JPH06334192A - Non-volatile semiconductor memory - Google Patents
Non-volatile semiconductor memoryInfo
- Publication number
- JPH06334192A JPH06334192A JP5118896A JP11889693A JPH06334192A JP H06334192 A JPH06334192 A JP H06334192A JP 5118896 A JP5118896 A JP 5118896A JP 11889693 A JP11889693 A JP 11889693A JP H06334192 A JPH06334192 A JP H06334192A
- Authority
- JP
- Japan
- Prior art keywords
- gate electrode
- floating gate
- thin
- drain
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims description 12
- 238000009413 insulation Methods 0.000 abstract 3
- 238000010276 construction Methods 0.000 abstract 1
- 239000002019 doping agent Substances 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 1
- -1 arsenic ions Chemical class 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0408—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
- G11C16/0441—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates
- G11C16/0458—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates comprising two or more independent floating gates which store independent data
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5621—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2211/00—Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C2211/56—Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
- G11C2211/561—Multilevel memory cell aspects
- G11C2211/5612—Multilevel memory cell with more than one floating gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は不揮発性半導体メモリに
関する。FIELD OF THE INVENTION The present invention relates to a non-volatile semiconductor memory.
【0002】[0002]
【従来の技術】一般に側壁蓄積型不揮発性半導体メモリ
は、図5(チャネル幅と直交する方向の断面図)に示す
ように、P型シリコン基板42のソース40とドレイン
41上部に薄いゲート酸化膜39を介してフローティン
グゲート電極38が形成され、ソース40とドレイン4
1間にP型シリコン基板42とゲート酸化膜39を介し
て制御電極37が形成された構成となっている。(特許
願平成4-264518号)2. Description of the Related Art Generally, as shown in FIG. 5 (a sectional view in a direction orthogonal to the channel width), a sidewall storage type nonvolatile semiconductor memory has a thin gate oxide film on a source 40 and a drain 41 above a P-type silicon substrate 42. Floating gate electrode 38 is formed via 39, source 40 and drain 4
The control electrode 37 is formed between the two via the P-type silicon substrate 42 and the gate oxide film 39. (Patent application No. 4-264518)
【0003】[0003]
【発明が解決しようとする課題】従来の側壁蓄積型不揮
発性半導体メモリは、ソース・ドレイン上部のフローテ
ィングゲート電極38への書き込み、読みだし、消去を
行なう目的で作成されており、フローティングゲート電
極38の厚みの違いを利用して、メモリセルの多値化を
図るものはない。側壁蓄積型構造を利用して不揮発性半
導体メモリへの書き込み注入量の多値化を図る場合に
は、ゲート酸化膜39上部の制御電極37の電圧を変化
させることにより注入電荷の変化を生じさせて行うこと
が考えられる。この書き込み注入量を制御するためには
制御電極37からの印加電圧を大きく変化させる必要が
ある。しかしゲート酸化膜39が薄膜化すると、制御電
極37からの印加電圧のわずかな変化により書き込み注
入量に大きなばらつきが生じ、注入量の電圧だけによる
制御に限界がある。従って、従来の側壁蓄積型不揮発性
半導体メモリにおいては制御電極37からの印加電圧の
変化により、書き込み注入量の多値化を図るには精度が
悪いという問題点があった。The conventional side wall storage type non-volatile semiconductor memory is formed for the purpose of writing, reading and erasing to the floating gate electrode 38 above the source / drain. There is no attempt to make the memory cell multi-valued by utilizing the difference in thickness. When multi-valued write injection amount into the nonvolatile semiconductor memory is attempted by utilizing the sidewall storage type structure, the injected charge is changed by changing the voltage of the control electrode 37 above the gate oxide film 39. It is possible to do so. In order to control this write injection amount, it is necessary to greatly change the voltage applied from the control electrode 37. However, when the gate oxide film 39 is thinned, a slight change in the voltage applied from the control electrode 37 causes a large variation in the write injection amount, and there is a limit to the control by only the injection amount voltage. Therefore, in the conventional sidewall storage type non-volatile semiconductor memory, there is a problem in that it is not accurate to achieve a multi-valued write injection amount due to a change in the voltage applied from the control electrode 37.
