JPH0633193A - Corrosion resistant high strength material - Google Patents
Corrosion resistant high strength materialInfo
- Publication number
- JPH0633193A JPH0633193A JP4190491A JP19049192A JPH0633193A JP H0633193 A JPH0633193 A JP H0633193A JP 4190491 A JP4190491 A JP 4190491A JP 19049192 A JP19049192 A JP 19049192A JP H0633193 A JPH0633193 A JP H0633193A
- Authority
- JP
- Japan
- Prior art keywords
- seawater
- corrosion
- strength
- present
- high strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 45
- 238000005260 corrosion Methods 0.000 title claims abstract description 45
- 239000000463 material Substances 0.000 title claims abstract description 43
- 239000013535 sea water Substances 0.000 claims abstract description 23
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 10
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 9
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 3
- 229910052758 niobium Inorganic materials 0.000 claims abstract 2
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 abstract description 5
- 229910000831 Steel Inorganic materials 0.000 abstract description 2
- 239000010959 steel Substances 0.000 abstract description 2
- 230000003628 erosive effect Effects 0.000 description 18
- 229910000881 Cu alloy Inorganic materials 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 229910000906 Bronze Inorganic materials 0.000 description 5
- 239000010974 bronze Substances 0.000 description 5
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 5
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229910001208 Crucible steel Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000012422 test repetition Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Landscapes
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は耐食高強度材料に関し、
特に海水中での疲労強度と耐エロージョン性が優れてい
て、海水中で使用される舶用材料、ポンプ用インペラ、
ケーシング、高速艇用水中翼材料などに有利に適用され
る同材料に関する。The present invention relates to a corrosion resistant high strength material,
In particular, it has excellent fatigue strength and erosion resistance in seawater, and is used for marine materials used in seawater, pump impellers,
The present invention relates to a casing material, a hydrofoil material for a high-speed boat, etc.
【0002】[0002]
【従来の技術】従来から、舶用プロペラなどの耐海水用
材料には耐食性の優れた銅合金が使用されているが、そ
の中でもっとも多く使用されているのはニッケル・アル
ミニウム青銅である。しかし、銅合金の中でも耐エロー
ジョン性が優れているニッケル・アルミニウム青銅で
も、船舶が高速化した現在、プロペラ翼端にエロージョ
ン損傷を生じ、補修又は取替え換装しなければならない
状態である。そして、このようなエロージョンはポン
プ、インペラ、ランナ、水中翼でも発生する。そのた
め、耐エロージョン性の優れた材料が望まれていた。
又、プロペラ、ポンプ用インペラなどの機器では高性
能、軽量化が強く要求されており、これに答えるために
は海水中での高い腐食疲労強度と現用材より高い強度を
具備する材料が必要であった。2. Description of the Related Art Conventionally, copper alloys having excellent corrosion resistance have been used for seawater resistant materials such as marine propellers. Among them, nickel-aluminum bronze is most often used. However, even with nickel-aluminum bronze, which has excellent erosion resistance among copper alloys, erosion damage occurs at the propeller blade tips at the present speed of ships, and it is in a state where repair or replacement is required. And such erosion occurs also in pumps, impellers, runners, and hydrofoils. Therefore, a material having excellent erosion resistance has been desired.
In addition, equipment such as propellers and impellers for pumps are strongly required to have high performance and light weight, and in order to respond to this, materials with high corrosion fatigue strength in seawater and higher strength than current materials are required. there were.
【0003】上記要望に答え、銅合金に代わる耐海水用
ステンレス鋼が提案されているが、プロペラなどの高い
繰返し荷重を受ける部材としては耐食性、腐食疲労強度
などが不十分であった。In response to the above-mentioned demand, a stainless steel for seawater resistance has been proposed as an alternative to a copper alloy, but its corrosion resistance, corrosion fatigue strength, etc. have not been sufficient as a member such as a propeller that receives a high cyclic load.
