JPH06328546A - Control method for composite extrusion molding device - Google Patents
Control method for composite extrusion molding deviceInfo
- Publication number
- JPH06328546A JPH06328546A JP5122441A JP12244193A JPH06328546A JP H06328546 A JPH06328546 A JP H06328546A JP 5122441 A JP5122441 A JP 5122441A JP 12244193 A JP12244193 A JP 12244193A JP H06328546 A JPH06328546 A JP H06328546A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- gear pump
- extruder
- feeder
- controlling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/365—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
- B29C48/37—Gear pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92019—Pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92323—Location or phase of measurement
- B29C2948/92361—Extrusion unit
- B29C2948/9238—Feeding, melting, plasticising or pumping zones, e.g. the melt itself
- B29C2948/9239—Screw or gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92514—Pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/9258—Velocity
- B29C2948/9259—Angular velocity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92609—Dimensions
- B29C2948/92657—Volume or quantity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92828—Raw material handling or dosing, e.g. active hopper or feeding device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92857—Extrusion unit
- B29C2948/92876—Feeding, melting, plasticising or pumping zones, e.g. the melt itself
- B29C2948/92885—Screw or gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92952—Drive section, e.g. gearbox, motor or drive fluids
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、主として原料成分の直
接混合処理、十分な冷却、及び高度な安定性が要求され
るフィルム・シート等の成形に用いられる、定量フィー
ダ付押出機、及びギヤポンプを核とする複合形押出成形
装置の制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extruder with a metering feeder and a gear pump, which are mainly used for direct mixing of raw material components, sufficient cooling, and molding of films and sheets which are required to have high stability. The present invention relates to a method for controlling a compound-type extrusion-molding apparatus having a core.
【0002】[0002]
【従来の技術】従来この種装置においては、ポリマーを
供給装置を介して供給するようにした一軸又は二軸の押
出機の圧力を検出し、その検出信号を押出機スクリュー
駆動系にフィードバックするとともに、上記押出機スク
リューの回転速度をも検出し、その回転速度検出信号を
前記ポリマーの供給装置の駆動系にフィードバックする
ことによって、ポリマーの供給量をコントロールするこ
とが行なわれている(特公平2−50207号)。2. Description of the Related Art Conventionally, in this type of apparatus, the pressure of a single-screw or twin-screw extruder configured to supply a polymer through a supply device is detected, and the detection signal is fed back to an extruder screw drive system. The rotation rate of the extruder screw is also detected, and the rotation rate detection signal is fed back to the drive system of the polymer supply apparatus to control the supply rate of the polymer (Japanese Patent Publication No. 2). -50207).
【0003】ところが、このような複合形押出成形装置
においてその押出プロセスの状態を変化させる主な外乱
要因としては定量フィーダの特性変化及びフィルタの目
詰りの2つが考えられる。However, there are two main disturbance factors that change the state of the extrusion process in such a composite extrusion molding apparatus: characteristic change of the quantitative feeder and filter clogging.
【0004】すなわち、代表的な定量フィーダとしては
ベルト式、ロス・イン・ウェイト式が使われており、い
ずれも重量検出部、制御部及び機械系フィーダで構成さ
れている。そして、フィーダの供給量はフィーダ系内の
制御機構によって一定に保たれるよう設計されている
が、重量検出部に用いられているロードセル等の温度ド
リフトや経時ドリフト、或はベルト等への粉体の付着等
によって上記供給量が変動する。この定量フィーダの特
性変化による外乱の特徴は必ずしも確定的でないことと
変動周期がかなり長いことである。That is, as a typical quantitative feeder, a belt type and a loss-in-weight type are used, and each is composed of a weight detecting section, a control section and a mechanical feeder. The supply amount of the feeder is designed to be kept constant by the control mechanism in the feeder system.However, the temperature drift and the time drift of the load cell used in the weight detection unit or the powder to the belt etc. The above-mentioned supply amount varies depending on the adherence of the body or the like. The characteristics of the disturbance due to the characteristic change of the quantitative feeder are not necessarily deterministic and the fluctuation period is considerably long.