【0004】本発明は上記問題点を解決することができ
る不揮発性半導体メモリを提供するものである。The present invention provides a non-volatile semiconductor memory capable of solving the above problems.
【0005】[0005]
【課題を解決するための手段】本発明は、第1導電型半
導体基板に形成された第2導電型の一対の高濃度不純物
領域、すなわちソースおよびドレインと、このソース、
ドレインの上部に一対の極めて薄い絶縁膜を介して薄い
フローティングゲート電極を設け、さらに薄いフローテ
ィングゲート電極の上部に一対の薄い絶縁膜を介して厚
いフローティングゲート電極を設ける。さらにソース、
ドレイン間に前記極めて薄い絶縁膜および前記薄い絶縁
膜よりも厚い絶縁膜を介して制御電極が形成された不揮
発性半導体メモリであって、極めて薄い絶縁膜を有する
ソース、ドレインを、制御電極からの10V程度の電圧
印加によりソース、ドレインからのトンネル電流を流せ
る程度に極めて薄く形成し、薄いフローティングゲート
電極上部の薄い絶縁膜を有するソース、ドレインを、制
御電極からの15V程度の電圧印加によりソース、ドレ
インからのトンネル電流を流せる程度に薄く形成する。According to the present invention, a pair of high-concentration impurity regions of a second conductivity type formed in a semiconductor substrate of a first conductivity type, that is, a source and a drain, and a source and a drain,
A thin floating gate electrode is provided above the drain via a pair of extremely thin insulating films, and a thick floating gate electrode is provided above the thin floating gate electrode via a pair of thin insulating films. Further sauce,
A non-volatile semiconductor memory in which a control electrode is formed between drains via the extremely thin insulating film and an insulating film thicker than the thin insulating film, wherein a source and a drain having an extremely thin insulating film are connected to the control electrode. By applying a voltage of about 10V, the source and drain are made extremely thin to allow tunneling current to flow, and the source and drain having a thin insulating film above the thin floating gate electrode are applied by applying a voltage of about 15V from the control electrode. It is formed thin enough to allow the tunnel current from the drain to flow.
【0006】この極めて薄い絶縁膜および薄い絶縁膜の
厚さはたとえば各々10nm、15nm程度が良いが、
少なくとも制御電極への10V程度の電圧印加により、
ソース、ドレインから薄いフローティングゲート電極
に、トンネル電流が流れる厚さに設定する。また、制御
電極への15Vの程度の電圧印加により、ソースとドレ
インの両方から薄い絶縁膜を通してフローティングゲー
ト電極にトンネル電流が流れる厚さに設定する。さら
に、ゲート絶縁膜の厚さは制御電極およびドレインへの
電圧印加によりソースからドレインに、チャネル電子が
流れる厚さ、たとえば20nm程度に設定する。The thicknesses of the extremely thin insulating film and the thin insulating film are preferably about 10 nm and 15 nm, respectively.
At least by applying a voltage of about 10 V to the control electrode,
The thickness is set so that the tunnel current flows from the source / drain to the thin floating gate electrode. Further, by applying a voltage of about 15 V to the control electrode, the thickness is set so that the tunnel current flows from both the source and the drain to the floating gate electrode through the thin insulating film. Further, the thickness of the gate insulating film is set to a thickness at which channel electrons flow from the source to the drain by applying a voltage to the control electrode and the drain, for example, about 20 nm.
