JPH06329474A - Sintered aluminum nitride and its production - Google Patents
Sintered aluminum nitride and its productionInfo
- Publication number
- JPH06329474A JPH06329474A JP5142871A JP14287193A JPH06329474A JP H06329474 A JPH06329474 A JP H06329474A JP 5142871 A JP5142871 A JP 5142871A JP 14287193 A JP14287193 A JP 14287193A JP H06329474 A JPH06329474 A JP H06329474A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- aluminum nitride
- aln
- weight
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体基板等に使用さ
れる窒化アルミニウム焼結体およびその製造方法に係
り、特に窒化アルミニウム特有の熱伝導性を損うことな
く、強度を大幅に改善し、放熱性に優れた窒化アルミニ
ウム焼結体および製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body used for a semiconductor substrate or the like and a method for manufacturing the same, and in particular, it significantly improves strength without impairing the thermal conductivity peculiar to aluminum nitride. The present invention relates to an aluminum nitride sintered body excellent in heat dissipation and a manufacturing method.
【0002】[0002]
【従来の技術】従来の金属材料と比較して強度、耐熱
性、耐食性、耐摩耗性、軽量性などの諸特性に優れたセ
ラミックス焼結体が、半導体基板、電子機器材料、エン
ジン用部材、高速切削工具用材料、ノズル、ベアリング
など、従来の金属材料の及ばない苛酷な温度、応力、摩
耗条件下で使用される機械部品、機能部品、構造材や装
飾品材料として広く利用されている。2. Description of the Related Art Sintered ceramics, which are superior in properties such as strength, heat resistance, corrosion resistance, wear resistance, and lightness, compared with conventional metal materials, are used in semiconductor substrates, electronic equipment materials, engine members, It is widely used as a material for high speed cutting tools, nozzles, bearings, and other mechanical parts, functional parts, structural materials and ornamental materials used under severe temperature, stress and wear conditions that conventional metal materials do not have.
【0003】特に窒化アルミニウム(AlN)焼結体は
高熱伝導性を有する絶縁体であり、シリコン(Si)に
近い熱膨張係数を有することから高集積化した半導体装
置の放熱板や基板として、その用途を拡大している。In particular, an aluminum nitride (AlN) sintered body is an insulator having a high thermal conductivity and has a coefficient of thermal expansion close to that of silicon (Si). Therefore, the aluminum nitride (AlN) sintered body is used as a heat sink or a substrate of a highly integrated semiconductor device. Expanding applications.
【0004】従来上記窒化アルミニウム焼結体は一般的
に下記の製造方法によって量産されている。すなわち、
窒化アルミニウム原料粉末に焼結助剤と、有機バインダ
と、必要に応じて各種添加剤や溶媒、分散剤とを添加し
て原料混合体を調製し、得られた原料混合体をドクター
ブレード法や泥漿鋳込み法によって成形し、薄板状ない
しシート状の成形体としたり、原料混合体をプレス成形
して厚板状ないし大型の成形体を形成する。次に得られ
た成形体は、空気または窒素ガス雰囲気において加熱さ
れ脱脂処理され、有機バインダとして使用された炭化水
素成分等が成形体から排除脱脂される。そして脱脂され
た成形体は窒素ガス雰囲気等で高温度に加熱され緻密化
焼結されて窒化アルミニウム焼結体が形成される。Conventionally, the above-mentioned aluminum nitride sintered body is generally mass-produced by the following manufacturing method. That is,
A sintering aid to the aluminum nitride raw material powder, an organic binder, and various additives and solvents as required, to prepare a raw material mixture by adding a dispersant, the resulting raw material mixture doctor blade method or A thin plate-shaped or sheet-shaped molded body is formed by the slurry casting method, or a raw material mixture is press-molded to form a thick plate-shaped or large-sized molded body. Next, the obtained molded product is heated and degreased in an atmosphere of air or nitrogen gas to remove and degrease the hydrocarbon components and the like used as the organic binder from the molded product. The degreased compact is heated to a high temperature in a nitrogen gas atmosphere or the like and densified and sintered to form an aluminum nitride sintered compact.
【0005】上記製造方法において、原料AlN粉末と
して平均粒径が0.5μm以下程度の超微細な原料粉末
を使用する場合は、AlN粉末単独でもかなりの緻密な
焼結体が得られる。しかしながら、原料粉末表面等に付
着した多量の酸素等の不純物が焼結時に、AlN結晶格
子中に固溶したり、格子振動の伝播を妨げるAl−O−
N化合物等の複合酸化物を生成する結果、焼結助剤を使
用しないAlN焼結体の熱伝導率は比較的に低かった。In the above manufacturing method, when an ultrafine raw material powder having an average particle diameter of about 0.5 μm or less is used as the raw material AlN powder, a considerably dense sintered body can be obtained by using the AlN powder alone. However, a large amount of impurities such as oxygen adhering to the surface of the raw material powder and the like are solid-solved in the AlN crystal lattice at the time of sintering, or Al-O- which hinders the propagation of lattice vibration.
As a result of producing a compound oxide such as an N compound, the thermal conductivity of the AlN sintered body that did not use a sintering aid was relatively low.
【0006】一方原料粉末として平均粒径1μm以上の
AlN粉末を使用する場合は、その原料粉末単独では焼
結性が良好でないため、ホットプレス法以外には助剤無
添加では緻密な焼結体を得ることが困難であり、量産性
が低い欠点があった。そこで常圧焼結法によって効率的
に焼結体を製造しようとする場合には、焼結体の緻密化
およびAlN原料粉末中の不純物酸素がAlN結晶粒子
内へ固溶することを防止するために、焼結助剤として、
酸化イットウリム(Y2 O3 )などの希土類酸化物や酸
化カルシウムなどのアルカリ土類金属酸化物等を添加す
ることが一般に行なわれている。On the other hand, when AlN powder having an average particle size of 1 μm or more is used as the raw material powder, the sinterability of the raw material powder alone is not good. Was difficult to obtain, and there was a drawback that mass productivity was low. Therefore, in order to efficiently manufacture a sintered body by the atmospheric pressure sintering method, in order to prevent the densification of the sintered body and the impurity oxygen in the AlN raw material powder from forming a solid solution in the AlN crystal grains. In addition, as a sintering aid,
It is generally practiced to add rare earth oxides such as yttrium oxide (Y 2 O 3 ) and alkaline earth metal oxides such as calcium oxide.
【0007】これらの焼結助剤は、AlN原料粉末に含
まれる不純物酸素やAl2 O3 と反応して液相を形成
し、焼結体の緻密化を達成するとともに、この不純物酸
素を粒界相として固定し、高熱伝導率化も達成するもの
と考えられている。These sintering aids react with the impurity oxygen and Al 2 O 3 contained in the AlN raw material powder to form a liquid phase to achieve the densification of the sintered body, and at the same time, to form the impurity oxygen into particles. It is believed that it can be fixed as a phase phase and achieve high thermal conductivity.
【0008】[0008]
【発明が解決しようとする課題】しかしながら上記従来
の製造方法においては、本来、AlNと液相化合物との
濡れ性が低く、また液相自体が偏析し易い性質を有する
ことから、焼結後に液相が凝固する際に、液相はAlN
粒子の間隙部に偏在するように残留し、凝固して粗大で
脆弱な粒界相を形成する傾向がある。また、結晶粒の粒
成長が進行し易く、図2に示すように平均粒径が5〜1
0μmと粗大な結晶粒が形成され易く、また微小な気孔
が消滅せずに結晶粒内に残存し、焼結体の緻密化を阻害
し、最終的に3点曲げ強度が35〜40kg/mm2 程度の
低強度の窒化アルミニウム焼結体しか得られない問題点
があった。However, in the above-mentioned conventional production method, since the wettability between AlN and the liquid phase compound is originally low and the liquid phase itself tends to segregate, the liquid after the sintering is dissolved. When the phase solidifies, the liquid phase is AlN
It tends to remain so as to be unevenly distributed in the interstices of the grains and to solidify to form a coarse and brittle grain boundary phase. Further, the grain growth of crystal grains is likely to proceed, and as shown in FIG. 2, the average grain size is 5 to 1
Coarse crystal grains with a size of 0 μm are easily formed, and minute pores do not disappear but remain in the crystal grains, hindering the densification of the sintered body, and finally the three-point bending strength is 35-40 kg / mm. There is a problem that only a low-strength aluminum nitride sintered body of about 2 can be obtained.
【0009】近年、半導体素子の高集積化、高出力化に
伴って増加する発熱量に対応するために、高熱伝導性
(高放熱性)を有する上記窒化アルミニウム材料が普及
しつつあり、その放熱性については大体満足する結果が
得られている。しかしながら上記のように構造部材とし
ての強度が不足するため、例えば窒化アルミニウム焼結
体で形成した半導体基板を実装ボードに装着する際に作
用する僅かな曲げ応力や取扱時に作用する衝撃力にって
半導体基板が損傷し、半導体回路基板の製造歩留りが大
幅に低下してしまう問題点があった。In recent years, the above-mentioned aluminum nitride material having high thermal conductivity (high heat dissipation) is becoming widespread in order to cope with the heat generation amount which is increased with the high integration and high output of semiconductor elements. As for sex, generally satisfactory results have been obtained. However, as described above, the strength as a structural member is insufficient. Therefore, for example, a slight bending stress that acts when mounting a semiconductor substrate formed of an aluminum nitride sintered body on a mounting board or an impact force that acts during handling There is a problem that the semiconductor substrate is damaged and the manufacturing yield of the semiconductor circuit substrate is significantly reduced.
【0010】本発明は上記の問題点を解決するためにな
されたものであり、AlN焼結体の粒成長を抑制し、焼
結体組織を微細化して焼結体の強度の向上および均一化
を図り、放熱特性を損うことなく機械的強度を高めたA
lN焼結体およびその製造方法を提供することを目的と
する。The present invention has been made in order to solve the above problems, and suppresses grain growth of an AlN sintered body and refines the structure of the sintered body to improve the strength and make the sintered body uniform. To improve the mechanical strength without sacrificing heat dissipation characteristics
An object is to provide an IN sintered body and a method for manufacturing the same.
