[go: up one dir, main page]

JPH06338408A - Permanent magnet and manufacturing method thereof - Google Patents

Permanent magnet and manufacturing method thereof

Info

Publication number
JPH06338408A
JPH06338408A JP5127430A JP12743093A JPH06338408A JP H06338408 A JPH06338408 A JP H06338408A JP 5127430 A JP5127430 A JP 5127430A JP 12743093 A JP12743093 A JP 12743093A JP H06338408 A JPH06338408 A JP H06338408A
Authority
JP
Japan
Prior art keywords
magnet
bulk
magnets
comparative example
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5127430A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishibashi
利之 石橋
Koji Akioka
宏治 秋岡
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5127430A priority Critical patent/JPH06338408A/en
Publication of JPH06338408A publication Critical patent/JPH06338408A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

(57)【要約】 【構成】 焼結磁石などのバルク状磁石を、磁性粉末と
結合剤とからなるボンド磁石材料で被うような成形を行
なう。また、バルク状磁石を磁石などを用い配列させて
ボンド磁石材料で被い、バルク状磁石の位置に合わせて
着磁する。 【効果】 ボンド磁石よりも磁気特性または磁束が高
く、バルク状磁石にない機械的強度や軽量化などの効果
を有し、それを搭載した応用製品の高性能化を実現でき
るなど、応用にも大きな効果がある。
(57) [Summary] [Structure] A bulk magnet such as a sintered magnet is molded so as to be covered with a bonded magnet material composed of magnetic powder and a binder. Further, the bulk magnets are arranged by using a magnet or the like, covered with a bond magnet material, and magnetized according to the position of the bulk magnet. [Effect] It has higher magnetic properties or magnetic flux than bonded magnets, and has the effects of mechanical strength and weight reduction that bulk magnets do not have, and it can be used in applications such as higher performance of applied products equipped with it. It has a great effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、永久磁石およびその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet and its manufacturing method.

【0002】[0002]

【従来の技術】従来、磁性材料と結合剤とで永久磁石と
する方法としては、樹脂結合型磁石もしくはボンド磁石
と呼ばれる磁石が良く知られ、近年、焼結磁石を中心と
する金属材料のみからなるバルク磁石よりも高い成長率
で生産されている。
2. Description of the Related Art Heretofore, as a method of forming a permanent magnet with a magnetic material and a binder, a magnet called a resin-bonded magnet or a bonded magnet has been well known. In recent years, only a metal material centered on a sintered magnet has been used. It is produced at a higher growth rate than the bulk magnet.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
技術における永久磁石には、以下の問題点を有する。
However, the permanent magnets in the prior art have the following problems.

【0004】(1)磁性材料と結合剤とからなるいわゆ
るボンド磁石においては、磁性材料に対する結合剤の割
合が、体積百分率で10〜50%となるが、一般に結合
剤は磁気特性になんら寄与しないことから、結合剤の量
が多いほど得られる永久磁石の磁気特性が低下してしま
う。
(1) In a so-called bonded magnet consisting of a magnetic material and a binder, the ratio of the binder to the magnetic material is 10 to 50% by volume, but the binder generally does not contribute to the magnetic properties. Therefore, the larger the amount of binder, the lower the magnetic properties of the permanent magnet obtained.

【0005】(2)焼結磁石に代表される100%金属
材料からなり結合剤を含まないバルク状磁石の場合、割
れ、欠けが生じ易く、比重も大きく、二次加工が必要。
(2) In the case of a bulk magnet made of 100% metal material represented by a sintered magnet and containing no binder, cracking and chipping are likely to occur, the specific gravity is large, and secondary processing is required.

【0006】そこで、本発明はこのような問題点を解決
するもので、その目的とするところは、高い形状自由度
や二次加工が不要といったボンド磁石の長所を活かした
まま、磁気特性が低いという弱点を補った永久磁石およ
びその製造方法を提供することにある。
Therefore, the present invention solves such a problem, and an object of the present invention is to lower the magnetic characteristics while utilizing the advantages of the bonded magnet such as a high degree of freedom in shape and the need for secondary processing. SUMMARY OF THE INVENTION It is an object of the present invention to provide a permanent magnet and a method for manufacturing the same, which make up for the weakness.