【0007】[0007]
【作用】本発明の不揮発性半導体メモリは、一対の高濃
度不純物領域上部の絶縁膜とその上部の薄いフローティ
ングゲート電極を介して薄い絶縁膜が臨界点の異なる電
圧によりトンネル電流が流れるように極めて薄く、かつ
厚みが異なるよう形成されているため、制御電極に10
V程度の電圧を印加する書き込み時には、この高濃度不
純物領域のソース、ドレインから薄いフローティングゲ
ート電極に電荷が注入され、15V程度の電圧を印加す
る書き込み時にはこの高濃度不純物領域の両方、すなわ
ちソースおよびドレインから薄いフローティングゲート
電極と厚いフローティングゲート電極の両方に電荷が注
入される。また、一対の高濃度不純物領域間では少なく
ともチャネル電流が流れる程度に酸化膜が厚く形成され
ているため、制御電極に5V 、ドレインに1V 程度の電
圧を印加する読み出し時には、フローティングゲート電
極に書き込まれた電荷を保持したまま、ソースからドレ
インに必要かつ十分なチャネル電流が流れる。In the nonvolatile semiconductor memory of the present invention, it is extremely possible that a tunnel current flows through the pair of high-concentration impurity regions through the insulating film and the thin floating gate electrode above the thin insulating film due to voltages having different critical points. Since the electrodes are thin and have different thicknesses, 10
At the time of writing applying a voltage of about V, charges are injected from the source and drain of this high-concentration impurity region into the thin floating gate electrode, and at the time of writing applying a voltage of about 15 V, both of these high-concentration impurity regions, that is, the source and drain. Charge is injected from the drain into both the thin floating gate electrode and the thick floating gate electrode. Further, since the oxide film is formed thick between the pair of high-concentration impurity regions so that at least the channel current flows, the data is written in the floating gate electrode at the time of reading by applying a voltage of 5V to the control electrode and 1V to the drain. The necessary and sufficient channel current flows from the source to the drain while holding the stored charge.
【0008】[0008]
【実施例】以下本発明の一実施例の不揮発性メモリセル
について、図面を参照しながら説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-volatile memory cell according to an embodiment of the present invention will be described below with reference to the drawings.
【0009】図1(A)(B)(C)(D)は本発明の実施例におけ
る不揮発性半導体メモリの製法例、図2(A)(B)(C)(D)
(E) は不揮発性半導体メモリの書き込み時、読みだし
時、消去時の電極の制御と電荷との関係から半導体メモ
リの動作を示すものである。図3は、本発明の実施例に
おける不揮発性メモリセルの、読み出し時のチャネル電
流特性図である。図4は、本発明の実施例における不揮
発性半導体メモリの、書き込み時の制御電極からの印加
電圧の変化とそのときの注入電荷の変化の関係を示すも
のである。FIGS. 1 (A) (B) (C) (D) are an example of a method for manufacturing a non-volatile semiconductor memory according to an embodiment of the present invention, and FIGS. 2 (A) (B) (C) (D).
(E) shows the operation of the semiconductor memory from the relationship between the control of the electrodes and the charge at the time of writing, reading and erasing the nonvolatile semiconductor memory. FIG. 3 is a channel current characteristic diagram at the time of reading of the nonvolatile memory cell in the example of the present invention. FIG. 4 shows the relationship between changes in the applied voltage from the control electrode during writing and changes in the injected charge at that time in the nonvolatile semiconductor memory according to the example of the present invention.
【0010】図1(A)(B)(C)(D)、図2(A)(B)(C)(D)(E)
において1は不揮発性半導体メモリ、11はP 型シリコ
ン基板、12は厚い熱酸化膜、14はコントロールゲー
ト電極、15は極めて薄い熱酸化膜、16は薄い熱酸化
膜、17は薄いフローティングゲート電極、18は厚い
フローティングゲート電極、19は層間膜、20S はソ
ース電極、20D はドレイン電極、24はソース、25
はドレイン、28と33はチャネル、29は少量のエレ
クトロン、30は多量のエレクトロン、31は小さい寄
生抵抗、32は大きい寄生抵抗を示す。1 (A) (B) (C) (D), FIG. 2 (A) (B) (C) (D) (E)
1 is a non-volatile semiconductor memory, 11 is a P-type silicon substrate, 12 is a thick thermal oxide film, 14 is a control gate electrode, 15 is an extremely thin thermal oxide film, 16 is a thin thermal oxide film, 17 is a thin floating gate electrode, 18 is a thick floating gate electrode, 19 is an interlayer film, 20S is a source electrode, 20D is a drain electrode, 24 is a source, 25
Is a drain, 28 and 33 are channels, 29 is a small amount of electrons, 30 is a large amount of electrons, 31 is a small parasitic resistance, and 32 is a large parasitic resistance.