【0011】[0011]
【課題を解決するための手段】本願発明者は上記目的を
達成するため、原料窒化アルミニウム粉末に添加する焼
結助剤や添加物の種類や添加量を種々変えて、それらが
焼結体の結晶組織、強度特性および伝熱特性に及ぼす影
響について実験検討を進めた。In order to achieve the above-mentioned object, the inventors of the present invention have variously changed the types and amounts of the sintering aids and additives to be added to the raw material aluminum nitride powder, and Experimental studies were conducted on the effects on the crystal structure, strength characteristics and heat transfer characteristics.
【0012】その結果、所定の焼結助剤の他に添加剤と
してのSi成分を複合的に微量添加したときに、結晶粒
径が1〜4μmと微細である焼結体組織が得られ、強度
特性が優れたAlN焼結体が得られた。本発明は上記知
見に基づいて完成されたものである。As a result, when a small amount of Si component as an additive is added in addition to a predetermined sintering aid, a sintered body structure having a fine crystal grain size of 1 to 4 μm is obtained, An AlN sintered body having excellent strength characteristics was obtained. The present invention has been completed based on the above findings.
【0013】すなわち本発明に係る窒化アルミニウム焼
結体は、周期律表IIIa族元素,Ca,Sr,Baから選
択される少なくとも1種の元素の酸化物を1〜10重量
%含有するとともに、Si成分濃度が0.01〜0.2
重量%であることを特徴とする。またSi成分は、Si
O2 ,Si3 N4 ,SiCおよびSi2 N2 Oから選択
された少なくとも1種のけい素化合物として含有させる
とよい。さらにTi,Zr,Hf,Nb,Ta,Mo,
Wから選択される少なくとも1種の金属元素を酸化物換
算で0.1〜0.5重量%含有させるとよい。またF
e,Mo等の不純物陽イオンの含有量は0.2重量%以
下にするとよい。さらに焼結体の平均結晶粒径が1〜4
μmであることを特徴とする。そして上記組成から成る
AlN焼結体は、熱伝導率が150W/m・K以上であ
り、また3点曲げ強度が50kg/mm2以上となる。That is, the aluminum nitride sintered body according to the present invention contains 1 to 10% by weight of an oxide of at least one element selected from the group IIIa elements of the periodic table, Ca, Sr and Ba, and Si Component concentration is 0.01-0.2
It is characterized in that it is wt%. The Si component is Si
It may be contained as at least one silicon compound selected from O 2 , Si 3 N 4 , SiC and Si 2 N 2 O. Furthermore, Ti, Zr, Hf, Nb, Ta, Mo,
At least one metal element selected from W may be contained in an amount of 0.1 to 0.5% by weight in terms of oxide. Also F
The content of impurity cations such as e and Mo is preferably 0.2% by weight or less. Furthermore, the average crystal grain size of the sintered body is 1 to 4
It is characterized by being μm. The AlN sintered body having the above composition has a thermal conductivity of 150 W / m · K or more and a three-point bending strength of 50 kg / mm 2 or more.
【0014】また本発明に係る窒化アルミニウム焼結体
の製造方法は、Fe,Mg等の不純物陽イオンの含有量
が0.2重量%以下である窒化アルミニウム原料粉末
に、周期律表IIIa族元素,Ca,Sr,Baから選択さ
れる少なくとも1種の元素の酸化物1〜10重量%と、
Si成分0.01〜0.2重量%とを添加した混合粉末
を成形し、得られた成形体を非酸化性雰囲気中で165
0〜1900℃の温度域で焼結することを特徴とする。In the method for producing an aluminum nitride sintered body according to the present invention, an aluminum nitride raw material powder containing 0.2% by weight or less of impurity cations such as Fe and Mg is added to a group IIIa element of the periodic table. , 1 to 10% by weight of an oxide of at least one element selected from Ca, Sr and Ba,
A mixed powder added with 0.01 to 0.2 wt% of Si component is molded, and the obtained molded body is subjected to 165 in a non-oxidizing atmosphere.
It is characterized in that it is sintered in a temperature range of 0 to 1900 ° C.
【0015】本発明方法において使用され、焼結体の主
成分となる窒化アルミニウム原料(AlN)粉末として
は、焼結性および熱伝導性を考慮して不純物酸素含有量
が1.3重量%以下に抑制され、平均粒径が0.05〜
2μm程度、好ましくは1μm以下の微細なAlN粉末
を使用する。The aluminum nitride raw material (AlN) powder used in the method of the present invention, which is the main component of the sintered body, has an impurity oxygen content of 1.3% by weight or less in consideration of sinterability and thermal conductivity. The average particle size is 0.05 to
A fine AlN powder having a size of about 2 μm, preferably 1 μm or less is used.
【0016】周期律表IIIa族元素,Ca,Sr,Baの
酸化物は、焼結助剤として作用し、AlN焼結体を緻密
化するために、AlN原料粉末に対して1〜10重量%
の範囲で添加される。上記焼結助剤の具体例としては希
土類元素(Y,Sc,Ce,Dyなど)の酸化物、窒化
物、アルカリ土類金属(Ca)の酸化物、もしくは焼結
操作によりこれらの化合物となる物質が使用され、特に
酸化イットリウム(Y2 O3 )、酸化セリウム(Ce
O)や酸化カルシウム(CaO)が好ましい。上記焼結
助剤の添加量が1重量%未満の場合は、焼結性の改善効
果が充分に発揮されず、焼結体が緻密化されず低強度の
焼結体が形成されたり、AlN結晶中に酸素が固溶し、
高い熱伝導率を有する焼結体が形成できない。一方添加
量が10重量%を超える過量となると、焼結助剤として
の効果は飽和状態に達して無意味となるばかりでなく、
却って焼結して得られるAlN焼結体の熱伝導率が低下
する一方、粒界相が焼結体中に多量に残存したり、熱処
理により除去される粒界相の体積が大きいため、焼結体
中に空孔が残ったりして収縮率が増大し、変形を生じ易
くなる。The oxide of group IIIa element of the periodic table, Ca, Sr, and Ba acts as a sintering aid, and in order to densify the AlN sintered body, 1 to 10% by weight based on the AlN raw material powder.
It is added in the range of. Specific examples of the above-mentioned sintering aid include oxides of rare earth elements (Y, Sc, Ce, Dy, etc.), nitrides, oxides of alkaline earth metals (Ca), or compounds obtained by a sintering operation. Materials are used, especially yttrium oxide (Y 2 O 3 ), cerium oxide (Ce
O) and calcium oxide (CaO) are preferred. When the amount of the sintering aid added is less than 1% by weight, the effect of improving the sinterability is not sufficiently exerted, the sintered body is not densified and a low-strength sintered body is formed, or AlN Oxygen dissolved in the crystal,
A sintered body having a high thermal conductivity cannot be formed. On the other hand, if the addition amount exceeds 10% by weight, not only the effect as a sintering aid reaches a saturated state and becomes meaningless, but
On the contrary, the thermal conductivity of the AlN sintered body obtained by sintering is lowered, while a large amount of the grain boundary phase remains in the sintered body, and the volume of the grain boundary phase removed by heat treatment is large. Voids may remain in the tying body, increasing the shrinkage rate and making it more likely to cause deformation.
【0017】Si成分は、焼結性を向上させるとともに
焼結温度を低下させる効果を有するが、特に上記焼結助
剤と複合添加することにより、焼結体の粒成長を抑止す
ることができ、微細なAlN結晶組織を形成し、焼結体
の構造強度を高めるために添加される。上記Si成分と
しては、SiO2 ,Si3 N4 ,SiCおよびSi2 N
2 O等のけい素化合物を使用することが望ましい。この
けい素化合物の含有量はSi成分として0.01〜0.
2重量%の範囲に調整される。Si成分の含有量が0.
01重量%未満の場合は、粒成長の抑止効果が不充分と
なり、粗大な結晶組織となり、高強度のAlN焼結体が
得られない。一方、含有量が0..2重量%を超える過
量となると、焼結体の熱伝導率が低下するとともに、曲
げ強度が低下する場合もある。The Si component has the effect of improving the sinterability and lowering the sintering temperature, but grain growth of the sintered body can be suppressed by adding it in combination with the above-mentioned sintering aid. , Is added to form a fine AlN crystal structure and enhance the structural strength of the sintered body. Examples of the Si component include SiO 2 , Si 3 N 4 , SiC and Si 2 N.
It is desirable to use silicon compounds such as 2 O. The content of this silicon compound is 0.01 to 0.
It is adjusted to the range of 2% by weight. The content of Si component is 0.
If it is less than 01% by weight, the effect of suppressing the grain growth becomes insufficient, and the crystal structure becomes coarse, so that a high-strength AlN sintered body cannot be obtained. On the other hand, the content is 0. . If the amount exceeds 2% by weight, the thermal conductivity of the sintered body may decrease and the bending strength may decrease.
【0018】Ti,Zr,Hf,Nb,Ta,Mo,W
の酸化物は、焼結温度を下げて焼結性を向上させる一
方、着色して不透明な焼結体を形成する等、AlN焼結
体の特性を改善するために有効であり、酸化物換算で
0.1〜0.5重量%の範囲で添加してもよい。添加量
が0.1重量%未満の場合は、上記特性改善効果が不充
分となる一方、添加量が0.5重量%を超える過量とな
ると、他の不純物と同様にAlN焼結体の熱伝導率を低
下させる。Ti, Zr, Hf, Nb, Ta, Mo, W
The oxide of is effective for improving the characteristics of the AlN sintered body such as forming an opaque sintered body by coloring while lowering the sintering temperature to improve the sinterability. It may be added in the range of 0.1 to 0.5% by weight. If the added amount is less than 0.1% by weight, the above characteristic improving effect is insufficient, while if the added amount is more than 0.5% by weight, the heat of the AlN sintered body is increased like other impurities. Reduces conductivity.