【0004】[0004]
【発明が解決しようとする課題】本発明は上記技術水準
に鑑み、かつ上記技術的要望に応じ、海水中で使用され
る鋳物材、特に舶用プロペラなどの大型鋳物材に、高い
機械的強度、靱性、耐食性、腐食疲労強度および耐エロ
ージョン性を付与した耐食高強度材料を提供しようとす
るものである。SUMMARY OF THE INVENTION In view of the above technical level and in accordance with the above technical demands, the present invention provides a casting material used in seawater, particularly a large casting material such as a propeller for a ship, with high mechanical strength, It is intended to provide a corrosion-resistant high-strength material imparted with toughness, corrosion resistance, corrosion fatigue strength and erosion resistance.
【0005】[0005]
【課題を解決するための手段】本発明は重量%で、C:
0.06%以下、Si:0.1〜1.5%、Mn:0.
1〜3%、Cr:17〜19%、Ni:4.5〜7.5
%、Mo:0.5〜3%、Al:0.1〜0.3%、N
b:0.05〜0.3%及び残部が実質的にFeよりな
り、マルテンサイト+オーステナイト+フェライト相を
有する金属組織で海水中で優れた腐食疲労強度を有して
いることを特徴とする耐食高強度材料である。The present invention, in% by weight, comprises C:
0.06% or less, Si: 0.1 to 1.5%, Mn: 0.
1-3%, Cr: 17-19%, Ni: 4.5-7.5
%, Mo: 0.5 to 3%, Al: 0.1 to 0.3%, N
b: 0.05 to 0.3% and the balance being substantially Fe, and a metal structure having a martensite + austenite + ferrite phase and having excellent corrosion fatigue strength in seawater. Corrosion resistant high strength material.
【0006】本発明の耐食高強度材料はCrを17〜1
9%(重量%、以下同じ)含有するステンレス鋳鋼でマ
ルテンサイト相主体であるため、現用銅合金より硬さが
高く、海水中の耐エロージョン性が優れている。又、海
水中腐食疲労強度も、耐食性良好で引張強さが高いた
め、現用材のアルミニウム青銅の約1.5倍以上高い。
したがって、現用材より小型、軽量、高効率な舶用プロ
ペラなどの製作が可能である。The corrosion-resistant and high-strength material of the present invention contains 17 to 1 of Cr.
Since it is a stainless cast steel containing 9% (weight%, the same applies hereinafter) and is mainly composed of martensite phase, it has higher hardness than the current copper alloy and has excellent erosion resistance in seawater. Also, the corrosion fatigue strength in seawater is about 1.5 times or more higher than that of the currently used aluminum bronze because of its good corrosion resistance and high tensile strength.
Therefore, it is possible to manufacture a marine propeller that is smaller, lighter, and more efficient than currently used materials.
【0007】[0007]
【作用】耐食高強度舶用材料として要求される性質は良
好な耐食性であり、本発明ではこのために水車などに使
用されている12%Cr系ステンレスや高強度材として
の15〜17%Cr系の17−4PH鋼(JIS SU
S630)などよりCr量を多く含有させ、耐食性を向
上させると共に孔食防止のためにMoを添加しているも
のである。[Function] Corrosion resistance High strength required for marine materials is good corrosion resistance. In the present invention, for this reason, 12% Cr-based stainless steel used in water turbines or the like and 15-17% Cr-based high strength material are used. 17-4PH steel (JIS SU
S630) and the like, so that a larger amount of Cr is added, Mo is added to improve corrosion resistance and prevent pitting corrosion.
【0008】又、高い腐食疲労強度を得るには良好な耐
食性の上に30kgf/mm2 以上の耐力と90kgf
/mm2 以上の引張強さが必要であり、このためには金
属組織がマルテンサイト相主体であることが必要であ
る。18%Cr−8%Niステンレス鋼(オーステナイ
ト系)や25%Cr系の二相合金では強度が不足する。Further, in order to obtain high corrosion fatigue strength, good corrosion resistance, proof stress of 30 kgf / mm 2 or more and 90 kgf are required.
It is necessary to have a tensile strength of not less than / mm 2 and, for this purpose, it is necessary that the metal structure be mainly composed of a martensite phase. 18% Cr-8% Ni stainless steel (austenitic type) and 25% Cr type two-phase alloy have insufficient strength.