【0005】一方、複合形押出機の出口側には1個以上
のフィルタが必ず設けられている。このフィルタの機能
は溶融樹脂中のごみ、ゲル、炭化物、金属摩耗粉の如き
異物を捕捉することであり、フィルタは経時的に目詰り
し、樹脂圧力を上昇させる。この結果、押出機の先端計
量部の充満長が増えるため、樹脂温度の上昇やベントア
ップ等の障害が生じる。この外乱は、確定的であること
と徐々に単調に増加する等の特徴がある。On the other hand, one or more filters are always provided on the outlet side of the composite extruder. The function of this filter is to capture foreign matters such as dust, gel, carbide, and metal abrasion powder in the molten resin, and the filter will be clogged over time, increasing the resin pressure. As a result, the filling length of the tip metering portion of the extruder increases, which causes problems such as an increase in resin temperature and venting. This disturbance has features such as being deterministic and gradually increasing monotonically.
【0006】[0006]
【発明が解決しようとする課題】そこで、前述のよう
に、押出機の下流側に設けられているギヤポンプの入口
側圧力を制御量として、フィーダ駆動部を制御対象と
し、ギヤポンプの入口側圧力を定値制御することによっ
て生産量或はシート等の厚さを一定に保つようにして従
来の装置において、定量フィーダの特性変化という外乱
が作用した時には次の如き現象が生ずる。Therefore, as described above, the inlet side pressure of the gear pump provided on the downstream side of the extruder is set as a control amount, and the feeder drive unit is controlled to control the inlet side pressure of the gear pump. In the conventional device, the production amount or the thickness of the sheet or the like is kept constant by the constant value control, and when the disturbance of the characteristic change of the quantitative feeder acts, the following phenomenon occurs.
【0007】すなわち、ギヤポンプの吐出量をQ(定常
過程ではフィーダ供給量Qf に等しい)、ギヤポンプの
回転数をN、そのギヤポンプの理論吐出量をα、同背圧
流係数をβ、材料の粘度をμ、ギヤポンプの入口側圧力
をp1 、出口側圧力をp2 としたとき、ギヤポンプの一
般的な特性は次式で表わされる。That is, the discharge amount of the gear pump is Q (equal to the feeder supply amount Q f in the steady process), the rotation speed of the gear pump is N, the theoretical discharge amount of the gear pump is α, the back pressure flow coefficient is β, and the material viscosity is Is μ, the inlet side pressure of the gear pump is p 1 and the outlet side pressure is p 2 , general characteristics of the gear pump are expressed by the following equations.
【0008】 Q=αN−(p2 −p1 )・β/μ (1) この式から、p1 は p1 =p2 −μ/β・(αN−Q) (2) ここで、供給量がδQf 増えたときの入口側圧力の変化
量δp1 を求めると、 δp1 =μ/β・δQ=μ/β・δQf (3) となる。この場合、実際はδQf によってp2 も変化す
るがδp2 はδp1 に比し非常に小さいので無視するこ
とができる。Q = αN− (p 2 −p 1 ) · β / μ (1) From this equation, p 1 is p 1 = p 2 −μ / β · (αN−Q) (2) where When the change amount δp 1 of the inlet pressure when the amount increases δQ f , δp 1 = μ / β · δQ = μ / β · δQ f (3) In this case, p 2 also changes depending on δQ f , but δp 2 is much smaller than δp 1 and can be ignored.
【0009】しかして、ギヤポンプの背圧流係数βは一
般に非常に小さいので、わずかの供給量変動δQf によ
ってギヤポンプの入口側圧力p1 はかなり上昇する。つ
まり、p1 の変化は高い感度で検出することができる。However, since the back pressure flow coefficient β of the gear pump is generally very small, the inlet side pressure p 1 of the gear pump rises considerably due to a slight fluctuation of the supply amount δQ f . That is, the change in p 1 can be detected with high sensitivity.