【0019】またFe,Mg等の不純物陽イオンはAl
N焼結体の熱伝導を阻害する化合物を形成し易いため、
AlN焼結体中の含有量は0.2重量%以下に設定され
る。上記AlN原料粉末、各種焼結助剤およびSi成分
用Si化合物は、例えばボールミル等の粉砕混合機に投
入され、所定時間混合されることによって原料混合体と
なる。次に得られた原料混合体を所定形状の金型に充填
し加圧成形して成形体が形成される。このとき予め原料
混合体にパラフィン、ステアリン酸等の有機バインダを
5〜10重量%添加しておくことにより、成形操作を円
滑に実施することができる。Impurity cations such as Fe and Mg are Al
Since it is easy to form a compound that inhibits the heat conduction of the N sintered body,
The content in the AlN sintered body is set to 0.2% by weight or less. The AlN raw material powder, various sintering aids and Si compound for Si component are put into a pulverizing mixer such as a ball mill and mixed for a predetermined time to form a raw material mixture. Next, the obtained raw material mixture is filled in a mold having a predetermined shape and pressure-molded to form a molded body. At this time, by adding 5 to 10% by weight of an organic binder such as paraffin and stearic acid to the raw material mixture in advance, the molding operation can be smoothly carried out.
【0020】成形法としては、汎用の金型プレス法、泥
漿鋳込み法、静水圧プレス法、あるいはドクターブレー
ド法のようなシート成形法などが適用できる。As a molding method, a general-purpose die pressing method, a slurry casting method, a hydrostatic pressing method, or a sheet forming method such as a doctor blade method can be applied.
【0021】上記成形操作に引き続いて、成形体を非酸
化性雰囲気中、例えば窒素ガス雰囲気中で温度400〜
800℃に加熱して、予め添加していた有機バインダを
充分に脱脂除去する。Subsequent to the above molding operation, the molded body is heated in a non-oxidizing atmosphere, for example, in a nitrogen gas atmosphere at a temperature of 400 to 400 ° C.
By heating to 800 ° C., the previously added organic binder is thoroughly degreased and removed.
【0022】次に脱脂処理された複数のシート状の成形
体は、例えばセラミックス焼結粉から成るしき粉を介し
て焼成炉内において多段に積層され、この配置状態で複
数の成形体は一括して所定温度で焼結される。焼結操作
は、窒素ガスなどの非酸化性雰囲気で成形体を温度16
50〜1900℃で2〜10時間程度加熱して実施され
る。特にSi成分を添加することにより、1720〜1
780℃程度と従来より低い温度で焼結することが可能
となる。焼結雰囲気は、AlNと反応しない非酸化性雰
囲気あればよいが、通常は窒素ガス、または窒素ガスを
含む還元性雰囲気で行なう。還元性ガスとしてはH2 ガ
ス、COガスを使用してもよい。なお、焼結は真空(僅
かな還元雰囲気を含む)、減圧、加圧および常圧を含む
雰囲気で行なってもよい。焼結温度が1650℃未満と
低温状態で焼成すると、原料粉末の粒径、含有酸素量に
よって異なるが、緻密化が困難であり、強度および熱伝
導性などの特性に難点が生じ易い一方、1900℃より
高温度で焼成すると、焼成炉内におけるAlN自体の蒸
気圧が高くなり緻密化が困難になるとともに熱伝導率が
急激に低下するおそれがあるため、焼結温度は上記範囲
に設定される。Next, the plurality of sheet-shaped compacts that have been degreased are stacked in multiple stages in a firing furnace through a sieving powder made of, for example, ceramics sintered powder. And sintered at a predetermined temperature. For the sintering operation, the molded body is heated to a temperature of 16 in a non-oxidizing atmosphere such as nitrogen gas.
It is carried out by heating at 50 to 1900 ° C. for about 2 to 10 hours. In particular, by adding the Si component, 1720-1
It becomes possible to sinter at a temperature of about 780 ° C., which is lower than the conventional temperature. The sintering atmosphere may be a non-oxidizing atmosphere that does not react with AlN, but is usually a nitrogen gas or a reducing atmosphere containing nitrogen gas. H 2 gas or CO gas may be used as the reducing gas. The sintering may be performed in an atmosphere including vacuum (including a slight reducing atmosphere), reduced pressure, increased pressure and normal pressure. When sintered at a low temperature such as a sintering temperature of less than 1650 ° C., although it depends on the particle size of the raw material powder and the amount of oxygen contained, it is difficult to densify, and problems such as strength and thermal conductivity tend to occur. When firing at a temperature higher than ℃, the vapor pressure of AlN itself in the firing furnace becomes high, which may make densification difficult and the thermal conductivity may sharply decrease. Therefore, the sintering temperature is set to the above range. .
【0023】そして上記AlN原料粉末に焼結助剤およ
びSi成分を添加した所定の組成を有する原料混合体を
成形、脱脂、焼結することにより、平均結晶粒径が1〜
4μm程度である微細な結晶組織を有し、熱伝導率が1
50W/m・K以上であり、かつ曲げ強度が50kg/mm
2 以上である高強度のAlN焼結体が得られる。Then, a raw material mixture having a predetermined composition in which a sintering aid and a Si component are added to the above AlN raw material powder is molded, degreased and sintered to obtain an average crystal grain size of 1 to 1.
It has a fine crystal structure of about 4 μm and a thermal conductivity of 1
50 W / mK or more, and bending strength of 50 kg / mm
A high-strength AlN sintered body of 2 or more can be obtained.
【0024】[0024]
【作用】上記構成に係る窒化アルミニウム焼結体および
その製造方法によれば、周期律表IIIa族元素,Ca,S
r,Baの酸化物から成る焼結助剤とともに所定量のS
i成分を複合添加してAlN焼結体としているため、S
i成分によって結晶粒成長が効果的に抑止され、微細な
結晶組織が得られる。したがって、強度特性に優れた窒
化アルミニウム焼結体が得られる。According to the aluminum nitride sintered body and the method of manufacturing the same having the above-described structure, the group IIIa elements, Ca, and S of the periodic table are used.
A predetermined amount of S together with a sintering aid composed of oxides of r and Ba
Since an iN component is added in combination to form an AlN sintered body, S
The crystal grain growth is effectively suppressed by the i component, and a fine crystal structure is obtained. Therefore, an aluminum nitride sintered body having excellent strength characteristics can be obtained.
【0025】[0025]
【実施例】次に下記の実施例を参照して本発明に係る窒
化アルミニウム焼結体をより具体的に説明する。EXAMPLES Next, the aluminum nitride sintered body according to the present invention will be described more specifically with reference to the following examples.
【0026】実施例1〜26 不純物として酸素を0.8重量%含有し、平均粒径1μ
mの窒化アルミニウム粉末に対して、表1に示すように
Si成分および焼結助剤としてのY2 O3 ,WO3 ,T
iO2 ,ZrO2 ,HfO2 ,Nb2 O5 ,Ta
2 O5 ,MoO3 ,CaO,BaO,SrO,Nd2 O
5 をそれぞれ所定量ずつ添加し、エチルアルコールを溶
媒としてボールミルで20時間混合して原料混合体を調
製した。次にこの原料混合体に有機バインダとしてのポ
リビニルアルコール(PVA)を5.5重量%添加して
造粒粉を調製した。 Examples 1 to 26 0.8 wt% oxygen was contained as an impurity, and the average particle size was 1 μm.
As shown in Table 1, with respect to the aluminum nitride powder of m, Y 2 O 3 , WO 3 , and T as Si components and sintering aids were used.
iO 2 , ZrO 2 , HfO 2 , Nb 2 O 5 , Ta
2 O 5 , MoO 3 , CaO, BaO, SrO, Nd 2 O
5 was added in a predetermined amount, and ethyl alcohol was used as a solvent and mixed in a ball mill for 20 hours to prepare a raw material mixture. Next, 5.5 wt% of polyvinyl alcohol (PVA) as an organic binder was added to this raw material mixture to prepare granulated powder.
【0027】次に得られた造粒粉をプレス成形機の成形
用金型内に充填して1200kg/cm2 の加圧力にて一軸方向
に圧縮成形して、縦50mm×横50mm×厚さ5mmの角板
状成形体を多数調製した。引き続き各成形体を窒素ガス
雰囲気中で700℃で1時間加熱して脱脂処理した。Next, the obtained granulated powder is filled in a molding die of a press molding machine and compression-molded in a uniaxial direction with a pressing force of 1200 kg / cm 2 , to obtain a length of 50 mm × width of 50 mm × thickness. A large number of 5 mm square plate-shaped compacts were prepared. Subsequently, each molded body was heated in a nitrogen gas atmosphere at 700 ° C. for 1 hour to be degreased.
【0028】次に脱脂処理した各成形体をAlN製焼成
容器内に収容し、焼成炉において表1に示す焼成下限温
度1720〜1780℃で4時間緻密化焼結を実施し、
その後冷却速度200℃/hrで冷却してそれぞれ実施例
1〜26に係るAlN焼結体製造した。Next, the degreased compacts were placed in an AlN firing container, and densified and sintered at a firing lower limit temperature of 1720 to 1780 ° C. shown in Table 1 for 4 hours in a firing furnace.
After that, cooling was performed at a cooling rate of 200 ° C./hr to manufacture AlN sintered bodies according to Examples 1 to 26, respectively.
【0029】比較例1 一方、Si成分を全く添加せず、従来の焼結助剤のみを
添加し1800℃で焼結した以外は実施例1と同一条件
で原料調整、成形、脱脂、焼結処理して同一寸法を有す
る比較例1に係るAlN焼結体を製造した。 Comparative Example 1 On the other hand, the raw material preparation, molding, degreasing and sintering were carried out under the same conditions as in Example 1 except that the Si component was not added at all and only the conventional sintering aid was added and sintered at 1800 ° C. Then, an AlN sintered body according to Comparative Example 1 having the same dimensions was manufactured.
【0030】比較例2 また、Si成分としてのSiO2 を過剰量0.3重量%
(Si換算)添加した以外は実施例3と同一条件で処理
して比較例2に係るAlN焼結体を製造した。 Comparative Example 2 Also, an excessive amount of SiO 2 as a Si component was 0.3% by weight.
An AlN sintered body according to Comparative Example 2 was manufactured by treating under the same conditions as in Example 3 except that (Si conversion) was added.
