this time, the molded article may be attached to at least one portion of the toilet seat that can come into contact with the skin. A specific installation example is shown in FIG.
【0024】また、本発明電極用材料を成形してなる成
形物は、表面抵抗値が優れて均一なため、導電性物質を
接触させた場合に、接触面積に比例した抵抗が得られる
という特徴を有している。またいかなる部分も均一な抵
抗値を示すため、接触させた長さに比例した抵抗値が得
られるという特徴を有している。そのため、深度測定装
置用電極や位置測定センサー等の材料として好適に使用
することができる。Further, since the molded product obtained by molding the electrode material of the present invention has an excellent surface resistance value and is uniform, a resistance proportional to the contact area can be obtained when a conductive substance is contacted. have. Further, since any portion shows a uniform resistance value, it has a feature that a resistance value proportional to the contact length can be obtained. Therefore, it can be suitably used as a material for an electrode for a depth measuring device, a position measuring sensor, or the like.
【0025】[0025]
【発明の効果】本発明の電極用材料を用いて製造した電
極用成形物は以下に示す好ましい特徴を具備する。EFFECTS OF THE INVENTION A molded article for an electrode manufactured by using the electrode material of the present invention has the following preferable features.
【0026】1.電気抵抗値が低く、微小な電流の計測
にも問題がない。1. It has a low electric resistance value, and there is no problem in measuring minute currents.
【0027】2.成形品の電気抵抗値が成形品の全部分
に亙って一様であり、しかも計測対象物との接触位置の
違いによる計測値の相違が殆ど問題にならない位に電気
抵抗値が低い。2. The electric resistance value of the molded product is uniform over the entire part of the molded product, and the electric resistance value is so low that the difference in the measured values due to the difference in the contact position with the measurement object is hardly a problem.
【0028】3.成形品は、長期に亙って使用による変
形、酸化による変質等を受けることが殆んどない。3. The molded product is hardly subject to deformation due to use or deterioration due to oxidation over a long period of time.
【0029】4.表面が滑らかで肌触りがよい。4. The surface is smooth and feels good.
【0030】5.剛性と適度の柔軟性及び曲げ強度を兼
備している。5. It has both rigidity, moderate flexibility and bending strength.
【0031】本発明の電極用成形物は、表面抵抗値と体
積抵抗値が殆んど変化なく、人体からの微小な電圧をも
感知し得るものである。従って本発明の電極用成形物を
取り付けた便座は、将来高齢化社会を向えるに当り家庭
で健康管理ができる機能を有しており、社会的に見ても
有効なものと言える。本発明の電極用材料は熱可塑性樹
脂をベースにしているので、特に水洗が可能である特徴
を有しており、それ故多くの用途に使用され得る。The electrode molded article of the present invention has almost no change in surface resistance value and volume resistance value, and is capable of sensing a minute voltage from the human body. Therefore, the toilet seat to which the molded article for an electrode of the present invention is attached has a function of enabling health management at home when facing an aging society in the future, and can be said to be effective from a social perspective. Since the electrode material of the present invention is based on a thermoplastic resin, it has the characteristic that it can be washed with water, and therefore can be used in many applications.
【0032】[0032]
【実施例】以下に実施例及び比較例を掲げて本発明をよ
り一層明らかにする。EXAMPLES The present invention will be further clarified with reference to Examples and Comparative Examples below.
【0033】実施例1 チタン酸カリウム繊維を不活性雰囲気中で1000℃に
て還元焼成した導電性チタン酸カリウム繊維(繊維径
0.3μm、繊維長15μm、比抵抗10-2Ω・cm、
大塚化学(株)製)を後記表2に示す配合割合(重量
%)で溶融した芳香族ポリアミド樹脂(ナイロンMXD
6,商品名:レニー6000)に270℃に設定した二
軸押出機にて混入し、押出し造粒し、本発明組成物を得
た。Example 1 Conductive potassium titanate fibers obtained by reducing and firing potassium titanate fibers at 1000 ° C. in an inert atmosphere (fiber diameter 0.3 μm, fiber length 15 μm, specific resistance 10 −2 Ω · cm,
Aromatic polyamide resin (nylon MXD) manufactured by melting Otsuka Chemical Co., Ltd. at the compounding ratio (% by weight) shown in Table 2 below.
6, trade name: Lenny 6000) was mixed with a twin-screw extruder set at 270 ° C., and extrusion granulated to obtain the composition of the present invention.