【0011】本発明の実施例を製法例とともに説明す
る。はじめに、この不揮発性半導体メモリの製法につい
て図1を用いて説明する。まず図1(A) に示すように、
導電型、たとえばP 型シリコン基板11の全面にゲート
酸化膜、すなわち、厚い熱酸化膜12を形成した後、ポ
リシリコンをCVD法により成長させてコントロールゲー
ト層を形成し、次に写真食刻法を用いてコントロールゲ
ート電極14を所定のパターンにエッチングする。そし
て、このコントロールゲート電極14をマスクとしてヒ
素イオンAs+を注入して高濃度不純物領域、すなわちソ
ース24、ドレイン25を形成する。An embodiment of the present invention will be described together with a manufacturing method example. First, a method of manufacturing this nonvolatile semiconductor memory will be described with reference to FIG. First, as shown in Fig. 1 (A),
After forming a gate oxide film, that is, a thick thermal oxide film 12 on the entire surface of a conductive type, eg, P type silicon substrate 11, polysilicon is grown by a CVD method to form a control gate layer, and then a photoetching method is used. The control gate electrode 14 is etched into a predetermined pattern by using. Then, arsenic ions As + are implanted using the control gate electrode 14 as a mask to form a high concentration impurity region, that is, a source 24 and a drain 25.
【0012】次に図1(B) に示すように、全面に熱酸化
膜を形成し、写真食刻法を用いてソース24、ドレイン
25上部の絶縁膜を所定の厚みの極めて薄い熱酸化膜1
5になるようエッチングする。続けてポリシリコンをCV
D 法により成長させて薄いフローティングゲート層を形
成した後、異方性エッチングにより上記コントロールゲ
ート電極14の側壁に薄いフローティングゲート電極1
7を形成する。次に図1(C) に示すように全面に薄い熱
酸化膜16を形成し、写真食刻法を用いてソース24、
ドレイン25上部の上記薄い熱酸化膜16をエッチング
し、結果としてゲート酸化膜よりも薄く形成する。続け
てポリシリコンをCVD 法により成長させて厚いフローテ
ィングゲート層を形成した後、異方性エッチングにより
上記コントロールゲート電極14の側壁に厚いフローテ
ィングゲート電極18を形成する。Next, as shown in FIG. 1B, a thermal oxide film is formed on the entire surface, and the insulating film above the source 24 and the drain 25 is formed into an extremely thin thermal oxide film having a predetermined thickness by photolithography. 1
Etch to 5. Continuously CV polysilicon
The thin floating gate electrode 1 is formed on the side wall of the control gate electrode 14 by anisotropic etching after being grown by the D method to form a thin floating gate layer.
Form 7. Next, as shown in FIG. 1C, a thin thermal oxide film 16 is formed on the entire surface, and the source 24,
The thin thermal oxide film 16 above the drain 25 is etched, and as a result, formed to be thinner than the gate oxide film. Subsequently, polysilicon is grown by the CVD method to form a thick floating gate layer, and then a thick floating gate electrode 18 is formed on the sidewall of the control gate electrode 14 by anisotropic etching.
【0013】次に図1(D) に示すように層間膜19、ソ
ース電極20S およびドレイン電極20D を形成し、本
発明にかかわる不揮発性メモリセル1の構造を得る。次
にこの不揮発性半導体メモリの動作について図2を用い
て説明する。Next, as shown in FIG. 1D, an interlayer film 19, a source electrode 20S and a drain electrode 20D are formed to obtain the structure of the non-volatile memory cell 1 according to the present invention. Next, the operation of this nonvolatile semiconductor memory will be described with reference to FIG.
【0014】図2(A) に示すように上記の製法により得
られた不揮発性半導体メモリ1(ソース、ドレイン電極
は図示せず)のコントロールゲート電極14とソース2
4とドレイン25に各々に、たとえば10ボルト、0ボ
ルト、0ボルト程度の電圧を印加すると、ソース24、
ドレイン25からみたコントロールゲート電極14方向
へのゲート酸化膜、すなわち極めて薄い熱酸化膜15の
エレクトロンに対するエネルギ障壁が実効的に低くな
り、薄いフローティングゲート電極17とソース24、
ドレイン25各々との間をエレクトロンがトンネリング
し、図2(B) に示すように薄いフローティングゲート電
極17に少量のエレクトロン29が注入される。As shown in FIG. 2A, the control gate electrode 14 and the source 2 of the non-volatile semiconductor memory 1 (source and drain electrodes are not shown) obtained by the above manufacturing method.