【0031】比較例3 焼結助剤としてのY2 O3 を過剰量15重量%添加し、
かつ1800℃で焼結した以外は実施例3と同様に処理
して比較例3に係るAlN焼結体を製造した。 Comparative Example 3 An excess amount of 15% by weight of Y 2 O 3 as a sintering aid was added,
An AlN sintered body according to Comparative Example 3 was manufactured in the same manner as in Example 3 except that it was sintered at 1800 ° C.
【0032】比較例4 焼結助剤としてY2 O3 に加えてWO3 を1重量%添加
するとともに、Si成分としてのSi3 N4 を過剰量
0.3重量%(Si換算)添加し、かつ1800℃で焼
結した以外は実施例11と同様に処理して比較例4に係
るAlN焼結体を製造した。 Comparative Example 4 In addition to Y 2 O 3 as a sintering aid, 1% by weight of WO 3 was added, and Si 3 N 4 as a Si component was added in an excessive amount of 0.3% by weight (converted to Si). And the same treatment as in Example 11 except that the AlN sintered body according to Comparative Example 4 was manufactured.
【0033】こうして得られた実施例1〜26および比
較例1〜4に係る各AlN焼結体の強度特性および放熱
特性を評価するために、各試料の3点曲げ強度、熱伝導
率および平均結晶粒径を測定し、下記表1に示す結果を
得た。In order to evaluate the strength characteristics and heat dissipation characteristics of the AlN sintered bodies according to Examples 1 to 26 and Comparative Examples 1 to 4 thus obtained, the three-point bending strength, thermal conductivity and average of each sample were evaluated. The crystal grain size was measured and the results shown in Table 1 below were obtained.
【0034】[0034]
【表1】 [Table 1]
【0035】上記表1に示す結果から明らかなように、
Y2 O3 ,CaO等の焼結助剤に加えてSi成分を微量
ずつ複合添加した実施例1〜26に係るAlN焼結体に
おいては、結晶粒径がいずれも2.5〜4μmと極めて
微細であり、曲げ強度および熱伝導率が共に優れている
ことが判明した。As is clear from the results shown in Table 1 above,
In the AlN sintered bodies according to Examples 1 to 26 in which a small amount of the Si component was added in addition to the sintering aids such as Y 2 O 3 and CaO, the crystal grain size was extremely 2.5 to 4 μm. It was found to be fine and both bending strength and thermal conductivity were excellent.
【0036】一方、Si成分を全く添加しない比較例1
に係るAlN焼結体は、熱伝導率においては実施例1〜
26より優れている反面、曲げ強度が低く、耐久性およ
び取扱性において難点がある。またSi成分を過量に添
加した比較例2および比較例4の試料では、熱伝導率が
不充分となり、また従来の焼結助剤としてのY2 O3を
過量に添加した比較例3の試料では、Si成分を添加し
たにも拘らず、熱伝導率および強度が共に低下すること
が確認された。On the other hand, Comparative Example 1 in which no Si component is added
The AlN sintered body according to Example 1 has a thermal conductivity of Examples 1 to 1.
Although it is superior to No. 26, it has low bending strength and has problems in durability and handleability. Further, the samples of Comparative Examples 2 and 4 in which the Si component was added in an excessive amount had insufficient thermal conductivity, and the samples of Comparative Example 3 in which the conventional sintering aid Y 2 O 3 was added in an excessive amount. Then, it was confirmed that the thermal conductivity and the strength were both reduced, despite the addition of the Si component.
【0037】また実施例1〜26に係る各AlN焼結体
表面部を走査型電子顕微鏡(SEM)にて観察したとこ
ろ、いずれも図1に示すように、微細なAlN結晶粒子
の周辺に粒界相が均一に分散形成されていることが確認
された。一方、比較例1に係る焼結体においては、Si
成分の添加による粒成長抑制効果が少ないため、図2に
示すようにAlN粒子自体も粗大であり、隣接するAl
N粒子の周辺に粗大な粒界相が凝集されるように形成さ
れていた。Further, the surface portions of the AlN sintered bodies according to Examples 1 to 26 were observed by a scanning electron microscope (SEM). As a result, as shown in FIG. It was confirmed that the boundary phase was uniformly dispersed and formed. On the other hand, in the sintered body according to Comparative Example 1, Si
Since the grain growth suppressing effect by the addition of the components is small, the AlN particles themselves are also coarse as shown in FIG.
It was formed so that a coarse grain boundary phase was aggregated around the N particles.
【0038】[0038]
【発明の効果】以上説明の通り本発明に係るセラミック
ス焼結体およびその製造方法によれば、周期律表IIIa族
元素,Ca,Sr,Baの酸化物から成る焼結助剤とと
もに所定量のSi成分を複合添加してAlN焼結体とし
ているため、Si成分による結晶粒成長が効果的に抑止
され、微細な結晶組織が得られる。したがって、強度特
性に優れた窒化アルミニウム焼結体が得られる。As described above, according to the ceramic sintered body and the method of manufacturing the same according to the present invention, a predetermined amount of the sintering aid including the group IIIa element of the periodic table, oxides of Ca, Sr, and Ba is used. Since an AlN sintered body is obtained by adding a Si component in combination, the crystal grain growth due to the Si component is effectively suppressed, and a fine crystal structure is obtained. Therefore, an aluminum nitride sintered body having excellent strength characteristics can be obtained.
【図1】本発明に係る窒化アルミニウム焼結体の結晶組
織を示す走査型電子顕微鏡写真。FIG. 1 is a scanning electron micrograph showing a crystal structure of an aluminum nitride sintered body according to the present invention.
【図2】従来の窒化アルミニウム焼結体の結晶組織を示
す走査型電子顕微鏡写真。FIG. 2 is a scanning electron micrograph showing a crystal structure of a conventional aluminum nitride sintered body.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年5月17日[Submission date] May 17, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【書類名】 明細書[Document name] Statement
【発明の名称】 窒化アルミニウム焼結体およびその製
造方法Title: Aluminum nitride sintered body and method for producing the same
【特許請求の範囲】[Claims]
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は、半導体基板等に使用さ
れる窒化アルミニウム焼結体およびその製造方法に係
り、特に窒化アルミニウム特有の熱伝導性を損うことな
く、強度を大幅に改善し、放熱性に優れた窒化アルミニ
ウム焼結体および製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body used for a semiconductor substrate or the like and a method for manufacturing the same, and in particular, it significantly improves strength without impairing the thermal conductivity peculiar to aluminum nitride. The present invention relates to an aluminum nitride sintered body excellent in heat dissipation and a manufacturing method.
【0002】[0002]
【従来の技術】従来の金属材料と比較して強度、耐熱
性、耐食性、耐摩耗性、軽量性などの諸特性に優れたセ
ラミックス焼結体が、半導体基板、電子機器材料、エン
ジン用部材、高速切削工具用材料、ノズル、ベアリング
など、従来の金属材料の及ばない苛酷な温度、応力、摩
耗条件下で使用される機械部品、機能部品、構造材や装
飾品材料として広く利用されている。2. Description of the Related Art Sintered ceramics, which are superior in properties such as strength, heat resistance, corrosion resistance, wear resistance, and lightness, compared with conventional metal materials, are used in semiconductor substrates, electronic equipment materials, engine members, It is widely used as a material for high speed cutting tools, nozzles, bearings, and other mechanical parts, functional parts, structural materials and ornamental materials used under severe temperature, stress and wear conditions that conventional metal materials do not have.
【0003】特に窒化アルミニウム(AlN)焼結体は
高熱伝導性を有する絶縁体であり、シリコン(Si)に
近い熱膨張係数を有することから高集積化した半導体装
置の放熱板や基板として、その用途を拡大している。In particular, an aluminum nitride (AlN) sintered body is an insulator having a high thermal conductivity and has a coefficient of thermal expansion close to that of silicon (Si). Therefore, the aluminum nitride (AlN) sintered body is used as a heat sink or a substrate of a highly integrated semiconductor device. Expanding applications.
【0004】従来上記窒化アルミニウム焼結体は一般的
に下記の製造方法によって量産されている。すなわち、
窒化アルミニウム原料粉末に焼結助剤と、有機バインダ
と、必要に応じて各種添加剤や溶媒、分散剤とを添加し
て原料混合体を調製し、得られた原料混合体をドクター
ブレード法や泥漿鋳込み法によって成形し、薄板状ない
しシート状の成形体としたり、原料混合体をプレス成形
して厚板状ないし大型の成形体を形成する。次に得られ
た成形体は、空気または窒素ガス雰囲気において加熱さ
れ脱脂処理され、有機バインダとして使用された炭化水
素成分等が成形体から排除脱脂される。そして脱脂され
た成形体は窒素ガス雰囲気等で高温度に加熱され緻密化
焼結されて窒化アルミニウム焼結体が形成される。Conventionally, the above-mentioned aluminum nitride sintered body is generally mass-produced by the following manufacturing method. That is,
A sintering aid to the aluminum nitride raw material powder, an organic binder, and various additives and solvents as required, to prepare a raw material mixture by adding a dispersant, the resulting raw material mixture doctor blade method or A thin plate-shaped or sheet-shaped molded body is formed by the slurry casting method, or a raw material mixture is press-molded to form a thick plate-shaped or large-sized molded body. Next, the obtained molded product is heated and degreased in an atmosphere of air or nitrogen gas to remove and degrease the hydrocarbon components and the like used as the organic binder from the molded product. The degreased compact is heated to a high temperature in a nitrogen gas atmosphere or the like and densified and sintered to form an aluminum nitride sintered compact.
【0005】上記製造方法において、原料AlN粉末と
して平均粒径が0.5μm以下程度の超微細な原料粉末
を使用する場合は、AlN粉末単独でもかなりの緻密な
焼結体が得られる。しかしながら、原料粉末表面等に付
着した多量の酸素等の不純物が焼結時に、AlN結晶格
子中に固溶したり、格子振動の伝播を妨げるAl−O−
N化合物等の複合酸化物を生成する結果、焼結助剤を使
用しないAlN焼結体の熱伝導率は比較的に低かった。In the above manufacturing method, when an ultrafine raw material powder having an average particle diameter of about 0.5 μm or less is used as the raw material AlN powder, a considerably dense sintered body can be obtained by using the AlN powder alone. However, a large amount of impurities such as oxygen adhering to the surface of the raw material powder and the like are solid-solved in the AlN crystal lattice at the time of sintering, or Al-O- which hinders the propagation of lattice vibration.
