[go: up one dir, main page]

JPH06335891A - Joint for vacuum manipulator - Google Patents

Joint for vacuum manipulator

Info

Publication number
JPH06335891A
JPH06335891A JP12376393A JP12376393A JPH06335891A JP H06335891 A JPH06335891 A JP H06335891A JP 12376393 A JP12376393 A JP 12376393A JP 12376393 A JP12376393 A JP 12376393A JP H06335891 A JPH06335891 A JP H06335891A
Authority
JP
Japan
Prior art keywords
side case
joint
elastic
heat
vacuum manipulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12376393A
Other languages
Japanese (ja)
Inventor
Muneo Mizumoto
宗男 水本
Yoichi Murai
洋一 村井
Eiichi Sato
栄一 佐藤
Yuichi Yanase
裕一 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12376393A priority Critical patent/JPH06335891A/en
Publication of JPH06335891A publication Critical patent/JPH06335891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Manipulator (AREA)

Abstract

(57)【要約】 (修正有) 【構成】過酷温度に弱い機械要素の冷却,断熱機能を備
えた真空用メカニズムにおいて、熱変形によるがたが発
生しやすい軸受機構装着部3,14に断熱弾性支持部材
17を装着する。 【効果】温度変形によるがたが発生してもこの断熱弾性
部材が追随して変形するため、機構系のがたが発生しな
い。また外部の過酷な熱環境に対して、この断熱弾性部
材が外部からの熱流入あるいは外部への熱流失を防止す
るため、過酷温度に弱い機械要素を許容範囲内に設定で
きる。
(57) [Summary] (Modified) [Construction] In a vacuum mechanism equipped with cooling and heat insulation functions for mechanical elements that are sensitive to severe temperatures, heat is applied to the bearing mechanism mounting parts 3 and 14 where rattling easily occurs due to thermal deformation. The elastic support member 17 is attached. [Effect] Even if rattling occurs due to temperature deformation, this adiabatic elastic member deforms following it, so rattling of the mechanical system does not occur. Further, since the heat insulating elastic member prevents heat inflow from the outside or heat loss to the outside in the severe heat environment of the outside, it is possible to set the mechanical element weak against the severe temperature within the allowable range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空環境下で使用され
るマニピュレータ駆動機構要素に係わり、特に、熱,温
度変化の影響を受け易い宇宙用マニピュレータや膜成長
用半導体製造装置用ウエハハンドリングに最適な駆動機
構要素に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manipulator driving mechanism element used in a vacuum environment, and particularly to a space manipulator susceptible to heat and temperature changes and a wafer handling for a semiconductor manufacturing apparatus for film growth. Optimal drive mechanism elements.

【0002】[0002]

【従来の技術】従来、真空環境で使用されるマニピュレ
ータはほとんど無く、半導体製造装置等の真空チェンバ
内のウエハハンドリング機構やチェンバ内への動力導入
機構が有るのみである。
2. Description of the Related Art Conventionally, there are almost no manipulators used in a vacuum environment, and there is only a wafer handling mechanism in a vacuum chamber of a semiconductor manufacturing apparatus or the like, and a mechanism for introducing power into the chamber.

【0003】ウエハハンドリング機構は、特開昭62−28
5413号公報に示されたものがある。この装置では、機構
部が蒸着源の熱によって200℃以上に加熱され、機構
部における軸受等のかじり付きが懸念される。従来技術
ではこのような場合、軸受や歯車等の接触摺動部のギャ
ップを通常より大きく設定して、かじり付きを防止して
いる。
A wafer handling mechanism is disclosed in Japanese Patent Laid-Open No. 62-28.
There is one disclosed in Japanese Patent No. 5413. In this apparatus, the mechanism portion is heated to 200 ° C. or higher by the heat of the vapor deposition source, and there is a concern that the bearing or the like will be seized at the mechanism portion. In the prior art, in such a case, a gap of a contact sliding portion such as a bearing or a gear is set larger than usual to prevent galling.