【0007】[0007]

【課題を解決するための手段】本発明の永久磁石は、ひ
とつ以上のバルク状磁石が、磁性粉末と結合剤とからな
るボンド磁石材料で被われていることを特徴とする。ま
た、規則正しく配列していること、もしくは、環状に配
列しており、リング形状であることを特徴とする。
The permanent magnet of the present invention is characterized in that one or more bulk magnets are covered with a bonded magnet material comprising a magnetic powder and a binder. Further, it is characterized in that they are arranged regularly, or they are arranged annularly and have a ring shape.

【0008】永久磁石材料の製造方法は、成形型および
/または治具の一部に磁気を発生させ、そこに上記バル
ク状磁石を磁気吸着させることにより規則正しく配列さ
せ、上記ボンド磁石材料で被うことを特徴とする。その
磁気を永久磁石および/または電磁石により発生させる
ことを特徴とする。また、バルク状磁石を上記ボンド磁
石材料で被うと同時に、軸やヨークなどの部品と一体成
形または成形・キュアと同時に接着させることを特徴と
する。
In the method for producing a permanent magnet material, magnetism is generated in a part of a molding die and / or jig, and the bulk magnets are magnetically attracted to the magnets so that they are regularly arranged and covered with the bond magnet material. It is characterized by The magnetism is generated by a permanent magnet and / or an electromagnet. Further, the present invention is characterized in that the bulk magnet is covered with the above-mentioned bonded magnet material, and at the same time, it is integrally molded with a component such as a shaft or a yoke, or bonded simultaneously with molding and curing.

【0009】[0009]

【作用】本発明の上記の構成によれば、以下の効果を有
する。
The above structure of the present invention has the following effects.

【0010】(1)バルク状磁石をボンド磁石材料で被
うことにより、ボンド磁石材料のみと比較して磁性材料
の割合が多くできることから磁気特性を向上できる。
(1) By covering the bulk magnet with the bonded magnet material, the ratio of the magnetic material can be increased as compared with the bonded magnet material alone, so that the magnetic characteristics can be improved.

【0011】(2)マクロ的にはボンド磁石材料=結合
剤で結合され、磁石表面はボンド磁石材料で被われてい
ることから、焼結に代表されるバルク状磁石と比較する
と、割れ、欠けがなく、取り扱いが楽になる。応用にお
いても、使用中の破損や磁粉の脱落による発塵に気を使
うこともなくなり、発塵防止用のコーティングなども不
要となる。
(2) Macroscopically, the bonded magnet material is bonded with a binder, and the surface of the magnet is covered with the bonded magnet material. Therefore, cracking or chipping occurs as compared with a bulk magnet represented by sintering. Is easy to handle. Even in application, there is no need to worry about dust generation due to damage during use or loss of magnetic powder, and no dust coating is required.

【0012】(3)バルク状磁石をボンド磁石材料で被
うと同時に、ボンド磁石の特徴ひとつである一体成形な
ども可能である。
(3) At the same time as covering the bulk magnet with the bonded magnet material, it is possible to perform integral molding, which is one of the features of the bonded magnet.

【0013】(4)バルク状磁石の配置に合わせて着磁
を施すことにより、磁束はバルク状磁石並の強度が得ら
れ、先の配置と着磁を工夫することにより、例えば台形
波など様々な着磁パターンを得ることができる。
(4) By magnetizing in accordance with the arrangement of the bulk-shaped magnets, the magnetic flux has a strength comparable to that of the bulk-shaped magnets. By devising the previous arrangement and the magnetization, for example, various trapezoidal waves can be obtained. It is possible to obtain various magnetization patterns.

【0014】(5)バルク状磁石並の磁束を発生しなが
ら、ボンド磁石材料を含んでいる分、軽量化でき、例え
ばローター磁石への応用においてはイナーシャーの軽量
化なども実現できる。
(5) Since the magnetic flux is generated as much as that of a bulk magnet, the weight of the bonded magnet material is reduced, so that the weight can be reduced. For example, in the application to the rotor magnet, the weight of the inertia can be reduced.

【0015】[0015]

【実施例】以下、本発明について、実施例に基づいて詳
細に説明する。
EXAMPLES The present invention will be described in detail below based on examples.