【0009】耐エロージョン性を向上させるため、X線
測定で10〜35%残留オーステナイト相を残して加工
硬化による耐エロージョン性改善を図った。又、溶接性
保持のためには少量のフェライト相残留があるように化
学成分を調節した。In order to improve the erosion resistance, the erosion resistance was improved by work hardening while leaving a residual austenite phase of 10 to 35% by X-ray measurement. Further, in order to maintain the weldability, the chemical composition was adjusted so that a small amount of ferrite phase remained.
【0010】このように、高強度を得るためには、マル
テンサイト相、耐エロージョン性のために残留オーステ
ナイト相、溶接性保持のためにフェライト相の3相組織
が耐食高強度材料を得るためには必要である。この際、
オーステナイト相の加工硬化による耐エロージョン性及
び耐力の向上のためにはオーステナイト相を10〜35
%、良好な溶接性を付与するためにはフェライト相を5
〜10%存在するようにすることが好ましい。As described above, in order to obtain high strength, the three-phase structure of the martensite phase, the retained austenite phase for erosion resistance, and the ferrite phase for maintaining the weldability is necessary for obtaining the corrosion resistant high strength material. Is necessary. On this occasion,
In order to improve the erosion resistance and proof stress by work hardening of the austenite phase, the austenite phase should be 10 to 35%.
%, In order to give good weldability, the ferrite phase should be 5
It is preferable that it is present at 10%.
【0011】本発明は17〜19%のCrを含むステン
レス鋳鋼であり、炭化物が腐食疲労強度低下をもたら
し、有害成分であるため、C量をできるだけ低下させる
と共にNbでCを固定した。又、溶解上生じるO2 増加
についてはSi,Mnと共にAlで強制脱酸して非金属
介在物を減少させた。The present invention is a stainless cast steel containing 17 to 19% of Cr, and since carbide causes a decrease in corrosion fatigue strength and is a harmful component, the C content was reduced as much as possible and C was fixed with Nb. Regarding the increase in O 2 caused by dissolution, non-metallic inclusions were reduced by forced deoxidation with Al together with Si and Mn.
【0012】次に本発明ステンレス鋳鋼の成分限定理由
を述べる。 C:Cr炭化物を生成して、粒界に析出して海水中の耐
食性を低下させるので、その含有量を0.06%以下と
する。 Si:溶解時の脱酸剤として0.1%以上含まれるが、
2%を越えると脆化をもたらすので上限を2%とする。 Mn:Siと同様脱酸剤として0.1%以上の添加が必
要であるが3%を越えると脆化するので上限を3%にす
る。 Cr:海水中の耐食性を向上させる重要成分であり、C
r量が増加する程耐食性は向上する。良好な耐食性を保
持するには17%以上が必要である。しかし、19%を
越えるとδフェライトが増加し、引張強さ、衝撃値が低
下するのでその成分範囲を17〜19%に限定する。 Ni:オーステナイト生成元素で靱性および溶接性向上
のためには4.5%以上のNiが必要である。一方、N
i量が7.5%を越えると残留オーステナイト量が、増
えて耐力および引張強さが低下し、目的とする腐食疲労
強度が得られないので、その成分範囲を4.5〜7.5
%に限定する。 Mo:Crと共存して海水などの腐食環境で孔食防止に
有効な元素で、その効果を発揮させるには0.5%以上
の添加が必要である。しかし、3%を超えると、逆に脆
化しやすく腐食疲労強度も低下するのでその上限を3%
とする。 Nb:NbはCをNb炭化物として固定して耐食性低下
の原因となるCr炭化物の析出を抑制し、耐食性向上に
効果がある。その効果を発揮するには0.05%以上の
添加が必要で0.3%を越えると大型材の場合、偏析し
衝撃値が低下するので上限を0.3%とする。 Al:脱酸剤として効果的な元素で脱酸作用のためには
0.1%が必要である。しかし、0.3%を越えると酸
化物を生成しやすくなるので上限を0.3%とした。Next, the reasons for limiting the components of the stainless cast steel of the present invention will be described. C: Cr carbides are generated and precipitate at grain boundaries to reduce corrosion resistance in seawater, so the content is made 0.06% or less. Si: 0.1% or more is contained as a deoxidizing agent when dissolved,
If it exceeds 2%, embrittlement occurs, so the upper limit is made 2%. Similar to Mn: Si, it is necessary to add 0.1% or more as a deoxidizing agent, but if it exceeds 3%, embrittlement occurs, so the upper limit is made 3%. Cr: An important component that improves the corrosion resistance in seawater, and C
The corrosion resistance increases as the amount of r increases. 17% or more is required to maintain good corrosion resistance. However, if it exceeds 19%, δ-ferrite increases, and the tensile strength and impact value decrease, so the component range is limited to 17-19%. Ni: An austenite-forming element, and 4.5% or more of Ni is required to improve toughness and weldability. On the other hand, N
If the amount of i exceeds 7.5%, the amount of retained austenite increases, the yield strength and tensile strength decrease, and the desired corrosion fatigue strength cannot be obtained. Therefore, the range of its components is 4.5 to 7.5.