【0010】そのため、上記従来の装置では、p1 が上
昇し設定値との間に制御偏差が生じた場合、制御装置が
働らき材料の供給量の修正が行なわれ、生産量やシート
厚等が一定に保たれる。Therefore, in the above-mentioned conventional apparatus, when p 1 rises and a control deviation occurs from the set value, the control apparatus operates to correct the material supply amount, and the production amount, sheet thickness, etc. Is kept constant.
【0011】一方、フィーダの供給量Qf が一定と仮定
した場合、フィルタに目詰りが進行すると、まず、ギヤ
ポンプの出口側圧力がδp2 上昇する。しかしQf が一
定であるから、ギヤポンプ前後の差圧Δp(=p2 −p
1 )は変化しない。したがって、入口側圧力p1 も出口
側圧力p2 と同じ量上昇し、p1 +δp2 となるため、
設定値との間に制御偏差が生じる。On the other hand, assuming that the supply amount Q f of the feeder is constant, when the filter is clogged, the outlet side pressure of the gear pump first rises by δp 2 . However, since Q f is constant, the differential pressure Δp (= p 2 −p
1 ) does not change. Accordingly, since the inlet pressure p 1 also same amount rises outlet pressure p 2, the p 1 + .delta.p 2,
There is a control deviation from the set value.
【0012】したがって、上記従来装置の制御系では、
「上記偏差がフィーダ供給量Qf の変動によって生じ
た」と判断し、Qf を減らすような操作が実行される。
そのためフィルタの目詰りに伴なって、押出量或はシー
ト厚が漸減されるという結果に陥ることとなる。Therefore, in the control system of the above conventional apparatus,
Determines that "the deviation is caused by variations in the feeder supply quantity Q f", the operation that reduces the Q f is executed.
Therefore, as the filter is clogged, the extrusion amount or sheet thickness is gradually reduced.
【0013】すなわち、前記従来の装置においては、フ
ィルタ目詰りという外乱によって生産量やシート厚の減
少がもたらされるという問題がある。That is, in the above-mentioned conventional apparatus, there is a problem that the production amount and the sheet thickness are reduced due to the disturbance of filter clogging.
【0014】本発明はこのような点に鑑み、複合形押出
成形装置の各部圧力変化を検出してその変化原因を識別
し、それぞれの原因に応じた的確な修正或は補正操作を
実行できる制御方法を得ることを目的とする。In view of such a point, the present invention detects the change in pressure of each part of the composite extrusion molding apparatus, identifies the cause of the change, and executes an appropriate correction or correction operation according to each cause. Aim to get a way.
【0015】[0015]
【課題を解決するための手段】本願の第1の発明は、定
量制御して原料を押出機に供給する定量フィーダと、定
量フィーダから原料を供給される押出機と、その押出機
の押出側に連結されるギヤポンプと、ギヤポンプの入口
側及び出口側の少なくとも一方に設けられたフィルタと
を有する複合形押出成形装置の制御方法において、上記
ギヤポンプの入口側の圧力P1 及び出口側圧力P2 を検
出し、その差圧に基づいて定量フィーダの供給量を制御
するとともに、ギヤポンプの入口側圧力P1 が予め設定
した設定圧力になるようにギヤポンプの駆動モータを制
御することを特徴とする。A first invention of the present application is to provide a quantitative feeder for quantitatively controlling raw materials to feed an extruder, an extruder to which raw materials are fed from the quantitative feeder, and an extrusion side of the extruder. In a method for controlling a composite extrusion molding apparatus having a gear pump connected to a gear pump and a filter provided on at least one of an inlet side and an outlet side of the gear pump, a pressure P 1 on an inlet side and a pressure P 2 on an outlet side of the gear pump are provided. Is detected, and the supply amount of the quantitative feeder is controlled based on the differential pressure, and the drive motor of the gear pump is controlled so that the inlet side pressure P 1 of the gear pump becomes a preset pressure.