【0016】(実施例1)Sm(Co0.68Fe0.3Cu
0.05Zr0.027.5の組成となるように、高周波溶解炉
で合金を溶解・鋳造し、粉砕して3〜5μmの粉末と
し、15kgf/mm2の圧力、10kOeの磁場で成
形し、1150〜1250℃で1時間焼結し、1100
〜1220℃で1時間溶体化処理を施し、850℃で時
効した。得られたSm系焼結磁石の磁気特性は、 Br=12kG,iHc=13kOe,(BH)max
=30MGOe であった。このSm系焼結(バルク状)磁石を比較例1
とする。
Example 1 Sm (Co 0.68 Fe 0.3 Cu
0.05 Zr 0.02 ) The alloy is melted and cast in a high frequency melting furnace so as to have a composition of 7.5 Zr 0.02 ), pulverized into powder of 3 to 5 μm, and molded with a pressure of 15 kgf / mm 2 and a magnetic field of 10 kOe, 1150 to 1250. Sintered for 1 hour at ℃, 1100
The solution treatment was carried out at -12O <0> C for 1 hour and aged at 850 <0> C. The magnetic characteristics of the obtained Sm-based sintered magnet are as follows: Br = 12 kG, iHc = 13 kOe, (BH) max
= 30 MGOe. Comparative Example 1 of this Sm-based sintered (bulk) magnet
And

【0017】いずれも重量百分率で、Nd12.4%,
Co15.9%,B5.8%および残部Feの組成となる
ように、高周波溶解炉を用いアルゴンガス雰囲気下で溶
解・鋳造し、得られたインゴットを急冷薄帯製造装置を
用い、アルゴンガス雰囲気中、直径20mm銅製ロー
ル、石英管オリフィス径0.6mm、アルゴン噴射圧4
kgf/cm2などの条件で急冷薄帯を作成し粉砕・熱
処理して、Nd系磁性粉末を得た。この粉末にエポキシ
樹脂を2重量%添加し、混合・混練し、圧縮成形用のコ
ンパウンドとした。このコンパウンドを50kgf/m
2の圧力で圧縮成形し、150℃で1時間のキュアを
施し、Nd系圧縮成形ボンド磁石とした。磁気特性は、 Br=7.7kG,iHc=10kOe,(BH)ma
x=12MGOe であった。このNd系圧縮成形ボンド磁石を比較例2と
する。
In each case, the weight percentage is Nd12.4%,
A high-frequency melting furnace was used to melt and cast in an argon gas atmosphere so that the composition of Co was 15.9%, B 5.8%, and the balance of Fe was used. Medium, diameter 20mm copper roll, quartz tube orifice diameter 0.6mm, argon injection pressure 4
A quenched ribbon was prepared under conditions such as kgf / cm 2, crushed and heat-treated to obtain an Nd-based magnetic powder. 2% by weight of an epoxy resin was added to this powder, which was mixed and kneaded to obtain a compound for compression molding. 50 kgf / m of this compound
It was compression molded at a pressure of m 2 and cured at 150 ° C. for 1 hour to obtain an Nd-based compression molded bond magnet. The magnetic characteristics are as follows: Br = 7.7 kG, iHc = 10 kOe, (BH) ma
x = 12 MGOe. This Nd-based compression molded bonded magnet is referred to as Comparative Example 2.

【0018】また、このNd系磁性粉末に22体積%の
ホリアミド12を混合・混練し、射出成形用のコンパウ
ンドとした。このコンパウンドを射出成形し、Nd系射
出成形ボンド磁石とした。磁気特性は、 Br=7kG,iHc=10kOe,(BH)max=
10MGOe であった。これを比較例3とする。
Further, 22% by volume of holamide 12 was mixed and kneaded with this Nd-based magnetic powder to prepare a compound for injection molding. This compound was injection-molded to obtain an Nd-based injection-molded bond magnet. The magnetic characteristics are as follows: Br = 7 kG, iHc = 10 kOe, (BH) max =
It was 10 MGOe. This is Comparative Example 3.