【0004】また最近、宇宙空間で使用される高性能マ
ニピュレータの開発が始まっているが、今までの宇宙用
マニピュレータは要求される駆動精度がそれほど高くな
く、また要求寿命も短い。したがって、機械要素のギャ
ップを大きくしたり、あるいは潤滑油をコートしてギャ
ップが小さくても短期的に駆動するようにしている。ま
た耐高温性を高めるために、マニピュレータの外部に熱
シールドカバーを設けて、外部からの輻射熱侵入を抑
え、関節内部の駆動機構要素の異常温度上昇を防止して
いる。
Recently, the development of high-performance manipulators used in outer space has begun. However, the conventional space manipulators do not have such high driving accuracy and short life. Therefore, the gap of the mechanical element is enlarged, or the lubricant is coated to drive the element in a short time even if the gap is small. Further, in order to improve high temperature resistance, a heat shield cover is provided outside the manipulator to suppress radiant heat intrusion from the outside and prevent an abnormal temperature rise of drive mechanism elements inside the joint.

【0005】これに対し、駆動機械要素を過酷な温度環
境から保護するためにそれら部品を外部から断熱あるい
は冷却することが考えられる。この場合、断熱冷却の方
法によっては、マニピュレータの相対駆動する部分に熱
変形に起因したがたが発生し、高精度な駆動が実現でき
なくなる。
On the other hand, it is conceivable to thermally insulate or cool these components from the outside in order to protect the drive mechanical elements from a severe temperature environment. In this case, depending on the adiabatic cooling method, rattling due to thermal deformation occurs in the portion of the manipulator that is driven relative to each other, and it becomes impossible to realize highly accurate driving.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、過酷
な熱環境での真空マニピュレータの位置決め精度を高
く、また長期間使用可能な駆動機構を提供にすることに
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a drive mechanism which has a high positioning accuracy of a vacuum manipulator in a harsh thermal environment and which can be used for a long period of time.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めには、まず真空中の駆動機構部に使用される機械要素
部の温度が外部からの熱侵入あるいは冷却によって変化
しないように、上記機械要素への熱移動を遮断しあるい
は機械要素部の自己発熱を冷却によって除去する必要が
ある。この際、発生する温度分布によって生じる機構系
のがたを、機構系が必要とする剛性を有しかつ機械要素
部の温度保護が可能な断熱特性を有する弾性変形部材を
用いることによって取り除くようにする。
In order to solve the above-mentioned problems, first, in order to prevent the temperature of the mechanical element part used in the drive mechanism part in vacuum from changing due to heat intrusion or cooling from the outside, It is necessary to block heat transfer to the mechanical element or remove self-heating of the mechanical element part by cooling. At this time, the rattling of the mechanical system caused by the generated temperature distribution should be removed by using an elastically deformable member having the rigidity required by the mechanical system and the heat insulating property capable of protecting the temperature of the mechanical element part. To do.

【0008】[0008]

【作用】上記の機械要素を包含固定した駆動側部と、そ
れと動力伝達部を介して接続された従動側部の間に設け
られた軸受機構部において、この軸受機構部と上記従動
側部の間に断熱特性に優れた弾性変形支持具を装着する
ことによって、機械要素と外部との熱移動を遮断でき
る。また駆動側部と従動側部の温度差による熱変形によ
って生じるがたに対しては、弾性部材によって変形を吸
収することによりがたの発生を防止することができる。
これによって、過酷な熱環境に弱いモータ等の機械要素
部品の信頼性を高めかつがたの無い高精度な真空用駆動
機構を実現できる。
In the bearing mechanism portion provided between the drive side portion including and fixing the above mechanical element and the driven side portion connected thereto via the power transmission portion, the bearing mechanism portion and the driven side portion are By mounting an elastically deformable support having excellent heat insulating properties between them, heat transfer between the mechanical element and the outside can be blocked. Further, against rattling caused by thermal deformation due to a temperature difference between the driving side part and the driven side part, it is possible to prevent rattling by absorbing the deformation by the elastic member.
As a result, it is possible to realize a highly accurate vacuum drive mechanism that improves reliability of mechanical element parts such as a motor that is vulnerable to a harsh thermal environment and is free of rattling.