Limited to%. It is an element that coexists with Mo: Cr and is effective in preventing pitting corrosion in a corrosive environment such as seawater, and it is necessary to add 0.5% or more in order to exert its effect. However, if it exceeds 3%, on the contrary, it tends to become brittle and the corrosion fatigue strength also decreases, so the upper limit is 3%.
And Nb: Nb fixes C as Nb carbide and suppresses the precipitation of Cr carbide which causes a decrease in corrosion resistance, and is effective in improving corrosion resistance. In order to bring out the effect, it is necessary to add 0.05% or more, and if it exceeds 0.3%, in the case of a large material, segregation occurs and the impact value decreases, so the upper limit is made 0.3%. Al: An element effective as a deoxidizing agent, and 0.1% is necessary for deoxidizing action. However, if it exceeds 0.3%, an oxide is likely to be formed, so the upper limit was made 0.3%.
【0013】[0013]
【実施例】次に本発明材につきその実施例を比較例と共
に説明する。表1および表2は本発明材、比較材、現用
材の化学成分を示す。供試材No.1〜No.4は本発
明材、供試材No.5〜No.10は比較材、No.1
1および12は現在、海水中で使用されている銅合金の
ニッケル・アルミニウム青銅(現用材と略称する)であ
る。又、これら供試材の機械的性質、金属組織海水中腐
食疲れ強さおよび耐エロージョン減量を本発明材、比較
材、現用材と共に表3に示す。EXAMPLES Next, examples of the material of the present invention will be described together with comparative examples. Tables 1 and 2 show the chemical composition of the material of the present invention, the comparative material, and the current material. Specimen No. 1-No. No. 4 is the material of the present invention and the test material No. 5 to No. No. 10 is a comparative material, No. 1
1 and 12 are nickel-aluminum bronze (abbreviated as the current material) which is a copper alloy currently used in seawater. Table 3 shows the mechanical properties, corrosion fatigue strength of seawater in seawater and erosion resistance reduction of these test materials together with the materials of the present invention, the comparative materials and the current materials.
【0014】腐食疲労試験はウェラー式回転曲げ疲労試
験機を用い、試験片直径6.0mm、回転数3,450
rpm、試験繰返数2×107 回、試験液は天然海水を
使用し、試験温度は常温で試験した。For the corrosion fatigue test, a Weller type rotary bending fatigue tester was used, the test piece diameter was 6.0 mm, and the rotation speed was 3,450.
rpm, the number of test repetitions was 2 × 10 7 , natural seawater was used as the test solution, and the test temperature was room temperature.
【0015】エロージョン試験は超音波エロージョン試
験機を使用し、振動数は6.5KHz、振巾95μm、
試験液は海水、試験温度25℃、試験時間2時間の条件
で試験した。An ultrasonic erosion tester was used for the erosion test. The frequency was 6.5 KHz and the amplitude was 95 μm.
The test liquid was tested under the conditions of seawater, a test temperature of 25 ° C., and a test time of 2 hours.