【0019】次に、比較例1のSm系焼結磁石(バルク
状磁石)を2mm角の立方体とし、比較例2のNd系圧
縮成形用コンパウンド(ボンド磁石材料)で被うような
成形を行なった。量の割合は体積比で1:1とした。具
体的には、先ず、成形型にNd系圧縮成形用コンパウン
ドを半分だけ入れ、そこにSm系焼結磁石を入れ、さら
に残りのNd系圧縮成形用コンパウンドを入れた後、1
5kOeの磁場をかけながら50kgf/mm2の圧力
で成形した。磁気特性は、 Br=10kG,iHc=10.5kOe,(BH)m
ax=19MGOe であった。これを本発明1とする。
Next, the Sm-based sintered magnet (bulk-shaped magnet) of Comparative Example 1 was formed into a cube of 2 mm square, and the Nd-based compression molding compound of Comparative Example 2 (bonded magnet material) was molded to cover it. It was The volume ratio was 1: 1 by volume. Specifically, first, only half of the Nd-based compression molding compound was put into the molding die, the Sm-based sintered magnet was put therein, and the rest of the Nd-based compression molding compound was put in the molding die.
Molding was performed at a pressure of 50 kgf / mm 2 while applying a magnetic field of 5 kOe. The magnetic characteristics are as follows: Br = 10 kG, iHc = 10.5 kOe, (BH) m
It was ax = 19MGOe. This is referred to as Invention 1.

【0020】さらに、同様に比較例1のSm系焼結磁石
を比較例3のNd系射出成形用コンパウンドで被うよう
な成形を行なった。磁気特性は、 Br=9.4kG,iHc=10kOe,(BH)ma
x=16MGOe であった。これを本発明2とする。
Further, similarly, molding was performed so that the Sm-based sintered magnet of Comparative Example 1 was covered with the Nd-based injection molding compound of Comparative Example 3. The magnetic characteristics are as follows: Br = 9.4 kG, iHc = 10 kOe, (BH) ma
It was x = 16 MGOe. This is referred to as Invention 2.

【0021】以上述べてきたように、磁気特性に関して
は、バルク状磁石(比較例1)とボンド磁石材料(比較
例2および3)のほぼ中間の特性となっている。五種類
の磁石サンプルを各2個着磁し、10cmの距離から手
を離し、磁気吸着させた。比較例1は一回で角が欠けた
のに対し、その他の磁石は五回繰り返してもなんら変化
がなかった。すなわち、本発明1および2はボンド磁石
と比較すると高い磁気特性とボンド磁石並の機械強度を
有していることが分かる。
As described above, the magnetic characteristics are almost intermediate between those of the bulk magnet (Comparative Example 1) and the bonded magnet material (Comparative Examples 2 and 3). Two pieces of each of the five kinds of magnet samples were magnetized, and the hands were separated from the distance of 10 cm to be magnetically adsorbed. In Comparative Example 1, the corner was chipped once, but other magnets did not change even after repeated five times. That is, it is understood that the present inventions 1 and 2 have higher magnetic characteristics and mechanical strength comparable to that of the bonded magnet, as compared with the bonded magnet.

【0022】(実施例2)Nd13Dy2Fe70Co87
の組成となるように、溶解・鋳造し、得られたインゴッ
トを2〜3μmまで粉砕し、実施例1と同様に磁場中成
形し、1100℃で3時間焼結し、600℃で1時間熱
処理した。磁気特性は、 Br=12.6kG,iHc=21kOe,(BH)m
ax=36MGOe であった。このNd系焼結磁石を比較例4とする。
Example 2 Nd 13 Dy 2 Fe 70 Co 8 B 7
The ingot thus obtained was melted and cast so as to have the composition of No. 1, and the obtained ingot was crushed to 2-3 μm, molded in a magnetic field as in Example 1, sintered at 1100 ° C. for 3 hours, and heat-treated at 600 ° C. for 1 hour. did. The magnetic characteristics are as follows: Br = 12.6 kG, iHc = 21 kOe, (BH) m
It was ax = 36MGOe. This Nd-based sintered magnet is referred to as Comparative Example 4.