【0009】[0009]

【実施例】以下、本発明の実施例を図を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は、真空でかつ過酷な温度環境で使用
される駆動機構の代表例として示した、宇宙用多関節マ
ニピュレータの外観を示したものである。図2は、この
多関節マニピュレータの関節部を拡大したものである。
関節の内部は一般にはモータやブレーキ,減速機等を包
含固定した駆動側ケース1と、それに対し回転軸と同軸
状に配置された従動側ケース3より構成されており、両
者の間には相対回転をスムーズに行うための軸受機構9
が装着されている。外部からモータ7等への熱侵入ある
いは外部への熱流出はこの軸受機構9と従動側ケース3
との間に装着された弾性断熱支持具11a,11bによ
って遮断される。また駆動側ケースの表面のうち従動側
ケース3の切り欠きによって外部に露出している部分
は、熱シールド板によって被覆することによって外部と
の熱移動を防止している。この構成によって、モータ7
等の機械要素部品以外に軸受機構9も過酷温度環境から
守ることができる。
FIG. 1 shows an appearance of a space articulated manipulator, which is shown as a typical example of a drive mechanism used in a vacuum and a severe temperature environment. FIG. 2 is an enlarged view of the joint portion of this multi-joint manipulator.
The inside of the joint is generally composed of a drive side case 1 including and fixing a motor, a brake, a speed reducer, and the like, and a driven side case 3 coaxially arranged with the rotation shaft, and there is a relative relationship between them. Bearing mechanism 9 for smooth rotation
Is installed. The heat intrusion into the motor 7 or the like from the outside or the heat outflow to the outside is caused by the bearing mechanism 9 and the driven case 3
It is blocked by the elastic heat insulating supports 11a and 11b mounted between and. Further, a portion of the surface of the drive side case that is exposed to the outside by the notch of the driven side case 3 is covered with a heat shield plate to prevent heat transfer to the outside. With this configuration, the motor 7
In addition to the mechanical element parts such as the above, the bearing mechanism 9 can be protected from the severe temperature environment.

【0011】図4は、軸受機構の弾性断熱支持具の断面
の一例を示したものである。11c部は従動側ケース3
への取付け部であり、11e部は熱変形によって発生す
る駆動側ケース14と従動側ケース3の相対変形を吸収
するための弾性変形部である。この弾性断熱支持具11
の材質として、例えば、熱伝導率の比較的小さいステン
レス鋼を用いると良い。あるいは弾性変形能を大きくし
たければ、熱伝導率が小さくかつヤング率がステンレス
鋼より小さいチタン合金を用いるとよい。
FIG. 4 shows an example of a cross section of the elastic heat insulating support of the bearing mechanism. 11c is the driven case 3
11e is an elastically deformable portion for absorbing relative deformation between the driving side case 14 and the driven side case 3 caused by thermal deformation. This elastic heat insulating support 11
For example, stainless steel, which has a relatively low thermal conductivity, may be used as the material. Alternatively, if the elastic deformability is to be increased, a titanium alloy having a low thermal conductivity and a Young's modulus smaller than stainless steel may be used.

【0012】図5は、断熱弾性支持具の他の断面形状を
示したものである。この断面によっても、回転方向に対
し軸方向あるいは半径方向に熱変形が生じても、断熱弾
性支持具19によってがたを発生させずに安定した駆動
が可能となる。
FIG. 5 shows another sectional shape of the heat insulating elastic support. Also with this cross section, even if thermal deformation occurs in the axial direction or the radial direction with respect to the rotation direction, stable driving can be performed without causing rattling by the adiabatic elastic support member 19.

【0013】図6は、図5で示した断熱弾性支持部材1
9に関して、軸受機構9とこの部材を一体化するための
か締め部19aを設けたものであり、図7はその斜視図
である。図7は断熱弾性支持具が回転にたいする周方向
に分割されている図であるが、周方向に一体になった円
筒状部材の場合でも、このか締め部19aを等間隔に複
数個設けることによって同様な機能が実現できる。また
このか締め部19aは、当然、図4のような形状の断熱
弾性支持部材に適用してもよい。このか締め部によって
軸受9と断熱弾性支持具を一体にでき、部品点数を減ら
して組立を容易にできる。
FIG. 6 is a heat insulating elastic support member 1 shown in FIG.
9, a bearing mechanism 9 and a tightening portion 19a for integrating this member are provided, and FIG. 7 is a perspective view thereof. FIG. 7 is a view in which the adiabatic elastic support is divided in the circumferential direction for rotation, but even in the case of a cylindrical member integrated in the circumferential direction, by providing a plurality of fastening portions 19a at equal intervals. Similar functions can be realized. Further, the crimp portion 19a may of course be applied to a heat insulating elastic support member having a shape as shown in FIG. By this fastening portion, the bearing 9 and the adiabatic elastic support can be integrated, and the number of parts can be reduced to facilitate the assembly.