As a result of producing a compound oxide such as an N compound, the thermal conductivity of the AlN sintered body that did not use a sintering aid was relatively low.
【0006】一方原料粉末として平均粒径1μm以上の
AlN粉末を使用する場合は、その原料粉末単独では焼
結性が良好でないため、ホットプレス法以外には助剤無
添加では緻密な焼結体を得ることが困難であり、量産性
が低い欠点があった。そこで常圧焼結法によって効率的
に焼結体を製造しようとする場合には、焼結体の緻密化
およびAlN原料粉末中の不純物酸素がAlN結晶粒子
内へ固溶することを防止するために、焼結助剤として、
酸化イットウリム(Y2 O3 )などの希土類酸化物や酸
化カルシウムなどのアルカリ土類金属酸化物等を添加す
ることが一般に行なわれている。On the other hand, when AlN powder having an average particle size of 1 μm or more is used as the raw material powder, the sinterability of the raw material powder alone is not good. Was difficult to obtain, and there was a drawback that mass productivity was low. Therefore, in order to efficiently manufacture a sintered body by the atmospheric pressure sintering method, in order to prevent the densification of the sintered body and the impurity oxygen in the AlN raw material powder from forming a solid solution in the AlN crystal grains. In addition, as a sintering aid,
It is generally practiced to add rare earth oxides such as yttrium oxide (Y 2 O 3 ) and alkaline earth metal oxides such as calcium oxide.
【0007】これらの焼結助剤は、AlN原料粉末に含
まれる不純物酸素やAl2 O3 と反応して液相を形成
し、焼結体の緻密化を達成するとともに、この不純物酸
素を粒界相として固定し、高熱伝導率化も達成するもの
と考えられている。These sintering aids react with the impurity oxygen and Al 2 O 3 contained in the AlN raw material powder to form a liquid phase to achieve the densification of the sintered body, and at the same time, to form the impurity oxygen into particles. It is believed that it can be fixed as a phase phase and achieve high thermal conductivity.
【0008】[0008]
【発明が解決しようとする課題】しかしながら上記従来
の製造方法においては、本来、AlNと液相化合物との
濡れ性が低く、また液相自体が偏析し易い性質を有する
ことから、焼結後に液相が凝固する際に、液相はAlN
粒子の間隙部に偏在するように残留し、凝固して粗大で
脆弱な粒界相を形成する傾向がある。また、結晶粒の粒
成長が進行し易く、図2に示すように平均粒径が5〜1
0μmと粗大な結晶粒が形成され易く、また微小な気孔
が消滅せずに結晶粒内に残存し、焼結体の緻密化を阻害
し、最終的に3点曲げ強度が35〜40kg/mm2 程度の
低強度の窒化アルミニウム焼結体しか得られない問題点
があった。However, in the above-mentioned conventional production method, since the wettability between AlN and the liquid phase compound is originally low and the liquid phase itself tends to segregate, the liquid after the sintering is dissolved. When the phase solidifies, the liquid phase is AlN
It tends to remain so as to be unevenly distributed in the interstices of the grains and to solidify to form a coarse and brittle grain boundary phase. Further, the grain growth of crystal grains is likely to proceed, and as shown in FIG. 2, the average grain size is 5 to 1
Coarse crystal grains with a size of 0 μm are easily formed, and minute pores do not disappear but remain in the crystal grains, hindering the densification of the sintered body, and finally the three-point bending strength is 35-40 kg / mm. There is a problem that only a low-strength aluminum nitride sintered body of about 2 can be obtained.
【0009】近年、半導体素子の高集積化、高出力化に
伴って増加する発熱量に対応するために、高熱伝導性
(高放熱性)を有する上記窒化アルミニウム材料が普及
しつつあり、その放熱性については大体満足する結果が
得られている。しかしながら上記のように構造部材とし
ての強度が不足するため、例えば窒化アルミニウム焼結
体で形成した半導体基板を実装ボードに装着する際に作
用する僅かな曲げ応力や取扱時に作用する衝撃力にって
半導体基板が損傷し、半導体回路基板の製造歩留りが大
幅に低下してしまう問題点があった。In recent years, the above-mentioned aluminum nitride material having high thermal conductivity (high heat dissipation) is becoming widespread in order to cope with the heat generation amount which is increased with the high integration and high output of semiconductor elements. As for sex, generally satisfactory results have been obtained. However, as described above, the strength as a structural member is insufficient. Therefore, for example, a slight bending stress that acts when mounting a semiconductor substrate formed of an aluminum nitride sintered body on a mounting board or an impact force that acts during handling There is a problem that the semiconductor substrate is damaged and the manufacturing yield of the semiconductor circuit substrate is significantly reduced.
【0010】本発明は上記の問題点を解決するためにな
されたものであり、AlN焼結体の粒成長を抑制し、焼
結体組織を微細化して焼結体の強度の向上および均一化
を図り、放熱特性を損うことなく機械的強度を高めたA
lN焼結体およびその製造方法を提供することを目的と
する。The present invention has been made in order to solve the above problems, and suppresses grain growth of an AlN sintered body and refines the structure of the sintered body to improve the strength and make the sintered body uniform. To improve the mechanical strength without sacrificing heat dissipation characteristics
An object is to provide an IN sintered body and a method for manufacturing the same.
【0011】[0011]
【課題を解決するための手段】本願発明者は上記目的を
達成するため、原料窒化アルミニウム粉末に添加する焼
結助剤や添加物の種類や添加量を種々変えて、それらが
焼結体の結晶組織、強度特性および伝熱特性に及ぼす影
響について実験検討を進めた。In order to achieve the above-mentioned object, the inventors of the present invention have variously changed the types and amounts of the sintering aids and additives to be added to the raw material aluminum nitride powder, and Experimental studies were conducted on the effects on the crystal structure, strength characteristics and heat transfer characteristics.
【0012】その結果、所定の焼結助剤の他に添加剤と
してのSi成分を複合的に微量添加したときに、結晶粒
径が1〜4μmと微細である焼結体組織が得られ、強度
特性が優れたAlN焼結体が得られた。本発明は上記知
見に基づいて完成されたものである。As a result, when a small amount of Si component as an additive is added in addition to a predetermined sintering aid, a sintered body structure having a fine crystal grain size of 1 to 4 μm is obtained, An AlN sintered body having excellent strength characteristics was obtained. The present invention has been completed based on the above findings.
【0013】すなわち本発明に係る窒化アルミニウム焼
結体は、周期律表IIIa族元素,Ca,Sr,Baから選
択される少なくとも1種の元素の酸化物を1〜10重量
%含有するとともに、Si成分濃度が0.01〜0.2
重量%であることを特徴とする。またSi成分は、Si
O2 ,Si3 N4 ,SiCおよびSi2 N2 Oから選択
された少なくとも1種のけい素化合物として含有させる
とよい。さらにTi,Zr,Hf,Nb,Ta,Mo,
Wから選択される少なくとも1種の金属元素を酸化物換
算で0.1〜0.5重量%含有させるとよい。またF
e,Mg等の不純物陽イオンの含有量は0.2重量%以
下にするとよい。さらに焼結体の平均結晶粒径が1〜4
μmであることを特徴とする。そして上記組成から成る
AlN焼結体は、熱伝導率が150W/m・K以上であ
り、また3点曲げ強度が50kg/mm2以上となる。That is, the aluminum nitride sintered body according to the present invention contains 1 to 10% by weight of an oxide of at least one element selected from the group IIIa elements of the periodic table, Ca, Sr and Ba, and Si Component concentration is 0.01-0.2
It is characterized in that it is wt%. The Si component is Si
It may be contained as at least one silicon compound selected from O 2 , Si 3 N 4 , SiC and Si 2 N 2 O. Furthermore, Ti, Zr, Hf, Nb, Ta, Mo,
At least one metal element selected from W may be contained in an amount of 0.1 to 0.5% by weight in terms of oxide. Also F
The content of impurity cations such as e and Mg is preferably 0.2% by weight or less. Furthermore, the average crystal grain size of the sintered body is 1 to 4
It is characterized by being μm. The AlN sintered body having the above composition has a thermal conductivity of 150 W / m · K or more and a three-point bending strength of 50 kg / mm 2 or more.
【0014】また本発明に係る窒化アルミニウム焼結体
の製造方法は、Fe,Mg等の不純物陽イオンの含有量
が0.2重量%以下である窒化アルミニウム原料粉末
に、周期律表IIIa族元素,Ca,Sr,Baから選択さ
れる少なくとも1種の元素の酸化物1〜10重量%と、
Si成分0.01〜0.2重量%とを添加した混合粉末
を成形し、得られた成形体を非酸化性雰囲気中で165
0〜1900℃の温度域で焼結することを特徴とする。In the method for producing an aluminum nitride sintered body according to the present invention, an aluminum nitride raw material powder containing 0.2% by weight or less of impurity cations such as Fe and Mg is added to a group IIIa element of the periodic table. , 1 to 10% by weight of an oxide of at least one element selected from Ca, Sr and Ba,
A mixed powder added with 0.01 to 0.2 wt% of Si component is molded, and the obtained molded body is subjected to 165 in a non-oxidizing atmosphere.
It is characterized in that it is sintered in a temperature range of 0 to 1900 ° C.
【0015】本発明方法において使用され、焼結体の主
成分となる窒化アルミニウム原料(AlN)粉末として
は、焼結性および熱伝導性を考慮して不純物酸素含有量
が1.5重量%以下に抑制され、平均粒径が0.5〜2
μm程度、好ましくは1.5μm以下の微細なAlN粉
末を使用する。The aluminum nitride raw material (AlN) powder used in the method of the present invention as the main component of the sintered body has an impurity oxygen content of 1.5% by weight or less in consideration of sinterability and thermal conductivity. Is suppressed to an average particle size of 0.5 to 2
A fine AlN powder of about μm, preferably 1.5 μm or less is used.