【0023】Sm(Co0.586Fe0.32Cu0.08Zr
0.0168.35の組成となるように、高周波溶解炉で合金
を溶解・鋳造し、1150℃で24時間の溶体化処理、
800℃で8時間の時効処理を施し、800℃から40
0℃まで0.5℃/分の冷却速度で冷却した。熱処理し
たインゴットは20μm前後の粒度分布を有する大きさ
の粉末に粉砕した。得られた粉末にエポキシ樹脂を約2
重量%を添加し、混合・混練し、コンパウンドとした。
このコンパウンドを50kgf/mm2の圧力、15k
Oeの磁場で磁場成形を行ない、成形体を脱磁後、15
0℃で1時間のキュアを施した。磁気特性は、 Br=9.4kG,iHc=12kOe,(BH)ma
x=18MGOe であった。このSm系圧縮成形ボンド磁石を比較例5と
する。
Sm (Co 0.586 Fe 0.32 Cu 0.08 Zr
0.016 ) Melt and cast the alloy in a high frequency melting furnace so that it has a composition of 8.35 , and solution heat treatment at 1150 ° C for 24 hours,
Aged at 800 ℃ for 8 hours,
It was cooled to 0 ° C. at a cooling rate of 0.5 ° C./min. The heat-treated ingot was crushed into powder having a size having a particle size distribution of about 20 μm. About 2 parts of epoxy resin is added to the obtained powder.
Weight% was added, mixed and kneaded to obtain a compound.
This compound is applied at a pressure of 50 kgf / mm 2 and a pressure of 15 k
Magnetic field molding is performed with a magnetic field of Oe, and the molded body is demagnetized.
It was cured at 0 ° C. for 1 hour. The magnetic characteristics are as follows: Br = 9.4 kG, iHc = 12 kOe, (BH) ma
It was x = 18 MGOe. This Sm-based compression molded bonded magnet is referred to as Comparative Example 5.

【0024】また、比較例4のNd系焼結磁石を比較例
5のSm系圧縮成形ボンド磁石で被った磁石を実施例1
と同様に作成した。これを本発明3とする。磁気特性的
には(BH)max=27MGOeと、比較例4と比較
すること低いが、比較例5よりは高い値を示した。
A magnet obtained by covering the Nd-based sintered magnet of Comparative Example 4 with the Sm-based compression molded bonded magnet of Comparative Example 5 was used.
Created in the same way. This is referred to as Present Invention 3. In terms of magnetic properties, (BH) max = 27MGOe, which is low compared to Comparative Example 4, but higher than that of Comparative Example 5.

【0025】形状が辺の長さが30と50mm、高さが
30mm、厚みが3mmの磁石を各2個用意し、ロータ
リータイプのVCMに搭載し、上記三種類の磁石での特
性を比較した。比較例4のNd系焼結磁石はギャップ磁
束密度が約5900Gだったのに対し、本発明3は約5
600Gとほぼ同じ値を示した。比較例5のSm系ボン
ド磁石は約4000Gと低い値であった。また、トルク
も比較例4の460g・cm/ampに対し、本発明3
は440g・cm/ampとほぼ同じ値だった。
Two magnets each having a side length of 30 and 50 mm, a height of 30 mm, and a thickness of 3 mm were prepared and mounted on a rotary type VCM, and the characteristics of the above three types of magnets were compared. . The Nd-based sintered magnet of Comparative Example 4 had a gap magnetic flux density of about 5900 G, whereas the present invention 3 has about 5
The value was almost the same as that of 600G. The Sm-based bonded magnet of Comparative Example 5 had a low value of about 4000G. Further, the torque of Comparative Example 4 was 460 g · cm / amp, but the present invention 3 was used.
Was almost the same value as 440 g · cm / amp.

【0026】その他の特性としては、比較例4が焼結後
に二次加工およびコーティングが必要だったのに対し、
本発明3はいずれも不要であった。また、成形時にヨー
ク上に成形し、キュアすることによって、接着工程も省
略することができた。
As to other characteristics, while Comparative Example 4 required secondary processing and coating after sintering,
Neither of the present invention 3 was necessary. Also, the bonding step could be omitted by molding and curing on the yoke during molding.

【0027】(実施例3)いずれも重量百分率で、Nd
12.4%,Co15.9%,B5.8%および残部Fe
の組成となるように、高周波溶解炉を用いアルゴンガス
雰囲気下で溶解・鋳造し、得られたインゴットを急冷薄
帯製造装置を用い、アルゴンガス雰囲気中で急冷薄帯を
作成した。この急冷薄帯を粉砕し、室温で圧縮成形によ
りリング状の成形体とし、アルゴン雰囲気中、750℃
で後方押出成形を行ない、外径22、内径19、高さ4
mmのラジアル異方性リング状磁石を作成した。このN
d系急冷熱間加工バルク磁石を比較例6とした。
(Embodiment 3) In all cases, the weight percentage is Nd.
12.4%, Co 15.9%, B 5.8% and balance Fe
The composition was melted and cast in an argon gas atmosphere using a high-frequency melting furnace, and the obtained ingot was formed into a quenched ribbon in an argon gas atmosphere using a quenching ribbon manufacturing apparatus. The quenched ribbon is crushed and compressed at room temperature into a ring-shaped compact, which is then heated to 750 ° C. in an argon atmosphere.
Rear extrusion molding with outer diameter 22, inner diameter 19, height 4
mm radial anisotropic ring-shaped magnet was prepared. This N
Comparative Example 6 was a d-system quenched hot-worked bulk magnet.