【0014】図8は、弾性断熱支持具17の変形能を軸
方向と半径方向に分割したものである。即ち、17d部
が主として半径方向の変形に追随するように、また17
e部が主として軸方向の変形に追随して変形する部分で
ある。また材質として熱伝導率の小さいステンレス鋼や
チタン合金を用いることによって、各部の弾性常数を機
構全体として必要な値で断熱性能が十分な軸受支持具を
実現できる。
FIG. 8 shows the deformability of the elastic heat insulating support 17 divided into the axial direction and the radial direction. That is, the 17d portion mainly follows the deformation in the radial direction.
The portion e is a portion that is deformed mainly following the axial deformation. Further, by using stainless steel or titanium alloy having a low thermal conductivity as a material, it is possible to realize a bearing support having sufficient thermal insulation performance with elastic constants of each part required for the entire mechanism.

【0015】図9は、図8において断熱弾性支持具17
を軸受9と一体型にするために、か締め部17gをもう
けたものである。これによって、組立性能を向上でき
る。
FIG. 9 shows a heat insulating elastic support 17 in FIG.
In order to make the bearing integrated with the bearing 9, a fastening portion 17g is provided. As a result, the assembly performance can be improved.

【0016】図10は具体的実施例の図8,図9におけ
る軸方向と半径方向の弾性能分離構造において、半径方
向の弾性変形能を担当する部材18と軸方向の弾性変形
能を担当する部材18′に分離したものである。この構
造によってより一層各方向の弾性定数を設計値に合わせ
易くなり、信頼性の高い駆動機構を実現できる。
FIG. 10 shows the member 18 in charge of the elastic deformability in the radial direction and the member in charge of the elastic deformability in the axial direction in the elastic performance separating structure in the axial direction and the radial direction in FIGS. The member 18 'is separated. With this structure, the elastic constants in each direction can be more easily matched with the design value, and a highly reliable drive mechanism can be realized.

【0017】図11は図10の実施例に関して、各部品
18,18′を従動側ケースに取り付けたものである。
また図12,図13は、図11のなかの軸方向の弾性変
形能担当部品18′を従動側ケースに取り付けるときの
例を示したものである。例えば、このような方法によっ
て組立が容易になる。
FIG. 11 shows the components of the embodiment of FIG. 10 in which the components 18 and 18 'are attached to the driven case.
12 and 13 show an example in which the axial elastic deformability component 18 'of FIG. 11 is attached to the driven case. For example, such a method facilitates assembly.

【0018】図14は、図4で示した断熱弾性支持部材
11を周方向に一体型にした場合の斜視図を示したもの
である。あるいは、図15は図14の周方向一体型断熱
弾性支持部材11にスリット11sを入れて、周方向一
体型構造より弾性定数を小さくするようにしたのであ
る。このような構造によって弾性定数を任意の値に容易
にコントロールすることができる。図16,図17は図
5で示した断面図を有する断熱弾性支持具を周方向一体
構造にした場合を示したものである。図15と同様に、
周方向に任意にスリットを設けることによって、やはり
必要とする弾性定数を得ることができる(図17)。
FIG. 14 is a perspective view showing the heat insulating elastic support member 11 shown in FIG. 4 which is integrally formed in the circumferential direction. Alternatively, in FIG. 15, slits 11s are provided in the circumferentially integrated heat insulating elastic support member 11 of FIG. 14 so that the elastic constant is made smaller than that of the circumferentially integrated structure. With such a structure, the elastic constant can be easily controlled to an arbitrary value. 16 and 17 show a case where the heat insulating elastic support having the sectional view shown in FIG. Similar to FIG.
By providing slits in the circumferential direction, the required elastic constant can be obtained (FIG. 17).