【0016】化学成分が本発明成分外のNo.5〜N
o.10供試材の海水中腐食疲れ強さは23kgf/m
m2 以下と本発明のNo.1〜No.4材の29〜31
kgf/mm2 に比較して低いことが分る。又、本発明
材は現用材のニッケル・アルミニウム青銅材(No.1
1およびNo.12)の18kgf/mm2 と比較して
1.5倍と優れているため、設計応力が高くとれ、プロ
ペラなどの薄肉、軽量化に大きく貢献できることが分
る。No. 3 whose chemical composition is outside the composition of the present invention. 5-N
o. Corrosion fatigue strength of 10 test materials in seawater is 23kgf / m
m 2 or less and No. 2 of the present invention. 1-No. 4 to 29-31
It can be seen that it is lower than kgf / mm 2 . The material of the present invention is a nickel-aluminum bronze material (No. 1)
1 and No. Since it is superior to 18 kgf / mm 2 in 12), which is 1.5 times, it can be seen that the design stress can be made high and it can greatly contribute to the thinning and weight saving of propellers and the like.
【0017】海水中の耐エロージョン性に影響する因子
としては耐食性、硬さだけでなく金属組織も大きな影響
があり、特にステンレス鋼系のオーステナイト相は加工
効果のため、耐エロージョン性を改善する働きがある。
又、本発明材は水車ランナなどに使用されるマルテンサ
イト相の12%Cr系とは異なり、マルテンサイト系の
特徴である高強度を保ちながら残留オーステナイト相を
残して、耐エロージョン性を改善したものである。又、
高強度材でありながら良好な溶接性を保持するためフェ
ライト相を残留させてマルテンサイト相+オーステナイ
ト相+フェライト相の3相組織にして耐食高強度舶用プ
ロペラ材として必要な高い引張強さ、腐食疲労強度、良
好な耐食性および溶接性を具備させたものである。Factors that affect the erosion resistance in seawater are not only the corrosion resistance and hardness, but also the metal structure, which has a large effect. Particularly, the austenitic phase of stainless steel has a working effect, and therefore it has a function of improving the erosion resistance. There is.
Further, the material of the present invention is different from the 12% Cr-based martensite phase used in water turbine runners and the like, and retains the retained austenite phase while maintaining the high strength characteristic of the martensite-based material to improve the erosion resistance. It is a thing. or,
Despite being a high-strength material, in order to maintain good weldability, the ferrite phase is retained to form a three-phase structure of martensite phase + austenite phase + ferrite phase. Corrosion resistance High strength and corrosion required for high-strength marine propeller materials. It has fatigue strength, good corrosion resistance and weldability.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【表2】 [Table 2]
【0020】[0020]
【表3】 [Table 3]
【0021】[0021]
【発明の効果】本発明の耐食高強度材は現用銅合金に比
較して、海水中の腐食疲労強度が高いことおよび耐エロ
ージョン性が優れていることを特徴としており、この他
機械的性質および衝撃値においても現用銅合金材より優
れている。したがって、本発明の耐食高強度材で舶用プ
ロペラなどの海用構造物を製作すれば軽量かつ高効率化
が可能となるので工業的にきわめて有用である。The corrosion-resistant high-strength material of the present invention is characterized by high corrosion fatigue strength in seawater and excellent erosion resistance as compared with the current copper alloy. The impact value is also superior to the current copper alloy material. Therefore, if a marine structure such as a marine propeller is manufactured with the corrosion-resistant and high-strength material of the present invention, it is possible to make the structure lightweight and highly efficient, which is industrially very useful.