【0028】実施例2の比較例5のSm系磁性粉末にポ
リアミド12を混合・混練してコンパウンドとし、磁場
中射出成形機でラジアル異方性磁石とした。このSm系
射出成形磁石を比較例7とする。
Polyamide 12 was mixed and kneaded with the Sm type magnetic powder of Comparative Example 5 of Example 2 to form a compound, which was used as a radial anisotropic magnet in a magnetic field injection molding machine. This Sm-based injection molded magnet is referred to as Comparative Example 7.

【0029】比較例6の急冷粉末をダイアップセット成
形し、直方体のNd系急冷熱間加工バルク磁石を作成し
た。これを厚み方向が異方性となるように、幅2.2、
高さ3.6、厚み1mmの板状磁石を24枚用意した。
径が19mmのコアに着磁した磁石を15度おきに組み
込み、先の板状磁石を一枚ずつ吸着させ、外径22mm
のダイと組み合せて、比較例7のSm系コンパウンドを
トランスファー成形することにより、比較例6および7
と同じリング状磁石を作成した。これを本発明4とす
る。
The quenching powder of Comparative Example 6 was die-up set molded to prepare a rectangular parallelepiped Nd-based quenching hot-worked bulk magnet. Width 2.2, so that the thickness direction is anisotropic
Twenty-four plate magnets having a height of 3.6 and a thickness of 1 mm were prepared.
A magnet magnetized to a core with a diameter of 19 mm is installed every 15 degrees, and the above plate magnets are attracted one by one, and the outer diameter is 22 mm
Comparative Example 6 and 7 by transfer molding the Sm-based compound of Comparative Example 7 in combination with the die of
The same ring-shaped magnet was created. This is referred to as Present Invention 4.

【0030】これら三種類のリング状磁石を二個ロータ
に接着し、24極の多極着磁を施した。ただし、本発明
4では埋め込んだNd系急冷熱間加工バルク磁石の位置
に合わせて着磁した。このロータ磁石をPM型のステッ
ピングモータに組み込み、モータとしても特性評価を行
なった。
Two of these three types of ring-shaped magnets were adhered to the rotor and magnetized with 24 poles. However, in the present invention 4, magnetization was performed in accordance with the position of the embedded Nd-based quenching hot-worked bulk magnet. The rotor magnet was incorporated into a PM type stepping motor, and the characteristics of the motor were evaluated.

【0031】パルスレート・トルク特性のうち、300
ppsでのプルアウトトルクは、比較例7が900g・
cmであったのに対し、本発明4は1100g・cmと
高い値を示した。比較例6は低いパルスレートでは高い
トルクを示したが、300ppsでは400g・cmに
過ぎなかった。
Of the pulse rate / torque characteristics, 300
The pullout torque in pps is 900 g in Comparative Example 7.
However, the present invention 4 showed a high value of 1100 g · cm. Comparative Example 6 showed high torque at low pulse rates, but only 400 gcm at 300 pps.

【0032】(実施例4)Pr17Fe75.55.5Cu2
組成となるように、溶解・鋳造し、得られたインゴット
をアルゴン雰囲気のホットプレスを用い、950℃で8
0%の加工を施した。その後1000℃で20時間+4
75℃で2時間の熱処理を施した。これを円盤状に加工
し、アキシャル異方性磁石とした。これを比較例8とす
る。
(Example 4) Melting / casting was performed so that the composition was Pr 17 Fe 75.5 B 5.5 Cu 2 and the obtained ingot was heated at 950 ° C. for 8 hours at 950 ° C. using a hot press in an argon atmosphere.
0% processing was applied. After that, at 1000 ℃ for 20 hours +4
Heat treatment was performed at 75 ° C. for 2 hours. This was processed into a disk shape to obtain an axial anisotropic magnet. This is Comparative Example 8.