When a voltage of, for example, about 10 volts, 0 volts, or 0 volts is applied to each of 4 and the drain 25, the source 24,
The energy barrier to electrons of the gate oxide film toward the control gate electrode 14 viewed from the drain 25, that is, the extremely thin thermal oxide film 15, is effectively lowered, and the thin floating gate electrode 17 and the source 24,
Electrons tunnel between the drains 25, and a small amount of electrons 29 are injected into the thin floating gate electrode 17 as shown in FIG.
【0015】次に図2(C) に示すようにコントロールゲ
ート電極14とソース24とドレイン25に各々にたと
えば15ボルト、0ボルト、0ボルト程度の電圧を印加
すると、ソース24およびドレイン25からみたコント
ロールゲート電極14方向へのゲート酸化膜、すなわち
薄い熱酸化膜16のエレクトロンに対するエネルギ障壁
が実効的に低くなり、薄いフローティングゲート電極1
7とソース24、ドレイン25、厚いフローティングゲ
ート電極18とソース24、ドレイン25各々との間を
エレクトロンがトンネリングし、薄いフローティングゲ
ート電極17と厚いフローティングゲート電極18に少
量のエレクトロン29と多量のエレクトロン30が注入
され、半導体メモリに2値の情報が書き込まれることに
なる。Next, as shown in FIG. 2C, when a voltage of, for example, about 15 volts, 0 volts, or 0 volts is applied to the control gate electrode 14, the source 24, and the drain 25, the source 24 and the drain 25 see. The energy barrier to electrons of the gate oxide film in the direction of the control gate electrode 14, that is, the thin thermal oxide film 16 is effectively lowered, and the thin floating gate electrode 1
Electrons tunnel between the source 7 and the source 24, the drain 25, and the thick floating gate electrode 18 and the source 24 and the drain 25, respectively, and a small amount of electrons 29 and a large amount of electrons 30 are supplied to the thin floating gate electrode 17 and the thick floating gate electrode 18. Is injected, and binary information is written in the semiconductor memory.
【0016】次に図2(B)(C)に示すように不揮発性半導
体メモリ1のコントロールゲート電極14にたとえば5
ボルト、ドレイン24に1ボルト程度の電圧を各々印加
することによりチャネル28、33が形成される。この
チャネル電流値は図3に示すように薄いフローティング
ゲート電極17と厚いフローティングゲート電極18に
注入されている少量のエレクトロン29と多量のエレク
トロン30の量に起因するドレイン25とソース24の
小さい寄生抵抗31、大きい寄生抵抗32に支配され、
この値をもとに不揮発性半導体メモリ1の“2”と
“1”および“0”の状態を読み出す。Next, as shown in FIGS. 2B and 2C, the control gate electrode 14 of the non-volatile semiconductor memory 1 has, for example, 5
Channels 28 and 33 are formed by applying a voltage of about 1 volt to the volt and drain 24, respectively. As shown in FIG. 3, the channel current value is a small parasitic resistance of the drain 25 and the source 24 due to the small amount of electrons 29 and the large amount of electrons 30 injected into the thin floating gate electrode 17 and the thick floating gate electrode 18. 31, controlled by a large parasitic resistance 32,
Based on this value, the states of "2", "1" and "0" of the nonvolatile semiconductor memory 1 are read.
【0017】次に図2(E) に示すように不揮発性メモリ
セル1のコントロールゲート電極14に−15ボルト程
度の電圧を印加すると、薄いフローティングゲート電極
17、厚いフローティングゲート電極18から少量のエ
レクトロン29、多量のエレクトロン30がソース24
およびドレイン25にトンネリングにより放出され、半
導体メモリ1から消去される。Next, as shown in FIG. 2 (E), when a voltage of about -15 V is applied to the control gate electrode 14 of the non-volatile memory cell 1, a small amount of electrons are emitted from the thin floating gate electrode 17 and the thick floating gate electrode 18. 29, a large amount of electrons 30 is the source 24
And emitted to the drain 25 by tunneling and erased from the semiconductor memory 1.
【0018】図4にコントロールゲート電極からの印加
電圧とフローティングゲート電極への注入電荷の2値化
の関係を示す。FIG. 4 shows the relationship between the voltage applied from the control gate electrode and the binary charge injected into the floating gate electrode.