【0016】周期律表IIIa族元素,Ca,Sr,Baの
酸化物は、焼結助剤として作用し、AlN焼結体を緻密
化するために、AlN原料粉末に対して1〜10重量%
の範囲で添加される。上記焼結助剤の具体例としては希
土類元素(Y,Sc,Ce,Dyなど)の酸化物、窒化
物、アルカリ土類金属(Ca)の酸化物、もしくは焼結
操作によりこれらの化合物となる物質が使用され、特に
酸化イットリウム(Y2 O3 )、酸化セリウム(Ce
O)や酸化カルシウム(CaO)が好ましい。上記焼結
助剤の添加量が1重量%未満の場合は、焼結性の改善効
果が充分に発揮されず、焼結体が緻密化されず低強度の
焼結体が形成されたり、AlN結晶中に酸素が固溶し、
高い熱伝導率を有する焼結体が形成できない。一方添加
量が10重量%を超える過量となると、焼結助剤として
の効果は飽和状態に達して無意味となるばかりでなく、
却って焼結して得られるAlN焼結体の熱伝導率が低下
する一方、粒界相が焼結体中に多量に残存したり、熱処
理により除去される粒界相の体積が大きいため、焼結体
中に空孔が残ったりして収縮率が増大し、変形を生じ易
くなる。The oxide of group IIIa element of the periodic table, Ca, Sr, and Ba acts as a sintering aid, and in order to densify the AlN sintered body, 1 to 10% by weight based on the AlN raw material powder.
It is added in the range of. Specific examples of the above-mentioned sintering aid include oxides of rare earth elements (Y, Sc, Ce, Dy, etc.), nitrides, oxides of alkaline earth metals (Ca), or compounds obtained by a sintering operation. Materials are used, especially yttrium oxide (Y 2 O 3 ), cerium oxide (Ce
O) and calcium oxide (CaO) are preferred. When the amount of the sintering aid added is less than 1% by weight, the effect of improving the sinterability is not sufficiently exerted, the sintered body is not densified and a low-strength sintered body is formed, or AlN Oxygen dissolved in the crystal,
A sintered body having a high thermal conductivity cannot be formed. On the other hand, if the addition amount exceeds 10% by weight, not only the effect as a sintering aid reaches a saturated state and becomes meaningless, but
On the contrary, the thermal conductivity of the AlN sintered body obtained by sintering is lowered, while a large amount of the grain boundary phase remains in the sintered body, and the volume of the grain boundary phase removed by heat treatment is large. Voids may remain in the tying body, increasing the shrinkage rate and making it more likely to cause deformation.
【0017】Si成分は、焼結性を向上させるとともに
焼結温度を低下させる効果を有するが、特に上記焼結助
剤と複合添加することにより、焼結体の粒成長を抑止す
ることができ、微細なAlN結晶組織を形成し、焼結体
の構造強度を高めるために添加される。上記Si成分と
しては、SiO2 ,Si3 N4 ,SiCおよびSi2 N
2 O等のけい素化合物を使用することが望ましい。この
けい素化合物の含有量はSi成分として0.01〜0.
2重量%の範囲に調整される。Si成分の含有量が0.
01重量%未満の場合は、粒成長の抑止効果が不充分と
なり、粗大な結晶組織となり、高強度のAlN焼結体が
得られない。一方、含有量が0..2重量%を超える過
量となると、焼結体の熱伝導率が低下するとともに、曲
げ強度が低下する場合もある。The Si component has the effect of improving the sinterability and lowering the sintering temperature, but grain growth of the sintered body can be suppressed by adding it in combination with the above-mentioned sintering aid. , Is added to form a fine AlN crystal structure and enhance the structural strength of the sintered body. Examples of the Si component include SiO 2 , Si 3 N 4 , SiC and Si 2 N.
It is desirable to use silicon compounds such as 2 O. The content of this silicon compound is 0.01 to 0.
It is adjusted to the range of 2% by weight. The content of Si component is 0.
If it is less than 01% by weight, the effect of suppressing the grain growth becomes insufficient, and the crystal structure becomes coarse, so that a high-strength AlN sintered body cannot be obtained. On the other hand, the content is 0. . If the amount exceeds 2% by weight, the thermal conductivity of the sintered body may decrease and the bending strength may decrease.
【0018】Ti,Zr,Hf,Nb,Ta,Mo,W
の酸化物は、焼結温度を下げて焼結性を向上させる一
方、着色して不透明な焼結体を形成する等、AlN焼結
体の特性を改善するために有効であり、酸化物換算で
0.1〜0.5重量%の範囲で添加してもよい。添加量
が0.1重量%未満の場合は、上記特性改善効果が不充
分となる一方、添加量が0.5重量%を超える過量とな
ると、他の不純物と同様にAlN焼結体の熱伝導率を低
下させる。Ti, Zr, Hf, Nb, Ta, Mo, W
The oxide of is effective for improving the characteristics of the AlN sintered body such as forming an opaque sintered body by coloring while lowering the sintering temperature to improve the sinterability. It may be added in the range of 0.1 to 0.5% by weight. If the added amount is less than 0.1% by weight, the above characteristic improving effect is insufficient, while if the added amount is more than 0.5% by weight, the heat of the AlN sintered body is increased like other impurities. Reduces conductivity.
【0019】またFe,Mg等の不純物陽イオンはAl
N焼結体の熱伝導を阻害する化合物を形成し易いため、
AlN焼結体中の含有量は0.2重量%以下に設定され
る。Impurity cations such as Fe and Mg are Al
Since it is easy to form a compound that inhibits the heat conduction of the N sintered body,
The content in the AlN sintered body is set to 0.2% by weight or less.
【0020】上記AlN原料粉末、各種焼結助剤および
Si成分用Si化合物は、例えばボールミル等の粉砕混
合機に投入され、所定時間混合されることによって原料
混合体となる。次に得られた原料混合体を所定形状の金
型に充填し加圧成形して成形体が形成される。このとき
予め原料混合体にパラフィン、ステアリン酸等の有機バ
インダを5〜10重量%添加しておくことにより、成形
操作を円滑に実施することができる。The above AlN raw material powder, various sintering aids and Si compound for Si component are put into a pulverizing mixer such as a ball mill and mixed for a predetermined time to form a raw material mixture. Next, the obtained raw material mixture is filled in a mold having a predetermined shape and pressure-molded to form a molded body. At this time, by adding 5 to 10% by weight of an organic binder such as paraffin and stearic acid to the raw material mixture in advance, the molding operation can be smoothly carried out.
【0021】成形法としては、汎用の金型プレス法、泥
漿鋳込み法、静水圧プレス法、あるいはドクターブレー
ド法のようなシート成形法などが適用できる。As a forming method, a general-purpose die pressing method, a slurry casting method, a hydrostatic pressing method, or a sheet forming method such as a doctor blade method can be applied.
【0022】上記成形操作に引き続いて、成形体を空気
中で400〜550℃に加熱したり、または非酸化性雰
囲気中、例えば窒素ガス雰囲気中で温度400〜800
℃に加熱して、予め添加していた有機バインダを充分に
脱脂除去する。Subsequent to the above molding operation, the molded body is heated to 400 to 550 ° C. in air, or in a non-oxidizing atmosphere, for example, a nitrogen gas atmosphere, at a temperature of 400 to 800.
By heating to 0 ° C., the previously added organic binder is thoroughly degreased and removed.
【0023】次に脱脂処理された複数のシート状の成形
体は、例えばセラミックス焼結粉から成るしき粉を介し
て焼成炉内において多段に積層され、この配置状態で複
数の成形体は一括して所定温度で焼結される。焼結操作
は、窒素ガスなどの非酸化性雰囲気で成形体を温度16
50〜1900℃で2〜10時間程度加熱して実施され
る。特にSi成分を添加することにより、1720〜1
780℃程度と従来より低い温度で焼結することが可能
となる。焼結雰囲気は、AlNと反応しない非酸化性雰
囲気あればよいが、通常は窒素ガス、または窒素ガスを
含む還元性雰囲気で行なう。還元性ガスとしてはH2 ガ
ス、COガスを使用してもよい。なお、焼結は真空(僅
かな還元雰囲気を含む)、減圧、加圧および常圧を含む
雰囲気で行なってもよい。焼結温度が1650℃未満と
低温状態で焼成すると、原料粉末の粒径、含有酸素量に
よって異なるが、緻密化が困難であり、強度および熱伝
導性などの特性に難点が生じ易い一方、1900℃より
高温度で焼成すると、焼成炉内におけるAlN自体の蒸
気圧が高くなり緻密化が困難になるとともに熱伝導率が
急激に低下するおそれがあるため、焼結温度は上記範囲
に設定される。Next, the plurality of sheet-shaped compacts that have been degreased are stacked in multiple stages in a firing furnace through a grain powder made of, for example, ceramics sintered powder, and in this arrangement state, the plurality of compacts are packaged together. And sintered at a predetermined temperature. For the sintering operation, the molded body is heated to a temperature of 16 in a non-oxidizing atmosphere such as nitrogen gas.
It is carried out by heating at 50 to 1900 ° C. for about 2 to 10 hours. In particular, by adding the Si component, 1720-1
It becomes possible to sinter at a temperature of about 780 ° C., which is lower than the conventional temperature. The sintering atmosphere may be a non-oxidizing atmosphere that does not react with AlN, but is usually a nitrogen gas or a reducing atmosphere containing nitrogen gas. H 2 gas or CO gas may be used as the reducing gas. The sintering may be performed in an atmosphere including vacuum (including a slight reducing atmosphere), reduced pressure, increased pressure and normal pressure. When sintered at a low temperature such as a sintering temperature of less than 1650 ° C., although it depends on the particle size of the raw material powder and the amount of oxygen contained, it is difficult to densify, and problems such as strength and thermal conductivity tend to occur. When firing at a temperature higher than ℃, the vapor pressure of AlN itself in the firing furnace becomes high, which may make densification difficult and the thermal conductivity may sharply decrease. Therefore, the sintering temperature is set to the above range. .