Claims (1)
0.1〜1.5%、Mn:0.1〜3%、Cr:17〜
19%、Ni:4.5〜7.5%、Mo:0.5〜3
%、Al:0.1〜0.3%、Nb:0.05〜0.3
%および残部が実質的にFeよりなり、マルテンサイト
+オーステナイト+フェライト相を有する金属組織で海
水中で優れた腐食疲労強度を有していることを特徴とす
る耐食高強度材料。1. By weight%, C: 0.06% or less, Si:
0.1-1.5%, Mn: 0.1-3%, Cr: 17-
19%, Ni: 4.5 to 7.5%, Mo: 0.5 to 3
%, Al: 0.1 to 0.3%, Nb: 0.05 to 0.3
% And the balance being substantially Fe, and having a metal structure having a martensite + austenite + ferrite phase and having excellent corrosion fatigue strength in seawater, a corrosion resistant high strength material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4190491A JPH0633193A (en) | 1992-07-17 | 1992-07-17 | Corrosion resistant high strength material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4190491A JPH0633193A (en) | 1992-07-17 | 1992-07-17 | Corrosion resistant high strength material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0633193A true JPH0633193A (en) | 1994-02-08 |
Family
ID=16258982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4190491A Withdrawn JPH0633193A (en) | 1992-07-17 | 1992-07-17 | Corrosion resistant high strength material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0633193A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972489A (en) * | 1995-07-18 | 1999-10-26 | Nichias Corporation | Porous inorganic material and metal-matrix composite material containing the same and process therefor |
JP2005307943A (en) * | 2004-04-26 | 2005-11-04 | Hirotoshi Baba | Impeller |
CN108624809A (en) * | 2017-03-24 | 2018-10-09 | 宝山钢铁股份有限公司 | Excellent seawater corrosion resistance, anti-fatigue performance and the brittle ultrahigh-strength steel plates of environment resistant and its manufacturing method |
-
1992
- 1992-07-17 JP JP4190491A patent/JPH0633193A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972489A (en) * | 1995-07-18 | 1999-10-26 | Nichias Corporation | Porous inorganic material and metal-matrix composite material containing the same and process therefor |
JP2005307943A (en) * | 2004-04-26 | 2005-11-04 | Hirotoshi Baba | Impeller |
CN108624809A (en) * | 2017-03-24 | 2018-10-09 | 宝山钢铁股份有限公司 | Excellent seawater corrosion resistance, anti-fatigue performance and the brittle ultrahigh-strength steel plates of environment resistant and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5803890B2 (en) | Duplex stainless clad steel excellent in pitting corrosion resistance, duplex stainless clad steel using the same, and method for producing the same | |
JP6001817B2 (en) | High corrosion resistance precipitation hardened martensitic stainless steel | |
EP0042180B1 (en) | A high cavitation erosion resistance stainless steel and hydraulic machines being made of the same | |
US3925064A (en) | High corrosion fatigue strength stainless steel | |
CN105492641A (en) | Duplex stainless steel, and duplex stainless steel structure, marine structure, petroleum/gas environment structure, pump impeller, pump casing, and flow adjustment valve body using same | |
JPH0633193A (en) | Corrosion resistant high strength material | |
JPS6092455A (en) | Cast steel for water turbine for seawater pump | |
JPH0672286B2 (en) | ▲ High ▼ Austenitic stainless steel with excellent temperature strength | |
EP0039052A1 (en) | Martensitic stainless cast steel having high cavitation erosion resistance | |
JPH09195003A (en) | Duplex stainless steel | |
JPH09209087A (en) | Duplex stainless steel | |
JPS58144460A (en) | Two-phase cast stainless steel having high corrosion resistant and high fatique strength | |
JP2005232575A (en) | Precipitation hardening type martensitic steel, and turbine blade using the same | |
JPH049451A (en) | Seawater corrosion resisting material | |
JP3336820B2 (en) | Seawater corrosion resistant austenitic cast stainless steel and seawater pump | |
JPS6111311B2 (en) | ||
US2633420A (en) | Alloy irons and steels | |
JPS6341981B2 (en) | ||
EP4083250A1 (en) | Precipitation-hardened stainless steel alloys | |
JPH0613746B2 (en) | High corrosion resistance and high strength austenitic ferritic duplex stainless steel with excellent seawater resistance | |
JPH02111847A (en) | Austenitic stainless steel having high corrosion resistance and high strength | |
JPS5952229B2 (en) | Si and N reinforced austenitic stainless steel with excellent seawater resistance | |
JPH0553858B2 (en) | ||
JPS59150068A (en) | Stainless steel having low yield and high resistance to fatigue | |
JPH0512420B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991005 |