【0019】図18および図19は、図4あるいは図9
に関する断熱弾性支持部材を周方向に分割した場合の、
構造を斜視図で示したものである。図15あるいは図1
7のようにスリット構造によっても弾性定数や断熱特性
を目標値に実現しにくい場合には、この実施例のように
周方向に分割することによって弾性定数の低減や断熱特
性の改善が容易になる。またこのように分割構造にする
ことによって、弾性定数や断熱特性を目標値に設定する
ことがより一層容易になる。
18 and 19 are shown in FIG. 4 or FIG.
When the adiabatic elastic support member is divided in the circumferential direction,
It is a perspective view of the structure. 15 or 1
When it is difficult to achieve the elastic constant and the heat insulating property to the target values even with the slit structure as in No. 7, it is easy to reduce the elastic constant and improve the heat insulating property by dividing in the circumferential direction as in this embodiment. . Further, by adopting such a divided structure, it becomes easier to set the elastic constant and the heat insulating property to target values.

【0020】図20は図18,図19等の周方向に分割
された断熱弾性部材を従動側ケース3に固定する際に容
易なように、従動側ケース3に断熱弾性支持部材を固定
する切り欠きを設けたものである。これによって周方向
に分割された断熱弾性支持部材がずれることを防止で
き、安定した駆動機構を実現できる。
FIG. 20 is a sectional view for fixing the heat insulating elastic supporting member to the driven case 3 so that the heat insulating elastic member divided in the circumferential direction of FIGS. 18 and 19 can be easily fixed to the driven case 3. It has a notch. As a result, the adiabatic elastic support members divided in the circumferential direction can be prevented from shifting, and a stable drive mechanism can be realized.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
温度変形によるがたが発生しても断熱弾性部材が追随し
て変形するため、機構系のがたが発生しない。また、外
部の過酷な熱環境に対して、この断熱弾性部材が外部か
らの熱流入あるいは外部への熱流失を防止するため、過
酷温度に弱い機械要素を許容範囲内に設定できる。
As described above, according to the present invention,
Even if rattling occurs due to temperature deformation, the adiabatic elastic member follows and deforms, so rattling of the mechanical system does not occur. Further, since the heat insulating elastic member prevents heat inflow from the outside or heat loss to the outside in a severe heat environment of the outside, it is possible to set a mechanical element weak against a severe temperature within an allowable range.

【図面の簡単な説明】[Brief description of drawings]

【図1】真空でかつ過酷な温度環境で使用される駆動機
構の代表例として示した、宇宙用多関節マニピュレータ
の斜視図。
FIG. 1 is a perspective view of a space articulated manipulator shown as a typical example of a drive mechanism used in a vacuum and a severe temperature environment.

【図2】多関節マニピュレータの関節部の拡大図。FIG. 2 is an enlarged view of a joint portion of an articulated manipulator.

【図3】多関節マニピュレータの断面図。FIG. 3 is a sectional view of an articulated manipulator.

【図4】軸受機構の弾性断熱支持具の断面図。FIG. 4 is a sectional view of an elastic heat insulating support of the bearing mechanism.

【図5】断熱弾性支持具の第二の断面図。FIG. 5 is a second cross-sectional view of the heat insulating elastic support tool.

【図6】断熱弾性支持部材の第三の断面図。FIG. 6 is a third sectional view of the heat insulating elastic support member.

【図7】図6の斜視図。FIG. 7 is a perspective view of FIG.

【図8】弾性断熱支持具の第四の断面図。FIG. 8 is a fourth cross-sectional view of the elastic heat insulating support.

【図9】断熱弾性支持具の第五の断面図。FIG. 9 is a fifth sectional view of the heat insulating elastic support tool.

【図10】具体的実施例の図8,図9における軸方向と
半径方向の弾性能分離構造の変形例の断面図。
FIG. 10 is a cross-sectional view of a modified example of the elastic performance separation structure in the axial direction and the radial direction in FIGS. 8 and 9 of the specific embodiment.

【図11】断熱弾性支持具の第六の断面図。FIG. 11 is a sixth sectional view of the heat insulating elastic support tool.

【図12】軸方向の弾性変形能担当部品の斜視図。FIG. 12 is a perspective view of a component in charge of elastic deformability in the axial direction.

【図13】軸方向の弾性変形能担当部品の斜視図。FIG. 13 is a perspective view of a component in charge of elastic deformability in the axial direction.