【0024】そして上記AlN原料粉末に焼結助剤およ
びSi成分を添加した所定の組成を有する原料混合体を
成形、脱脂、焼結することにより、平均結晶粒径が1〜
4μm程度である微細な結晶組織を有し、熱伝導率が1
50W/m・K以上であり、かつ曲げ強度が50kg/mm
2 以上である高強度のAlN焼結体が得られる。Then, a raw material mixture having a predetermined composition in which a sintering aid and a Si component are added to the above AlN raw material powder is molded, degreased and sintered to obtain an average crystal grain size of 1 to 1.
It has a fine crystal structure of about 4 μm and a thermal conductivity of 1
50 W / mK or more, and bending strength of 50 kg / mm
A high-strength AlN sintered body of 2 or more can be obtained.
【0025】[0025]
【作用】上記構成に係る窒化アルミニウム焼結体および
その製造方法によれば、周期律表IIIa族元素,Ca,S
r,Baの酸化物から成る焼結助剤とともに所定量のS
i成分を複合添加してAlN焼結体としているため、S
i成分によって結晶粒成長が効果的に抑止され、微細な
結晶組織が得られる。したがって、強度特性に優れた窒
化アルミニウム焼結体が得られる。According to the aluminum nitride sintered body and the method of manufacturing the same having the above-described structure, the group IIIa elements, Ca, and S of the periodic table are used.
A predetermined amount of S together with a sintering aid composed of oxides of r and Ba
Since an iN component is added in combination to form an AlN sintered body, S
The crystal grain growth is effectively suppressed by the i component, and a fine crystal structure is obtained. Therefore, an aluminum nitride sintered body having excellent strength characteristics can be obtained.
【0026】[0026]
【実施例】次に下記の実施例を参照して本発明に係る窒
化アルミニウム焼結体をより具体的に説明する。EXAMPLES Next, the aluminum nitride sintered body according to the present invention will be described more specifically with reference to the following examples.
【0027】実施例1〜26 不純物として酸素を0.8重量%含有し、平均粒径1μ
mの窒化アルミニウム粉末に対して、表1に示すように
Si成分および焼結助剤としてのY2 O3 ,WO3 ,T
iO2 ,ZrO2 ,HfO2 ,Nb2 O5 ,Ta
2 O5 ,MoO3 ,CaO,BaO,SrO,Nd2 O
5 をそれぞれ所定量ずつ添加し、エチルアルコールを溶
媒としてボールミルで20時間混合して原料混合体を調
製した。次にこの原料混合体に有機バインダとしてのポ
リビニルアルコール(PVA)を5.5重量%添加して
造粒粉を調製した。 Examples 1 to 26 Oxygen was added as an impurity in an amount of 0.8% by weight, and the average particle size was 1 μm.
As shown in Table 1, with respect to the aluminum nitride powder of m, Y 2 O 3 , WO 3 , and T as Si components and sintering aids were used.
iO 2 , ZrO 2 , HfO 2 , Nb 2 O 5 , Ta
2 O 5 , MoO 3 , CaO, BaO, SrO, Nd 2 O
5 was added in a predetermined amount, and ethyl alcohol was used as a solvent and mixed in a ball mill for 20 hours to prepare a raw material mixture. Next, 5.5 wt% of polyvinyl alcohol (PVA) as an organic binder was added to this raw material mixture to prepare granulated powder.
【0028】次に得られた造粒粉をプレス成形機の成形
用金型内に充填して1200kg/cm2 の加圧力にて一軸方向
に圧縮成形して、縦50mm×横50mm×厚さ5mmの角板
状成形体を多数調製した。引き続き各成形体を空気雰囲
気中で450℃で1時間加熱して脱脂処理した。Next, the obtained granulated powder is filled in a molding die of a press molding machine and compression-molded in a uniaxial direction with a pressing force of 1200 kg / cm 2 , to obtain a length of 50 mm × width of 50 mm × thickness. A large number of 5 mm square plate-shaped compacts were prepared. Subsequently, each molded body was heated in an air atmosphere at 450 ° C. for 1 hour to be degreased.
【0029】次に脱脂処理した各成形体をAlN製焼成
容器内に収容し、焼成炉において表1に示す焼成下限温
度1720〜1780℃で4時間緻密化焼結を実施し、
その後冷却速度200℃/hrで冷却してそれぞれ実施例
1〜26に係るAlN焼結体製造した。Next, the degreased compacts were placed in an AlN firing container and densified and sintered at a firing lower limit temperature of 1720 to 1780 ° C. shown in Table 1 for 4 hours in a firing furnace.
After that, cooling was performed at a cooling rate of 200 ° C./hr to manufacture AlN sintered bodies according to Examples 1 to 26, respectively.
【0030】比較例1 一方、Si成分を全く添加せず、従来の焼結助剤のみを
添加し1800℃で焼結した以外は実施例1と同一条件
で原料調整、成形、脱脂、焼結処理して同一寸法を有す
る比較例1に係るAlN焼結体を製造した。 Comparative Example 1 On the other hand, the raw material preparation, molding, degreasing and sintering were carried out under the same conditions as in Example 1 except that the Si component was not added at all and only the conventional sintering aid was added and sintered at 1800 ° C. Then, an AlN sintered body according to Comparative Example 1 having the same dimensions was manufactured.
【0031】比較例2 また、Si成分としてのSiO2 を過剰量0.3重量%
(Si換算)添加した以外は実施例3と同一条件で処理
して比較例2に係るAlN焼結体を製造した。 Comparative Example 2 In addition, an excessive amount of SiO 2 as a Si component was 0.3% by weight.
An AlN sintered body according to Comparative Example 2 was manufactured by treating under the same conditions as in Example 3 except that (Si conversion) was added.
【0032】比較例3 焼結助剤としてのY2 O3 を過剰量15重量%添加し、
かつ1800℃で焼結した以外は実施例3と同様に処理
して比較例3に係るAlN焼結体を製造した。 Comparative Example 3 Y 2 O 3 as a sintering aid was added in an excessive amount of 15% by weight,
An AlN sintered body according to Comparative Example 3 was manufactured in the same manner as in Example 3 except that it was sintered at 1800 ° C.
【0033】比較例4 焼結助剤としてY2 O3 に加えてWO3 を1重量%添加
するとともに、Si成分としてのSi3 N4 を過剰量
0.3重量%(Si換算)添加し、かつ1800℃で焼
結した以外は実施例11と同様に処理して比較例4に係
るAlN焼結体を製造した。 Comparative Example 4 In addition to Y 2 O 3 as a sintering aid, 1% by weight of WO 3 was added, and an excessive amount of Si 3 N 4 as a Si component was added by 0.3% by weight (converted to Si). And the same treatment as in Example 11 except that the AlN sintered body according to Comparative Example 4 was manufactured.
【0034】こうして得られた実施例1〜26および比
較例1〜4に係る各AlN焼結体の強度特性および放熱
特性を評価するために、各試料の3点曲げ強度、熱伝導
率および平均結晶粒径を測定し、下記表1に示す結果を
得た。In order to evaluate the strength characteristics and heat dissipation characteristics of the AlN sintered bodies according to Examples 1 to 26 and Comparative Examples 1 to 4 thus obtained, the three-point bending strength, the thermal conductivity and the average of each sample were evaluated. The crystal grain size was measured and the results shown in Table 1 below were obtained.
【0035】[0035]
【表1】 [Table 1]
【0036】上記表1に示す結果から明らかなように、
Y2 O3 ,CaO等の焼結助剤に加えてSi成分を微量
ずつ複合添加した実施例1〜26に係るAlN焼結体に
おいては、結晶粒径がいずれも2.5〜4μmと極めて
微細であり、曲げ強度および熱伝導率が共に優れている
ことが判明した。As is clear from the results shown in Table 1,
In the AlN sintered bodies according to Examples 1 to 26 in which a small amount of the Si component was added in addition to the sintering aids such as Y 2 O 3 and CaO, the crystal grain size was extremely 2.5 to 4 μm. It was found to be fine and both bending strength and thermal conductivity were excellent.
【0037】一方、Si成分を全く添加しない比較例1
に係るAlN焼結体は、熱伝導率においては実施例1〜
26より優れている反面、曲げ強度が低く、耐久性およ
び取扱性において難点がある。またSi成分を過量に添
加した比較例2および比較例4の試料では、熱伝導率が
不充分となり、また従来の焼結助剤としてのY2 O3を
過量に添加した比較例3の試料では、Si成分を添加し
たにも拘らず、熱伝導率および強度が共に低下すること
が確認された。On the other hand, Comparative Example 1 in which no Si component is added
The AlN sintered body according to Example 1 has a thermal conductivity of Examples 1 to 1.
Although it is superior to No. 26, it has low bending strength and has problems in durability and handleability. Further, the samples of Comparative Examples 2 and 4 in which the Si component was added in an excessive amount had insufficient thermal conductivity, and the samples of Comparative Example 3 in which the conventional sintering aid Y 2 O 3 was added in an excessive amount. Then, it was confirmed that the thermal conductivity and the strength were both reduced, despite the addition of the Si component.
【0038】また実施例1〜26に係る各AlN焼結体
表面部を走査型電子顕微鏡(SEM)にて観察したとこ
ろ、いずれも図1に示すように、微細なAlN結晶粒子
の周辺に粒界相が均一に分散形成されていることが確認
された。一方、比較例1に係る焼結体においては、Si
成分の添加による粒成長抑制効果が少ないため、図2に
示すようにAlN粒子自体も粗大であり、隣接するAl
N粒子の周辺に粗大な粒界相が凝集されるように形成さ
れていた。The surface of each AlN sintered body according to Examples 1 to 26 was observed with a scanning electron microscope (SEM). As a result, as shown in FIG. It was confirmed that the boundary phase was uniformly dispersed and formed. On the other hand, in the sintered body according to Comparative Example 1, Si
Since the grain growth suppressing effect by the addition of the components is small, the AlN particles themselves are also coarse as shown in FIG.
It was formed so that a coarse grain boundary phase was aggregated around the N particles.