【0019】[0019]
【発明の効果】以上のように本発明によれば、高濃度不
純物間半導体基板上部の絶縁膜より薄い範囲で一対の高
濃度不純物領域上部に一対の縦積み構造で異なる厚さの
絶縁膜と異なる厚さのフローティングゲート電極を設け
ることにより、半導体メモリの多値化を容易に図る。さ
らにこのとき不揮発性半導体メモリの書き込み、読みだ
し、消去のための電気的制御は極めて単純化され、か
つ、フローティングゲート電極への注入および放出電荷
を精度良く制御することができる。また、高濃度不純物
領域からのトンネル電流は制御電極内には注入されず、
MOSFET特性は劣化しない。As described above, according to the present invention, an insulating film having a different thickness in a pair of vertically stacked structures is formed on a pair of high-concentration impurity regions in an area thinner than the insulating film on a high-concentration impurity semiconductor substrate. By providing the floating gate electrodes having different thicknesses, the semiconductor memory can be easily multi-valued. Further, at this time, electrical control for writing, reading and erasing of the nonvolatile semiconductor memory is extremely simplified, and injection and emission charges to the floating gate electrode can be controlled with high accuracy. Further, the tunnel current from the high concentration impurity region is not injected into the control electrode,
MOSFET characteristics do not deteriorate.
【図1】本発明の一実施例における不揮発性半導体メモ
リの製法例を示す工程図FIG. 1 is a process chart showing a manufacturing method example of a nonvolatile semiconductor memory according to an embodiment of the present invention.
【図2】本発明の一実施例における不揮発性半導体メモ
リの書き込み、読み出し、消去の動作を示す断面図FIG. 2 is a cross-sectional view showing write, read, and erase operations of a nonvolatile semiconductor memory according to an embodiment of the present invention.
【図3】本発明の一実施例における不揮発性半導体メモ
リの読み出し時のドレイン電流特性図FIG. 3 is a drain current characteristic diagram during reading of the nonvolatile semiconductor memory according to the embodiment of the present invention.
【図4】本発明の一実施例における不揮発性半導体メモ
リの書き込み時の制御電極からの印加電圧と注入電荷量
の関係図FIG. 4 is a diagram showing the relationship between the applied voltage from the control electrode and the amount of injected charges during writing in the nonvolatile semiconductor memory according to the embodiment of the present invention.
【図5】従来例を示す側壁蓄積型不揮発性半導体メモリ
の断面図FIG. 5 is a cross-sectional view of a sidewall storage type nonvolatile semiconductor memory showing a conventional example.
1 不揮発性半導体メモリ 11 P 型シリコン基板 12 厚い熱酸化膜 14 コントロールゲート電極 15 極めて薄い熱酸化膜 16 薄い熱酸化膜 17 薄いフローティングゲート電極 18 厚いフローティングゲート電極 19 層間膜 1 Non-volatile semiconductor memory 11 P-type silicon substrate 12 Thick thermal oxide film 14 Control gate electrode 15 Extremely thin thermal oxide film 16 Thin thermal oxide film 17 Thin floating gate electrode 18 Thick floating gate electrode 19 Interlayer film
Claims (1)
の高濃度不純物領域と、前記不純物領域の上部に一対の
極めて薄い絶縁膜を介して薄いフローティングゲート電
極を設け、前記薄いフローティングゲート電極の上部に
一対の薄い絶縁膜を介して厚いフローティングゲート電
極を設け、前記一対の高濃度不純物領域間に前記第1導
電型半導体基板上に前記極めて薄い絶縁膜および前記薄
い絶縁膜よりも厚い絶縁膜を介して、制御電極が形成さ
れてなる不揮発性半導体メモリ。1. A pair of high-concentration impurity regions of the second conductivity type are formed on a first conductivity type semiconductor substrate, and a thin floating gate electrode is provided above the impurity regions via a pair of extremely thin insulating films. A thick floating gate electrode is provided above the gate electrode via a pair of thin insulating films, and the extremely thin insulating film and the thin insulating film are provided between the pair of high-concentration impurity regions on the first conductivity type semiconductor substrate. A nonvolatile semiconductor memory in which a control electrode is formed via a thick insulating film.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5118896A JPH06334192A (en) | 1993-05-21 | 1993-05-21 | Non-volatile semiconductor memory |
US08/245,253 US5424979A (en) | 1992-10-02 | 1994-05-17 | Non-volatile memory cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5118896A JPH06334192A (en) | 1993-05-21 | 1993-05-21 | Non-volatile semiconductor memory |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06334192A true JPH06334192A (en) | 1994-12-02 |