【図14】断熱弾性支持部材を周方向に一体型にした場
合の斜視図。
FIG. 14 is a perspective view when the heat insulating elastic support member is integrally formed in the circumferential direction.

【図15】図14の変形例の斜視図。FIG. 15 is a perspective view of a modified example of FIG.

【図16】図5で示した断熱弾性支持具の変形例の斜視
図。
16 is a perspective view of a modified example of the heat insulating elastic support shown in FIG.

【図17】図5で示した断熱弾性支持具の変形例の斜視
図。
FIG. 17 is a perspective view of a modified example of the heat insulating elastic support shown in FIG.

【図18】図4あるいは図9に関する断熱弾性支持部材
を周方向に分割した場合の斜視図。
FIG. 18 is a perspective view when the heat insulating elastic support member relating to FIG. 4 or FIG. 9 is divided in the circumferential direction.

【図19】図4あるいは図9に関する断熱弾性支持部材
を周方向に分割した場合の斜視図。
FIG. 19 is a perspective view of the heat insulating elastic support member relating to FIG. 4 or FIG. 9 when divided in the circumferential direction.

【図20】図18,図19等の周方向に分割された断熱
弾性部材の変形例の平面図。
FIG. 20 is a plan view of a modified example of the heat insulating elastic member divided in the circumferential direction of FIGS.

【符号の説明】[Explanation of symbols]

3…関節の従動側ケース、9,9′…軸受、14…駆動
側ケース、17…断熱弾性支持部材。
3 ... driven side case of joint, 9, 9 '... bearing, 14 ... drive side case, 17 ... adiabatic elastic support member.

フロントページの続き (72)発明者 柳瀬 裕一 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内Front Page Continuation (72) Yuichi Yanase Inventor Yuichi Yanase 502 Jinritsucho, Tsuchiura City, Ibaraki Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】駆動機構要素を内部に包含固定した駆動側
ブームを有する駆動側ケースと、前記駆動側ケースに動
力伝達機構を介して同心状に相対回転するように配置さ
れている従動側ブームを有する従動側ケース,前記駆動
側ケースと前記従動側ケース間に装着された軸受機構を
有する真空マニピュレータ用関節において、前記軸受機
構と前記従動側ケースの間に断熱性能を有する弾性支持
部材を設けたことを特徴とする真空マニピュレータ用関
節。
1. A drive side case having a drive side boom in which a drive mechanism element is contained and fixed, and a driven side boom which is arranged in the drive side case so as to rotate concentrically relative to each other via a power transmission mechanism. In a joint for a vacuum manipulator having a driven side case having, and a bearing mechanism mounted between the driving side case and the driven side case, an elastic supporting member having heat insulating performance is provided between the bearing mechanism and the driven side case. A joint for vacuum manipulators.
【請求項2】請求項1において、前記弾性支持部材が回
転軸に対し主として半径方向に弾性変形する部分および
主として軸方向に弾性変形する部分を有する真空マニピ
ュレータ用関節。
2. The joint for a vacuum manipulator according to claim 1, wherein the elastic support member has a portion that elastically deforms mainly in a radial direction with respect to a rotation axis and a portion that elastically deforms mainly in an axial direction.
【請求項3】請求項2において、主として半径方向に弾
性変形する部材と主として軸方向に弾性変形する部材が
分離されている真空マニピュレータ用関節。
3. The joint for a vacuum manipulator according to claim 2, wherein a member which is elastically deformable mainly in the radial direction and a member which is elastically deformable mainly in the axial direction are separated from each other.
【請求項4】請求項1,2または3において、前記弾性
支持部材が回転軸に対して回転周方向に一体に形成され
ている真空マニピュレータ用関節。
4. A joint for a vacuum manipulator according to claim 1, 2, or 3, wherein the elastic supporting member is integrally formed in a rotation circumferential direction with respect to a rotation shaft.
【請求項5】請求項1,2または3において、前記弾性
支持部材が回転周方向に複数個に分離独立されている真
空マニピュレータ用関節。
5. The joint for a vacuum manipulator according to claim 1, 2 or 3, wherein the elastic support member is separated into a plurality of parts in the circumferential direction of rotation.
【請求項6】請求項5において、前記弾性支持部材を位
置決めするための切り込みが前記駆動側ケースに設けら
れている真空マニピュレータ用関節。
6. The joint for a vacuum manipulator according to claim 5, wherein a notch for positioning the elastic support member is provided in the drive side case.
【請求項7】駆動機構要素を内部に包含固定した駆動側
ブームを有する駆動側ケースと、前記駆動側ケースに動
力伝達機構を介して同心状に相対回転するように配置さ
れている従動側ブームを有する従動側ケース,前記駆動
側ケースと前記従動側ケース間に装着された複数個の軸
受機構を有する真空マニピュレータ用関節において、前
記軸受機構と前記従動側ケースの間に断熱性能を有する
弾性支持部材を設け、前記弾性支持部材の弾性定数を設
置場所によって変化させたことを特徴とする真空マニピ
ュレータ用関節。
7. A drive side case having a drive side boom in which a drive mechanism element is contained and fixed, and a driven side boom which is arranged in the drive side case so as to rotate concentrically relative to each other via a power transmission mechanism. In a joint for a vacuum manipulator having a driven side case having a plurality of bearing mechanisms mounted between the drive side case and the driven side case, an elastic support having heat insulation performance between the bearing mechanism and the driven side case. A joint for a vacuum manipulator, characterized in that a member is provided, and an elastic constant of the elastic supporting member is changed depending on an installation place.
JP12376393A 1993-05-26 1993-05-26 Joint for vacuum manipulator Pending JPH06335891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12376393A JPH06335891A (en) 1993-05-26 1993-05-26 Joint for vacuum manipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12376393A JPH06335891A (en) 1993-05-26 1993-05-26 Joint for vacuum manipulator

Publications (1)

Publication Number Publication Date
JPH06335891A true JPH06335891A (en) 1994-12-06

Family

ID=14868679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12376393A Pending JPH06335891A (en) 1993-05-26 1993-05-26 Joint for vacuum manipulator

Country Status (1)

Country Link
JP (1) JPH06335891A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6318900B1 (en) * 2000-01-11 2001-11-20 Siemens Automotive Inc. Ball bearing mounting member
JP2010223362A (en) * 2009-03-24 2010-10-07 Toyo Electric Mfg Co Ltd Gear device
CN107838941A (en) * 2017-10-13 2018-03-27 江苏捷帝机器人股份有限公司 A kind of multidirectional fixed bit active machine person joint's casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6318900B1 (en) * 2000-01-11 2001-11-20 Siemens Automotive Inc. Ball bearing mounting member
JP2010223362A (en) * 2009-03-24 2010-10-07 Toyo Electric Mfg Co Ltd Gear device
CN107838941A (en) * 2017-10-13 2018-03-27 江苏捷帝机器人股份有限公司 A kind of multidirectional fixed bit active machine person joint's casting

Similar Documents

Publication Publication Date Title
CA2047576C (en) Draft inducer blower motor mounting and cooling construction
EP2066503B1 (en) Hub device for disc brake, brake disc, and vehicle
US4968158A (en) Engine bearing assembly
US11204066B2 (en) Insulating device for a bearing
JP2804517B2 (en) Sleeve with slinger for oil seal and seal assembly thereof
JP2009257586A (en) Active preload control for rolling element bearings
JPH06200933A (en) Supporting structure of rolling bearing
US5073039A (en) Bearing assembly with thermal compensation
JP4246626B2 (en) Rolling bearing device with measuring function
EP0178449B1 (en) Improved heat shield element for a brake
JPH06335891A (en) Joint for vacuum manipulator
KR100817336B1 (en) Ball joint
JPH0674301A (en) Flywheel
JPH0798040A (en) Torsional vibration damper
US9543811B2 (en) Heatsink design with thermal insulator to reduce encoder temperature
JPH07174140A (en) Face-to-face combined angular ball bearing
US4651851A (en) Rotor for a disc brake assembly
EP0220188B1 (en) Hub assembly
US10135321B2 (en) Heatsink design with thermal insulator to reduce encoder temperature
US5482000A (en) Surface mount overheat indicator with projecting fusible disk
JPH06159520A (en) Mechanical seal
US10335912B2 (en) Radiating structure for main spindle in machining apparatus
JPH11294554A (en) Feed screw unit
JPS6149109A (en) Housing of turbo-charger
JPH0814265A (en) Expansion correcting conical roller bearing