【0039】[0039]
【発明の効果】以上説明の通り本発明に係るセラミック
ス焼結体およびその製造方法によれば、周期律表IIIa族
元素,Ca,Sr,Baの酸化物から成る焼結助剤とと
もに所定量のSi成分を複合添加してAlN焼結体とし
ているため、Si成分による結晶粒成長が効果的に抑止
され、微細な結晶組織が得られる。したがって、強度特
性に優れた窒化アルミニウム焼結体が得られる。As described above, according to the ceramic sintered body and the method of manufacturing the same according to the present invention, a predetermined amount of the sintering aid including the group IIIa element of the periodic table, oxides of Ca, Sr, and Ba is used. Since an AlN sintered body is obtained by adding a Si component in combination, the crystal grain growth due to the Si component is effectively suppressed, and a fine crystal structure is obtained. Therefore, an aluminum nitride sintered body having excellent strength characteristics can be obtained.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明に係る窒化アルミニウム焼結体の結晶組
織を示す走査型電子顕微鏡写真。FIG. 1 is a scanning electron micrograph showing a crystal structure of an aluminum nitride sintered body according to the present invention.
【図2】従来の窒化アルミニウム焼結体の結晶組織を示
す走査型電子顕微鏡写真。FIG. 2 is a scanning electron micrograph showing a crystal structure of a conventional aluminum nitride sintered body.
Claims (10)
から選択される少なくとも1種の元素の酸化物を1〜1
0重量%含有するとともに、Si成分濃度が0.01〜
0.2重量%であることを特徴とする窒化アルミニウム
焼結体。1. A group IIIa element of the periodic table, Ca, Sr, Ba
1 to 1 oxide of at least one element selected from
The content of Si is 0.01 to
An aluminum nitride sintered body characterized by being 0.2% by weight.
iCおよびSi2 N2 Oから選択された少なくとも1種
のけい素化合物として含有されることを特徴とする請求
項1記載の窒化アルミニウム焼結体。2. The Si component is SiO 2 , Si 3 N 4 , S
The aluminum nitride sintered body according to claim 1, which is contained as at least one silicon compound selected from iC and Si 2 N 2 O.
Wから選択される少なくとも1種の金属元素を酸化物換
算で0.1〜0.5重量%含有することを特徴とする請
求項1記載の窒化アルミニウム焼結体。3. Ti, Zr, Hf, Nb, Ta, Mo,
The aluminum nitride sintered body according to claim 1, containing 0.1 to 0.5% by weight in terms of oxide of at least one metal element selected from W.
が0.2重量%以下であることを特徴とする請求項1記
載の窒化アルミニウム焼結体。4. The aluminum nitride sintered body according to claim 1, wherein the content of impurity cations such as Fe and Mg is 0.2% by weight or less.
ることを特徴とする請求項1記載の窒化アルミニウム焼
結体。5. The aluminum nitride sintered body according to claim 1, wherein the average crystal grain size of the sintered body is 1 to 4 μm.
ことを特徴とする請求項1記載の窒化アルミニウム焼結
体。6. The aluminum nitride sintered body according to claim 1, which has a thermal conductivity of 150 W / m · K or more.
ことを特徴とする請求項1記載の窒化アルミニウム焼結
体。7. The aluminum nitride sintered body according to claim 1, which has a three-point bending strength of 50 kg / mm 2 or more.
が0.2重量%以下である窒化アルミニウム原料粉末
に、周期律表IIIa族元素,Ca,Sr,Baから選択さ
れる少なくとも1種の元素の酸化物1〜10重量%と、
Si成分0.01〜0.2重量%とを添加した混合粉末
を成形し、得られた成形体を非酸化性雰囲気中で165
0〜1900℃の温度域で焼結することを特徴とする窒
化アルミニウム焼結体の製造方法。8. An aluminum nitride raw material powder containing 0.2% by weight or less of impurity cations such as Fe and Mg, and at least one selected from Group IIIa elements of the periodic table, Ca, Sr, and Ba. 1 to 10% by weight of the oxide of the element
A mixed powder added with 0.01 to 0.2 wt% of Si component is molded, and the obtained molded body is subjected to 165 in a non-oxidizing atmosphere.
A method for producing an aluminum nitride sintered body, which comprises sintering in a temperature range of 0 to 1900 ° C.
を1.3重量%以下に設定することを特徴とする請求項
8記載の窒化アルミニウム焼結体の製造方法。9. The method for producing an aluminum nitride sintered body according to claim 8, wherein the oxidation content of the aluminum nitride raw material powder is set to 1.3% by weight or less.
を1μm以下に設定することを特徴とする請求項8記載
の窒化アルミニウム焼結体の製造方法。10. The method for producing an aluminum nitride sintered body according to claim 8, wherein the average particle diameter of the aluminum nitride raw material powder is set to 1 μm or less.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14287193A JP3742661B2 (en) | 1993-05-21 | 1993-05-21 | Aluminum nitride sintered body and method for producing the same |
EP94107781A EP0626359B1 (en) | 1993-05-21 | 1994-05-19 | Aluminum nitride sintered body and method for manufacturing the same |
DE69427722T DE69427722T2 (en) | 1993-05-21 | 1994-05-19 | Sintered body made of aluminum nitriol and process for its production |
US08/246,763 US5508240A (en) | 1993-05-21 | 1994-05-20 | Aluminum nitride sintered body and method for manufacturing the same |
KR1019940011154A KR960016070B1 (en) | 1993-05-21 | 1994-05-21 | Sintered aluminium nitride and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14287193A JP3742661B2 (en) | 1993-05-21 | 1993-05-21 | Aluminum nitride sintered body and method for producing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000085234A Division JP2000302556A (en) | 2000-01-01 | 2000-03-24 | Aluminum nitride sintered compact and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06329474A true JPH06329474A (en) | 1994-11-29 |
JP3742661B2 JP3742661B2 (en) | 2006-02-08 |
Family
ID=15325543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14287193A Expired - Lifetime JP3742661B2 (en) | 1993-05-21 | 1993-05-21 | Aluminum nitride sintered body and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3742661B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997003031A1 (en) * | 1995-07-11 | 1997-01-30 | Kabushiki Kaisha Toshiba | Aluminum nitride sinter and process for the production thereof |
JPH11310462A (en) * | 1998-04-28 | 1999-11-09 | Kyocera Corp | Aluminum nitride sintered body and method for producing the same |
JP2000327424A (en) * | 1999-05-12 | 2000-11-28 | Sumitomo Osaka Cement Co Ltd | Aluminum nitride base sintered compact, its production and susceptor using the same |
US6294275B1 (en) | 1998-05-06 | 2001-09-25 | Sumitomo Electric Industries, Ltd. | Aluminum-nitride sintered body, method for fabricating the same, and semiconductor substrate comprising the same |
US6383962B1 (en) | 1999-03-17 | 2002-05-07 | Asahi Techno Glass Corporation | Aluminum nitride sintered product |
CN115108537A (en) * | 2022-07-10 | 2022-09-27 | 湖南大学 | Aluminum nitride powder, preparation method thereof and copper-clad plate comprising aluminum nitride powder |
-
1993
- 1993-05-21 JP JP14287193A patent/JP3742661B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997003031A1 (en) * | 1995-07-11 | 1997-01-30 | Kabushiki Kaisha Toshiba | Aluminum nitride sinter and process for the production thereof |
JPH11310462A (en) * | 1998-04-28 | 1999-11-09 | Kyocera Corp | Aluminum nitride sintered body and method for producing the same |
US6294275B1 (en) | 1998-05-06 | 2001-09-25 | Sumitomo Electric Industries, Ltd. | Aluminum-nitride sintered body, method for fabricating the same, and semiconductor substrate comprising the same |
US6383962B1 (en) | 1999-03-17 | 2002-05-07 | Asahi Techno Glass Corporation | Aluminum nitride sintered product |
JP2000327424A (en) * | 1999-05-12 | 2000-11-28 | Sumitomo Osaka Cement Co Ltd | Aluminum nitride base sintered compact, its production and susceptor using the same |
CN115108537A (en) * | 2022-07-10 | 2022-09-27 | 湖南大学 | Aluminum nitride powder, preparation method thereof and copper-clad plate comprising aluminum nitride powder |
CN115108537B (en) * | 2022-07-10 | 2023-09-19 | 湖南大学 | Aluminum nitride powder and preparation method thereof and copper-clad laminate including aluminum nitride powder |
Also Published As
Publication number | Publication date |
---|---|
JP3742661B2 (en) | 2006-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3100871B2 (en) | Aluminum nitride sintered body | |
JP5444387B2 (en) | Semiconductor device heat sink | |
JP2000034172A (en) | Highly thermoconductive silicon nitride sintered compact and its production | |
KR960016070B1 (en) | Sintered aluminium nitride and its production | |
KR0168302B1 (en) | Aluminum Nitride Sintered Body and Manufacturing Method Thereof | |
JP3472585B2 (en) | Aluminum nitride sintered body | |
JP3742661B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JPH07172921A (en) | Aluminum nitride sintered material and its production | |
JP2003201179A (en) | Aluminum nitride sintered compact and production method therefor | |
JP3606923B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP4301617B2 (en) | Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board | |
JP4702978B2 (en) | Aluminum nitride sintered body | |
JPH05229871A (en) | Production of ceramic sintered compact | |
JP2752227B2 (en) | AlN-BN composite sintered body and method for producing the same | |
JP2001354479A (en) | Aluminum nitride sintered compact and its manufacturing method | |
JPH08157262A (en) | Aluminum nitride sintered compact and its production | |
JP4564257B2 (en) | High thermal conductivity aluminum nitride sintered body | |
JP2000302556A (en) | Aluminum nitride sintered compact and its production | |
JPH08157261A (en) | Aluminum nitride sintered compact and its production | |
JPH09278526A (en) | Setter for ceramic firing | |
JPH0680473A (en) | Production of aluminum nitride substrate | |
JPH05229872A (en) | Production of ceramic sintered compact | |
JPH05238832A (en) | Production of sintered ceramic and baking vessel to be used therein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051114 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081118 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091118 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111118 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111118 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121118 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131118 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |