[go: up one dir, main page]

JPH06335694A - 排水の生物学的処理装置の制御装置 - Google Patents

排水の生物学的処理装置の制御装置

Info

Publication number
JPH06335694A
JPH06335694A JP5128582A JP12858293A JPH06335694A JP H06335694 A JPH06335694 A JP H06335694A JP 5128582 A JP5128582 A JP 5128582A JP 12858293 A JP12858293 A JP 12858293A JP H06335694 A JPH06335694 A JP H06335694A
Authority
JP
Japan
Prior art keywords
sludge
control
amount
neural network
excess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5128582A
Other languages
English (en)
Inventor
Takao Sekine
孝夫 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5128582A priority Critical patent/JPH06335694A/ja
Publication of JPH06335694A publication Critical patent/JPH06335694A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Feedback Control In General (AREA)

Abstract

(57)【要約】 【目的】 汚泥の沈降特性が変化した場合も安定した制
御ができるようにした。 【構成】 ニューラルネット制御部20にSRT設定
値、流入水量(Qs)計5のQs値、汚泥容量指標(S
VI)計4からのSVI値を導入する。この制御部20
でこれら値を処理して出力に余剰汚泥量Qwと返送汚泥
量QRを送出する。Qwにより余剰汚泥ポンプ9が制御
され、QRにより返送用制御弁22が制御される。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は排水の水質制御を行う活
性汚泥処理システムにおける排水の生物学的処理装置の
制御装置に関する。
【0002】
【従来の技術】一般に排水は活性汚泥微生物により好気
的(脱窒,脱リンは必要な場合等、一部嫌気的プロセス
を含む)に処理される。このとき、微生物は増殖するた
め処理系を安定(定常)に維持するためには、活性汚泥
の一部は余剰汚泥として処理系外に排出するが、一部は
返送汚泥として処理系に返送される。余剰汚泥の排出量
の制御としては現在では以下のような手段がある。
【0003】(1)一日当りの目標引き抜き汚泥量を設
定し、余剰の積算流量がその目標値になるまで引き抜く
方法(定量引き抜き制御) (2)曝気槽内汚泥流量の一定割合を毎日引き抜く方法
(汚泥日令制御、SA制御) (3)系内汚泥量の一定割合を毎日引き抜く方法(平均
汚泥滞留時間制御、SRT制御) 等が提案され、一部実用化されているが、現在、余剰汚
泥量制御として最も良好な管理方法はSRT制御であ
る。
【0004】また、返送汚泥量制御手段としては、定量
返送手段、流入水比例制御手段(返送率一定制御)、M
LSS演算制御手段および界面一定制御手段等がある。
【0005】ここでは余剰汚泥量制御のうちのSRT制
御を例として述べる。図5はSRT制御を行うための概
略構成図を示したもので、図5において、曝気槽1の出
力付近に配置された汚泥容量(SV)計2、並びに活性
汚泥浮遊量(MLSS)計3の検出値をそれぞれ汚泥容
量指標(SVI)計4に導入して、汚泥容量指標SVI
を算出する。この算出された汚泥容量指標SVIの値、
流入水量(Qs)計5による流入水量Qs、並びに返送
(余剰)汚泥濃度(CR)計61により求められる返送
汚泥量などから、演算処理(WS)部7によって、最終
沈殿池10内における汚泥量を演算する。またこの演算
された最終沈殿池内汚泥量MF、余剰汚泥量(Qw)計
11からの余剰汚泥量Qw、並びに上記の返送(余剰)
濃度CRをSRT制御部8に入力する。そしてこれらの
入力に基づいてSRT制御部8により余剰汚泥量を求
め、この余剰汚泥量に応じて余剰汚泥引き抜き用の余剰
汚泥ポンプ9をON/OFF制御して所定量の余剰汚泥
を排出することで、処理系を安定に維持している。
【0006】
【発明が解決しようとする課題】上述した汚泥量制御シ
ステムにおいては、活性汚泥の沈降特性を考慮していな
いため、汚泥の沈降特性が変化すると、制御が目標値に
維持できなくなる。また、返送汚泥量制御と余剰汚泥量
制御が別々に制御されるため、相互干渉により相互に悪
影響を及ぼすおそれがある。
【0007】本発明は上記の事情に鑑みてなされたもの
で、汚泥の沈降特性が変化した場合も安定した制御がで
きるとともに、返送、余剰汚泥量制御を同時に行って相
互干渉を防止するようにした排水の生物学的処理装置の
制御装置を提供することを目的とする。
【0008】
【課題を解決するための手段】本発明は上記の目的を達
成するために、排水の生物学的処理装置において、この
処理装置におけるSRT設定値、汚泥容量指標(SV
I)および流入水量をニューラルネットモデルへの入力
変数とし、このニューラルネットモデルで前記変数を処
理して出力に返送汚泥量と余剰汚泥量とを出力変数とし
て送出すると共に、前記ニューラルネットモデルは階層
形モデルであることを特徴とするものである。
【0009】
【作用】定常解析プログラムにより返送汚泥量制御およ
び余剰汚泥量制御方式からそれぞれ一方式づつ選択し、
選択した制御方式の各設定値(目標値)の組み合わせを
変更し、その収束解を求めて教師データを生成する。こ
の教師データとニューロモデル出力値との誤差の二乗和
を評価関数としてこの値が最小となるようにニューロモ
デルに含まれる重み係数やオフセット値の同定(学習)
を行う。
【0010】
【実施例】以下本発明の実施例を図面に基づいて説明す
るに、図5に示した従来の制御システムとの主な違い
は、演算処理部7とSRT制御部8に代えて、ニューラ
ルネット制御部20を設けたことである。
【0011】SRT制御における操作量は余剰汚泥量
(通常は1日当りの余剰汚泥量)であるから、ニューラ
ルネット制御の入力項目(入力変数)はSRT制御下で
この余剰汚泥量に影響を及ぼす因子が選定され、具体的
には、汚泥容量SV30と活性汚泥浮遊量MLSS濃度よ
り演算される汚泥容量指標SVI、平均汚泥滞留時間S
RTの設定値(SRTset)および流入水量Qsの3
項目を用いる。また、ニューラルネット制御における操
作量である出力項目(出力変数)は、返送汚泥量QR
余剰汚泥量Qsである。
【0012】なお、入力項目としては上記の場合、3項
目としたが、次のような項目を必要に応じて選択する。
【0013】(1)SVI、(2)Qs、(3)流入B
OD濃度(Ls)、(4)返送汚泥量制御目標値(例え
ば、流入水比例制御の場合、返送比率)、(5)余剰汚
泥量制御目標値(例えば、SRT制御の場合はSRT設
定値、(6)流入SS濃度、(7)流入NH4−N濃
度。
【0014】上記入力項から教師データを生成するには
まず定常解析により上記した返送汚泥量制御および余剰
汚泥量制御方式より、それぞれ一方式づつ選択し、選択
した制御方式の各設定値(目標値)の組み合わせを変更
し、その収束解を求める。その収束解は返送汚泥量QR
と余剰汚泥量Qwである。
【0015】図2にニューラルネットワークの1例を示
す。図2において、入力層24にはSVI、SRT、Q
sの3つのデータが入力される。これらデータは中間層
25で処理されて出力層26にQw、Qsの2つの出力
を送出する。この場合、返送汚泥量制御として界面一定
制御、また、余剰汚泥量制御としてはSRT制御をそれ
ぞれ選択した。ここではSVIを7種類、SRTも7種
類合計7×7=49種類の入力データに対する出力(Q
w、QR値)を定常解析により求め、教師データとし
た。
【0016】次に、上記教師データとニューラルネット
ワークモデル出力値との誤差の二乗和を評価関数とし
て、この値が最小となるように、ニューラルネットワー
クモデルに含まれる重み係数やオフセットの同定(学
習)を行った。約1万回学習させた場合のQwとQR
結果を図3と図4に示した。図3と図4から教師データ
とニューラルネット出力値が良く一致したことからニュ
ーラルネットを利用したニューロ制御が可能であるが示
唆された。
【0017】上記のように得られたQwは図1に示すよ
うにニューラルネット制御部20からオンオフ制御器2
1に与えられ、余剰汚泥ポンプ9が制御される。また、
Rもニューラルネット制御部20から送出され、これ
により制御弁22が制御されてポンプ23からの流量が
制御される。
【0018】
【発明の効果】以上述べたように、本発明によれば、生
物学的処理装置の制御装置にニューラルネットワークを
用いることにより、多変量制御(QR、Qwの2項目の
ようなもの)が簡単に構築でき、また、学習機能によ
り、ニューロモデルに含まれる重み係数等のパラメータ
を簡単に同定することができる。さらに入力項目にSV
Iを含んでいるため、汚泥の沈降特性が変化した場合も
安定した制御が継続でき、しかも返送、余剰汚泥量制御
を同時に行っても相互干渉が生じないようにできる等の
利点がある。
【図面の簡単な説明】
【図1】本発明の実施例を示すニューラルネット制御シ
ステムの説明図である。
【図2】階層形ニューラルネットモデル図である。
【図3】余剰汚泥量Qwの学習結果を示す説明図であ
る。
【図4】返送汚泥量QRの学習結果を示す説明図であ
る。
【図5】従来のSRT制御装置の構成図である。
【符号の説明】
1…曝気槽 2…汚泥容量(SV)計 3…活性汚泥浮遊量(MLSS)計 4…汚泥容量指標(SVI)計 5…流入水量(Qs)計 9…余剰汚泥ポンプ 10…最終沈殿池 20…ニューラルネット制御部 21…オンオフ制御部 22…制御弁 23…ポンプ