【0033】実施例1の比較例3のコンパウンドを用
い、射出成形法により同じ円盤状磁石を作成した。これ
を比較例9とする。
Using the compound of Comparative Example 3 of Example 1, the same disk-shaped magnet was produced by the injection molding method. This is Comparative Example 9.

【0034】また、比較例8のバルク磁石を角度60度
の扇状に加工した。次に、射出成形機の金型の円盤の底
面に電磁石で6箇所磁気を発生させ、先のバルク磁石を
吸着させ、ロータの軸をセットした後、比較例3のコン
パウンドを射出することによりバルク磁石を被うと同時
に軸と一体成形した。これを本発明5とする。
The bulk magnet of Comparative Example 8 was processed into a fan shape having an angle of 60 degrees. Next, magnetism was generated at 6 points on the bottom surface of the disk of the mold of the injection molding machine, the previous bulk magnet was attracted, the rotor shaft was set, and then the compound of Comparative Example 3 was injected to obtain the bulk. At the same time as covering the magnet, it was molded integrally with the shaft. This is referred to as Present Invention 5.

【0035】比較例8および9はロータの軸を接着し、
三種類のロータ磁石に6極の着磁を施した後、6個のコ
イルが対抗する位置に配置されたアキシャルギャップ型
スピンドルモータに組み込んだ。
In Comparative Examples 8 and 9, the shaft of the rotor was adhered,
The three types of rotor magnets were magnetized with 6 poles, and then assembled into an axial gap type spindle motor in which 6 coils were arranged at opposing positions.

【0036】比較例8は磁束も高く、モータ特性も良か
ったが、割れや欠けが目立ち、HDDなど応用製品に搭
載する際にはコーティングが必須となった。比較例9は
磁束不足で、モータ特性も不十分だった。それに対し、
本発明5は磁束が十分高いことからモータ特性も比較例
8と同等であった。加えて比較例8よりも軽量化できた
ことから、イナーシャーの設定など設計に大きな自由度
を与えることができた。
In Comparative Example 8, the magnetic flux was high and the motor characteristics were good, but cracks and chips were conspicuous, and coating was indispensable when mounting in applied products such as HDD. In Comparative Example 9, the magnetic flux was insufficient and the motor characteristics were also insufficient. For it,
Since the magnetic flux of Inventive Example 5 was sufficiently high, the motor characteristics were similar to those of Comparative Example 8. In addition, since the weight was lighter than that of Comparative Example 8, it was possible to give a great degree of freedom to the design such as setting the inertia.

【0037】以上述べてきたように、本発明は磁石材料
や製法に依存することなく有効であり本発明の範囲を限
定するのは特許請求の範囲のみである。また、応用にも
多大の効果を有していることは明らかである。
As described above, the present invention is effective without depending on the magnet material and manufacturing method, and the scope of the present invention is limited only by the claims. It is also clear that it has a great effect on application.

【0038】[0038]

【発明の効果】以上述べたように本発明によれば、ひと
つ以上のバルク状磁石が、磁性粉末と結合剤とからなる
ボンド磁石材料で被われていることを特徴とすることに
より、ボンド磁石材料のみと比較して磁性材料の割合が
多くできることから磁気特性を向上でき、磁束も増大で
き、焼結に代表されるバルク状磁石と比較すると、割
れ、欠けがなく、軽量化でき、例えばローター磁石への
応用においては高性能化できるだけでなく、イナーシャ
ーも軽量化できるなど応用面にも多大の効果を有するも
のである。
As described above, according to the present invention, one or more bulk magnets are covered with a bond magnet material composed of a magnetic powder and a binder. Since the ratio of the magnetic material can be increased as compared with the material alone, the magnetic characteristics can be improved, the magnetic flux can be increased, and compared with the bulk magnet represented by sintering, there is no cracking or chipping, and the weight can be reduced. In the application to magnets, not only the performance can be improved, but also the inertia can be reduced in weight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリング状永久磁石の構造概念図。FIG. 1 is a structural conceptual diagram of a ring-shaped permanent magnet of the present invention.

【図2】本発明の円盤状永久磁石の構造概念図。FIG. 2 is a structural conceptual diagram of a disk-shaped permanent magnet of the present invention.