【0034】得られた組成物を、射出圧力800kg/
cm2 、成形温度290℃、射出量100cm3 /秒、
金型温度130℃の条件で射出成形し、物性測定用テス
トピースを作成した。An injection pressure of 800 kg /
cm 2 , molding temperature 290 ° C., injection amount 100 cm 3 / sec,
Injection molding was performed at a mold temperature of 130 ° C. to prepare a test piece for measuring physical properties.
【0035】得られたテストピースについて、機械物
性、電気物性を調べた。結果を表2に示す。The mechanical properties and electrical properties of the obtained test piece were examined. The results are shown in Table 2.
【0036】〔機械物性及び電気物性測定条件〕 表面抵抗及び表面抵抗値(導電性)のバラツキ;JIS
K 6911に従った。而してテストピース内の導電
性バラツキは以下の基準に従って評価した。[Conditions for Measuring Mechanical and Electrical Properties] Variations in surface resistance and surface resistance (conductivity); JIS
According to K 6911. Then, the conductive variation in the test piece was evaluated according to the following criteria.
【0037】○…1×10-1.0〜1×10+1.0Ω/□の
範囲内 ×…1×10-1.0〜1×10+1.0Ω/□の範囲外 曲げ強度;ASTM D790に従った。According to ASTM D790; [0037] ○ ... 1 × 10 -1.0 ~1 × 10 +1.0 Ω / □ range × of ... 1 × 10 -1.0 ~1 × 10 +1.0 Ω / □ outside bending strength.
【0038】表面粗さ;静電塗装性試験用プレートにつ
き、測定長8mmにて、サーフコム304B〔東京精密
(株)〕で測定した(Rmax )。Surface roughness: Measured with Surfcom 304B [Tokyo Seimitsu Co., Ltd.] with a measuring length of 8 mm for the plate for electrostatic coating property test (Rmax).
【0039】比較例1 表2に示す各原料を用い、実施例1と同様にしてテスト
ピースを製造し、上記と同様の試験を行なった。結果を
表2に併記する。Comparative Example 1 Using each raw material shown in Table 2, a test piece was manufactured in the same manner as in Example 1 and the same test as above was conducted. The results are also shown in Table 2.
【0040】[0040]
【表2】 [Table 2]
【0041】実施例2 熱可塑性樹脂としてPBT樹脂を使用し、実施例1とほ
ぼ同操作にて各種試験に供した。結果を表3に示す。Example 2 PBT resin was used as the thermoplastic resin, and various tests were carried out in substantially the same operation as in Example 1. The results are shown in Table 3.
【0042】[0042]
【表3】 [Table 3]
【0043】実施例3 チタン酸カリウム繊維としてアンチモンドープ、酸化す
ず被覆の導電性チタン酸カリウム繊維(繊維径0.35
μm、繊維長15μm、比抵抗100 Ω・cm)を用
い、且つ熱可塑性樹脂としてABS樹脂を用い、実施例
1とほぼ同操作にて各種試験に供した。結果を表4に示
す。Example 3 As the potassium titanate fiber, antimony-doped, tin oxide-coated conductive potassium titanate fiber (fiber diameter 0.35) was used.
[mu] m, fiber length 15 [mu] m, using a specific resistance 10 0 Ω · cm), and using the ABS resin as the thermoplastic resin, were subjected to various tests at substantially the same procedure as in Example 1. The results are shown in Table 4.
【0044】[0044]
【表4】 [Table 4]
【0045】実施例4 カーボン繊維として平均径1.5μm、平均長7.5m
m、比抵抗10-2Ω・cmの極細カーボン繊維を用い、
且つ熱可塑性樹脂としてABS/PBTアロイ樹脂を用
い、実施例3とほぼ同操作にて各種試験に供した。結果
を表5に示す。Example 4 Carbon fiber having an average diameter of 1.5 μm and an average length of 7.5 m
m, using ultrafine carbon fiber with a specific resistance of 10 -2 Ω · cm,
In addition, an ABS / PBT alloy resin was used as the thermoplastic resin, and various tests were performed in substantially the same operation as in Example 3. The results are shown in Table 5.
【0046】[0046]
【表5】 [Table 5]
【0047】実施例5 実物大の心電図測定用便座及び付帯部品を成形し、これ
に実施例3のNo.3の電極用材料を成形して得られる
電極用成形物を取り付けた。この心電図測定用便座を一
例を図1に示す。図1における1及び2は共に電極用成
形物を取り付けたところであり、1の場所に大腿部を、
2の場所に手のひらを載せることにより、心電図が計測
できるようになっている。この便座を用い、5名の心電
図を測定した。その結果を図2に示す。Example 5 A full-size ECG measuring toilet seat and ancillary parts were molded, and No. 3 of Example 3 was molded thereon. An electrode molded product obtained by molding the electrode material of 3 was attached. An example of this ECG-measuring toilet seat is shown in FIG. 1 and 2 in FIG. 1 are the positions where the electrode molded product is attached, and the thigh is placed at the position 1
The ECG can be measured by placing the palm on the second place. Using this toilet seat, the electrocardiogram of 5 persons was measured. The result is shown in FIG.
【0048】実施例6 ポリフェニレンスルフィド樹脂にカーボン繊維として平
均1.5μm、平均長15mm、比抵抗10-2Ω・cm
の極細カーボン繊維7wt%、チタン酸カリウム繊維を
不活性雰囲気中で1000℃にて還元焼成した導電性チ
タン酸カリウム繊維(繊維径0.3μm、繊維長15μ
m、比抵抗10-2Ω・cm)を7wt%、ポリテトラフ
ルオロエチレンパウダー5wt%、通常の炭素繊維5w
t%及びケッチェンEC0.5wt%を270℃に設定
した二軸押出機にて混練し、押出し、造粒して本発明組
成物を得た。Example 6 Polyphenylene sulfide resin as carbon fibers having an average of 1.5 μm, an average length of 15 mm and a specific resistance of 10 −2 Ω · cm.
Conductive potassium titanate fiber (fiber diameter 0.3 μm, fiber length 15 μm) obtained by reducing and firing 7% by weight of ultrafine carbon fiber and potassium titanate fiber at 1000 ° C. in an inert atmosphere.
m, specific resistance 10 −2 Ω · cm) 7 wt%, polytetrafluoroethylene powder 5 wt%, ordinary carbon fiber 5 w
t% and Ketjen EC 0.5 wt% were kneaded by a twin-screw extruder set at 270 ° C., extruded, and granulated to obtain the composition of the present invention.
【0049】上記で得られた本発明組成物を図3に示す
形状に射出成形して成形品を得た。この成形品の表面ス
キン層を測定したところ30μmであった。更にこの成
形品を図4に示す装置の一部に使用して、電極材料とし
てのインピーダンス測定を行なった。結果を図5に示
す。The composition of the present invention obtained above was injection molded into the shape shown in FIG. 3 to obtain a molded product. The surface skin layer of this molded product was measured and found to be 30 μm. Furthermore, this molded product was used in a part of the apparatus shown in FIG. 4 to measure impedance as an electrode material. Results are shown in FIG.
【0050】図5から明らかなように、本発明組成物を
用いて作成した針状の電極は各部分に抵抗値の均一性が
あり、食塩水の深さを電気的に読み取ることができた。
またこの性質を応用して、狭くて細かい部分の深さ、例
えば歯周ポケットの深さ等を測定するのに有効であっ
た。As is apparent from FIG. 5, the needle-shaped electrode prepared using the composition of the present invention had a uniform resistance value in each part, and the depth of the saline solution could be read electrically. .
In addition, by applying this property, it was effective to measure the depth of a narrow and fine portion, for example, the depth of the periodontal pocket.
【図1】本発明の電極用成形物を取り付けた心電図測定
用便座の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of an electrocardiogram measurement toilet seat to which the molded electrode product of the present invention is attached.
【図2】本発明の電極用成形物を取り付けた心電図測定
用便座を用いて測定した5名の心電図である。FIG. 2 is an electrocardiogram of 5 persons measured by using an electrocardiogram measuring toilet seat to which the molded electrode product of the present invention is attached.
【図3】実施例6で作成した成形品の側面図である。FIG. 3 is a side view of a molded product created in Example 6.
【図4】実施例6におけるインピーダンス測定のための
装置の概略図である。FIG. 4 is a schematic diagram of an apparatus for measuring impedance in Example 6.
【図5】成形品を生理食塩水に浸漬した深さとインピー
ダンスとの関係を示すグラフである。FIG. 5 is a graph showing the relationship between the depth of a molded article immersed in physiological saline and the impedance.
1 本発明の電極用成形物 2 本発明の電極用成形物 3 本発明の成形品 4 生理食塩水 5 電極 1 Molded product for electrode of the present invention 2 Molded product for electrode of the present invention 3 Molded product of the present invention 4 Saline solution 5 Electrode
Claims (4)
が1〜500μm、平均アスペクト比が5〜500、比
抵抗が10-3乃至104 Ω・cmであるセラミック繊維
及び/又は平均径が0.5〜3.0μm、平均長が0.
5〜20mm、平均アスペクト比が200〜1000
0、比抵抗が10-3乃至104 Ω・cmであるカーボン
繊維を1〜50重量%含有し、残部が熱可塑性樹脂であ
ることを特徴とする電極用材料。1. A ceramic fiber having an average diameter of 0.01 to 3.0 μm, an average length of 1 to 500 μm, an average aspect ratio of 5 to 500, and a specific resistance of 10 −3 to 10 4 Ω · cm, and / or The average diameter is 0.5 to 3.0 μm, and the average length is 0.
5-20 mm, average aspect ratio 200-1000
An electrode material comprising 0 to 50% by weight of carbon fiber having a specific resistance of 10 −3 to 10 4 Ω · cm and the remainder being a thermoplastic resin.
なる電極用成形物。2. A molded article for an electrode obtained by molding the material for an electrode according to claim 1.
ある請求項2に記載の成形物。3. The molded product according to claim 2, wherein the thickness of the surface skin layer is 200 μm or less.
に請求項3に記載の成形物をとりつけてなる便座。4. A toilet seat having the molded article according to claim 3 attached to at least one part of the part that comes into contact with the skin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5263283A JPH06339469A (en) | 1993-04-05 | 1993-10-21 | Electrode material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-77939 | 1993-04-05 | ||
JP7793993 | 1993-04-05 | ||
JP5263283A JPH06339469A (en) | 1993-04-05 | 1993-10-21 | Electrode material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06339469A true JPH06339469A (en) | 1994-12-13 |
Family
ID=26418995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5263283A Pending JPH06339469A (en) | 1993-04-05 | 1993-10-21 | Electrode material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06339469A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10261847A (en) * | 1997-03-19 | 1998-09-29 | Matsushita Electric Ind Co Ltd | Radiating substrate for mounting electronic component |
US20200181028A1 (en) * | 2018-12-10 | 2020-06-11 | Samsung Electro-Mechanics Co., Ltd. | Multi-layered ceramic electronic component and method for manufacturing the same |
-
1993
- 1993-10-21 JP JP5263283A patent/JPH06339469A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10261847A (en) * | 1997-03-19 | 1998-09-29 | Matsushita Electric Ind Co Ltd | Radiating substrate for mounting electronic component |
US20200181028A1 (en) * | 2018-12-10 | 2020-06-11 | Samsung Electro-Mechanics Co., Ltd. | Multi-layered ceramic electronic component and method for manufacturing the same |
US10981833B2 (en) * | 2018-12-10 | 2021-04-20 | Samsung Electro-Mechanics Co., Ltd. | Multi-layered ceramic electronic component and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6947646B2 (en) | Bioelectrode and its manufacturing method | |
CN103748152B (en) | Conducting polymer materials, its application and manufacture method thereof | |
KR100560016B1 (en) | Thermal-Conductive Silicone Rubber Composite Sheets | |
US11596338B2 (en) | Bioelectrode | |
JP2024073586A (en) | Cable with Boots | |
JP2013063657A (en) | Composite material including at least one hard member and at least one soft member | |
WO2020095589A1 (en) | Biological electrode, biological sensor, and biological signal measurement system | |
US20200275850A1 (en) | Bioelectrode | |
JPH06339469A (en) | Electrode material | |
JP6708322B1 (en) | Biological electrode, biosensor and biosignal measurement system | |
JP2000053864A (en) | Heat conductive/electrical insulating silicone rubber composition and silicone gel composition | |
JP3826852B2 (en) | Highly conductive resin molded product | |
US12226214B2 (en) | Biomedical electrode, biomedical sensor, and biomedical signal measurement system | |
JPH03190964A (en) | Rubber composition and rubber cured article and production of the same rubber composition | |
JP6986153B2 (en) | Manufacturing method of bioelectrode | |
US20230009938A1 (en) | Method for manufacturing biological electrode | |
JP4243949B2 (en) | Conductive resin molded article having insulating surface layer and molding method thereof | |
JP2009231009A (en) | Pressure-sensitive conductive material | |
JP7480926B1 (en) | Electrode for measuring electroencephalogram, electroencephalogram measuring device, electroencephalogram measuring method, and method for manufacturing electrode for measuring electroencephalogram | |
JPWO2019139163A1 (en) | Bioelectrode | |
JP2012115617A (en) | Molding and magnetic therapeutic apparatus | |
JP6544843B2 (en) | Composite molded body | |
JP7145324B2 (en) | Biomedical electrode, biosensor, and biomedical signal measurement system | |
WO2025074792A1 (en) | Rubber composition and bioelectrode | |
JPH06269319A (en) | Material for hairdressing implement, and hairdressing implement |