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 排水の生物学的処理装置において、この
    処理装置におけるSRT設定値、汚泥容量指標(SV
    I)および流入水量をニューラルネットモデルへの入力
    変数とし、このニューラルネットモデルで前記変数を処
    理して出力に返送汚泥量と余剰汚泥量とを出力変数とし
    て送出すると共に、前記ニューラルネットモデルは階層
    形モデルであることを特徴とする排水の生物学的処理装
    置の制御装置。
JP5128582A 1993-05-31 1993-05-31 排水の生物学的処理装置の制御装置 Pending JPH06335694A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5128582A JPH06335694A (ja) 1993-05-31 1993-05-31 排水の生物学的処理装置の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5128582A JPH06335694A (ja) 1993-05-31 1993-05-31 排水の生物学的処理装置の制御装置

Publications (1)

Publication Number Publication Date
JPH06335694A true JPH06335694A (ja) 1994-12-06

Family

ID=14988321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5128582A Pending JPH06335694A (ja) 1993-05-31 1993-05-31 排水の生物学的処理装置の制御装置

Country Status (1)

Country Link
JP (1) JPH06335694A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151480A (ja) * 1996-11-25 1998-06-09 Maezawa Ind Inc 排水処理装置及びその運転方法
FR2784093A1 (fr) * 1998-10-06 2000-04-07 Suez Lyonnaise Des Eaux Perfectionnements apportes au traitement d'eaux usees selon les procedes par boues activees
EP1376276A1 (en) * 2002-06-21 2004-01-02 H2L Co., Ltd An AI based control system and method for treating sewage/waste water by means of a neural network and a back-propagation algorithm
WO2017033160A1 (fr) * 2015-08-27 2017-03-02 Suez International Procédé de traitement des eaux usées comportant un décanteur statique rapide et installation associée
WO2020183576A1 (ja) * 2019-03-11 2020-09-17 株式会社 ゴーダ水処理技研 排水処理施設の運転管理システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151480A (ja) * 1996-11-25 1998-06-09 Maezawa Ind Inc 排水処理装置及びその運転方法
FR2784093A1 (fr) * 1998-10-06 2000-04-07 Suez Lyonnaise Des Eaux Perfectionnements apportes au traitement d'eaux usees selon les procedes par boues activees
WO2000020344A1 (fr) * 1998-10-06 2000-04-13 Suez Lyonnaise Des Eaux Perfectionnements apportes au traitement d'eaux usees selon les procedes par boues activees
KR100642974B1 (ko) * 1998-10-06 2006-11-10 수에즈 리오네즈 데 조 활성 슬러지 공정을 이용한 폐수 처리의 개선
EP1376276A1 (en) * 2002-06-21 2004-01-02 H2L Co., Ltd An AI based control system and method for treating sewage/waste water by means of a neural network and a back-propagation algorithm
WO2017033160A1 (fr) * 2015-08-27 2017-03-02 Suez International Procédé de traitement des eaux usées comportant un décanteur statique rapide et installation associée
FR3040388A1 (fr) * 2015-08-27 2017-03-03 Degremont Procede de traitement des eaux usees comportant un decanteur statique rapide et installation associee
WO2020183576A1 (ja) * 2019-03-11 2020-09-17 株式会社 ゴーダ水処理技研 排水処理施設の運転管理システム

Similar Documents

Publication Publication Date Title
Schmitt et al. Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater
Lindberg Control and estimation strategies applied to the activated sludge process
AU2021101438A4 (en) Adaptive control method and system for aeration process
Ingildsen et al. Dissolved oxygen controller based on on-line measurements of ammonium combining feed-forward and feedback
EP0642469B1 (en) Method of controlling wastewater purification plants using multiple control functions
Dalmau et al. Comparison of a deterministic and a data driven model to describe MBR fouling
US20030234218A1 (en) System and method for AI controlling waste-water treatment by neural network and back-propagation algorithm
Schraa et al. Ammonia-based aeration control with optimal SRT control: improved performance and lower energy consumption
JP4334317B2 (ja) 下水処理システム
Cadet et al. Multicriteria control strategy for cost/quality compromise in wastewater treatment plants
CN114380378B (zh) 智能控磷药品投加方法、装置及存储介质
CN114604962A (zh) 高速公路服务区污水处理系统运行工况的控制方法和系统
Nam et al. An autonomous operational trajectory searching system for an economic and environmental membrane bioreactor plant using deep reinforcement learning
Flores-Alsina et al. Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model
EP0643672B1 (en) Method of controlling wastewater purification plants using quality evaluation of measuring data
JPH06335694A (ja) 排水の生物学的処理装置の制御装置
Lindberg Multivariable modeling and control of an activated sludge process
JPH07115025B2 (ja) Sviを用いたバルキング制御方法
JP7494669B2 (ja) 排水処理シミュレータのパラメータ値予測方法及び装置並びに下水処理プラントの制御方法及び装置
Piotrowski et al. Adaptive stochastic and hybrid nonlinear optimization algorithms for improving the effectiveness of the biological processes at WWTP
JP3123167B2 (ja) 硝化脱窒プロセスシミュレータ
JP3460211B2 (ja) 下水処理制御装置
JPH06328091A (ja) 生物学的処理装置の制御システムにおける汚泥容量指標推定方法
CN118427626B (zh) 一种污水处理池的曝气时间确定方法和系统
JPH06335693A (ja) 活性汚泥プロセスのニューロ制御装置