Family
ID=14747849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5118896A Pending JPH06334192A (en) | 1992-10-02 | 1993-05-21 | Non-volatile semiconductor memory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06334192A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020019139A (en) * | 2000-09-05 | 2002-03-12 | 황인길 | Semiconductor devices and manufacturing method thereof |
US6469343B1 (en) * | 1998-04-02 | 2002-10-22 | Nippon Steel Corporation | Multi-level type nonvolatile semiconductor memory device |
JP2004228571A (en) * | 2003-01-22 | 2004-08-12 | Samsung Electronics Co Ltd | Sonos type nonvolatile memory and method for manufacturing the same |
-
1993
- 1993-05-21 JP JP5118896A patent/JPH06334192A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6605839B2 (en) | 1997-04-25 | 2003-08-12 | Nippon Steel Corporation | Multi-level type nonvolatile semiconductor memory device |
US6649542B2 (en) | 1997-04-25 | 2003-11-18 | Nippon Steel Corporation | Multi-level type nonvolatile semiconductor memory device |
US6469343B1 (en) * | 1998-04-02 | 2002-10-22 | Nippon Steel Corporation | Multi-level type nonvolatile semiconductor memory device |
KR20020019139A (en) * | 2000-09-05 | 2002-03-12 | 황인길 | Semiconductor devices and manufacturing method thereof |
JP2004228571A (en) * | 2003-01-22 | 2004-08-12 | Samsung Electronics Co Ltd | Sonos type nonvolatile memory and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100468745B1 (en) | Non-volatile memory cell having a silicon-oxide-nitride-oxide-silicon gate structure and fabrication method of such cell | |
US5337274A (en) | Nonvolatile semiconductor memory device having adjacent memory cells and peripheral transistors separated by field oxide | |
US20040057286A1 (en) | Self-aligned split-gate NAND flash memory and fabrication process | |
WO1993014521A1 (en) | Eeprom with split gate source side injection | |
KR20080102957A (en) | Semiconductor devices | |
US20040262668A1 (en) | Novel dual bit split gate flash memory | |
JP2004214365A (en) | Nonvolatile semiconductor memory device and method of operating the same | |
JPH11330280A (en) | Method of manufacturing flash memory-cell structure by channel erase / write and method of operating the same | |
KR20040031655A (en) | Single bit nonvolatile memory cell and methods for programming and erasing thereof | |
EP0429509A4 (en) | Method and apparatus for forming a side wall contact in a nonvolatile electrically alterable memory cell | |
JPH07226449A (en) | Semiconductor memory device capable of electrically writing and erasing and its manufacture and memory recognition | |
US6335549B1 (en) | EEPROM with high channel hot carrier injection efficiency | |
EP0399527A2 (en) | Non-volatile semiconductor memory device | |
US6657251B1 (en) | Semiconductor memory device having memory transistors with gate electrodes of a double-layer stacked structure and method of fabricating the same | |
JPH06334192A (en) | Non-volatile semiconductor memory | |
WO2001017031A1 (en) | Easy shrinkable novel non-volatile semiconductor memory cell utilizing split dielectric floating gate and method for making same | |
US8154090B2 (en) | Non-volatile two-transistor semiconductor memory cell and method for producing the same | |
JPH05226662A (en) | Semiconductor storage device | |
CN100372121C (en) | Multi-level memory cell | |
US7061046B2 (en) | Non-volatile semiconductor memory device | |
JPH06232412A (en) | Nonvolatile memory cell | |
JP3139165B2 (en) | Method for manufacturing nonvolatile memory cell | |
KR100214470B1 (en) | Fabrication method of a eeprom cell | |
JPH05121749A (en) | Electrically writable and erasable semiconductor storage device and manufacture thereof | |
JPH0555600A (en) | Semiconductor nonvolatile memory device |