【符号の説明】[Explanation of symbols]

1…バルク状磁石 2…ボンド磁石材料 1 ... Bulk magnet 2 ... Bonded magnet material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ひとつ以上のバルク状磁石が、磁性粉末
と結合剤とからなるボンド磁石材料で被われていること
を特徴とする永久磁石。
1. A permanent magnet, characterized in that one or more bulk magnets are covered with a bonded magnet material consisting of magnetic powder and a binder.
【請求項2】 上記バルク状磁石が、規則正しく配列し
ていることを特徴とする請求項1記載の永久磁石。
2. The permanent magnet according to claim 1, wherein the bulk magnets are regularly arranged.
【請求項3】 上記バルク状磁石が、環状に配列してお
り、リング形状であることを特徴とする請求項1記載の
永久磁石。
3. The permanent magnet according to claim 1, wherein the bulk magnets are annularly arranged and have a ring shape.
【請求項4】 成形型および/または治具の一部に磁気
を発生させ、そこに上記バルク状磁石を磁気吸着させる
ことにより規則正しく配列させ、上記ボンド磁石材料で
被うことを特徴とする永久磁石の製造方法。
4. A permanent magnet characterized in that magnetism is generated in a part of a molding die and / or jig, and the bulk magnets are magnetically attracted to the magnets so that they are regularly arranged and covered with the bond magnet material. Magnet manufacturing method.
【請求項5】 上記磁気を永久磁石および/または電磁
石により発生させることを特徴とする請求項4記載の永
久磁石材料の製造方法。
5. The method for producing a permanent magnet material according to claim 4, wherein the magnetism is generated by a permanent magnet and / or an electromagnet.
【請求項6】 上記バルク状磁石を上記ボンド磁石材料
で被うと同時に、軸やヨークなどの部品と一体成形また
は成形・キュアと同時に接着させることを特徴とする請
求項4記載の永久磁石の製造方法。
6. The manufacturing of a permanent magnet according to claim 4, wherein the bulk magnet is covered with the bonded magnet material, and at the same time, it is integrally molded with a component such as a shaft or a yoke or is bonded simultaneously with molding and curing. Method.
JP5127430A 1993-05-28 1993-05-28 Permanent magnet and manufacturing method thereof Pending JPH06338408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5127430A JPH06338408A (en) 1993-05-28 1993-05-28 Permanent magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5127430A JPH06338408A (en) 1993-05-28 1993-05-28 Permanent magnet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH06338408A true JPH06338408A (en) 1994-12-06

Family

ID=14959768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5127430A Pending JPH06338408A (en) 1993-05-28 1993-05-28 Permanent magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH06338408A (en)

Similar Documents

Publication Publication Date Title
US20070151629A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet
JPH062930B2 (en) Rare earth permanent magnet
EP1180772B1 (en) Anisotropic magnet and process of producing the same
JP4203646B2 (en) Method for manufacturing flexible hybrid rare earth bonded magnet, magnet and motor
JPH066775B2 (en) Rare earth permanent magnet
JPH06338408A (en) Permanent magnet and manufacturing method thereof
JP2579787B2 (en) Manufacturing method of permanent magnet
JP2986611B2 (en) Fe-BR bonded magnet
JPH0380508A (en) Manufacture of rare earth element magnet
JPH1126272A (en) Manufacture of laminated permanent magnet
JP3023881B2 (en) R-Fe-BC bonded magnet with excellent oxidation resistance
JPH04143221A (en) Permanent magnet manufacturing method
JP2746111B2 (en) Alloy for permanent magnet
JP2001185412A (en) Anisotropic bonded magnet
JP3032385B2 (en) Fe-BR bonded magnet
JP2925840B2 (en) Fe-BR bonded magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPS6271201A (en) Bond magnet
JPH01321854A (en) Reciprocating drive device
JPH06260360A (en) Production of rare-earth metal and iron-based magnet
JPH06215967A (en) Manufacture of transferred integrally-molded magnetic circuit
JP3023880B2 (en) R-Fe-Co-BC-based bonded magnet with excellent oxidation resistance
JP3131022B2 (en) Fe-BR bonded magnet
JPS59148302A (en) Manufacturing method of cylindrical permanent magnet
JPH0256904A (en) Manufacturing method of resin bonded rare earth magnet