【0016】第2の発明は、定量制御して原料を押出機
に供給する定量フィーダと、定量フィーダから原料を供
給される押出機と、その押出機の押出側に連結されるギ
ヤポンプと、ギヤポンプの入口側及び出口側の少なくと
も一方に設けられたフィルタとを有する複合形押出成形
装置の制御方法において、上記ギヤポンプの入口側圧力
P1 及び出口側圧力P2 を検出し、その差圧に基づいて
定量フィーダの供給量を制御するとともに、押出機の押
出圧力P0 を検出し、その圧力が予め設定した設定圧力
になるようにギヤポンプの駆動モータを制御することを
特徴とする。A second aspect of the invention is a quantitative feeder for quantitatively controlling the raw material to feed the extruder, an extruder to which the raw material is fed from the quantitative feeder, a gear pump connected to the extrusion side of the extruder, and a gear pump. In the method of controlling the composite extrusion molding apparatus having a filter provided on at least one of the inlet side and the outlet side, the inlet side pressure P 1 and the outlet side pressure P 2 of the gear pump are detected, and based on the differential pressure thereof, In addition to controlling the supply amount of the quantitative feeder, the extrusion pressure P 0 of the extruder is detected, and the drive motor of the gear pump is controlled so that the pressure becomes a preset pressure.
【0017】さらに第3の発明は、定量制御して原料を
押出機に供給する定量フィーダと、定量フィーダから原
料を供給される第1の押出機と、その第1の押出機に接
続された第2の押出機と、その第2の押出機の押出側に
連結されるギヤポンプと、ギヤポンプの入口側及び出口
側の少なくとも一方に設けられたフィルタとを有する複
合形押出成形装置の制御方法において、上記ギヤポンプ
の入口側圧力P1 及び出口側圧力P2 を検出し、その差
圧に基づいて定量フィーダの供給量を制御するととも
に、前記第1の押出機の押出側圧力P0 を検出しその圧
力が予め設定した設定圧力になるように第2の押出機の
駆動モータを制御することを特徴とする。Further, a third aspect of the present invention is connected to the fixed amount feeder for supplying the raw material to the extruder under quantitative control, the first extruder supplied with the raw material from the fixed amount feeder, and the first extruder. A method for controlling a composite extrusion molding apparatus, comprising: a second extruder; a gear pump connected to an extrusion side of the second extruder; and a filter provided on at least one of an inlet side and an outlet side of the gear pump. Detecting the inlet side pressure P 1 and the outlet side pressure P 2 of the gear pump, controlling the supply amount of the quantitative feeder based on the differential pressure, and detecting the extrusion side pressure P 0 of the first extruder. The drive motor of the second extruder is controlled so that the pressure becomes a preset pressure.
【0018】[0018]
【作用】ギヤポンプ入口側圧力p1 は前述のように2つ
の外乱要因によって変化する。したがって、まずこのp
1 の変化要因をつきとめなければならない。そして、こ
のギヤポンプ入口側圧力p1 の変化原因が定量フィーダ
の特性変化に起因する供給量変動か、フィルタの目詰り
かの識別は、ギヤポンプ前後の差圧Δpを調べることに
よって可能である。The pressure p 1 on the inlet side of the gear pump changes depending on two disturbance factors as described above. Therefore, first p
We must identify the change factor of 1 . Then, it is possible to discriminate whether the cause of the change in the pressure p 1 on the inlet side of the gear pump is the fluctuation in the supply amount due to the change in the characteristic of the constant amount feeder or the clogging of the filter by examining the differential pressure Δp before and after the gear pump.
【0019】すなわち、定量フィーダの供給量変動は、
必ずギヤポンプ前後の差圧Δpの変化として現われる。That is, the fluctuation of the supply amount of the quantitative feeder is
It always appears as a change in the differential pressure Δp before and after the gear pump.
【0020】このΔpは、式(1)から Δp=p2 −p1 =μ/β・(2N−Qf ) (4) ∴ δ(Δp)=−μ/β・δQf (5) 上式の−μ/βが、定量フィーダの供給量変動δQf を
差圧の変化量δ(Δp)によって検出するときの感度係
数(λ)であり、このλは前述のように非常に高い値を
もつ。From the equation (1), this Δp is Δp = p 2 −p 1 = μ / β · (2N−Q f ) (4) ∴δ (Δp) = − μ / β · δQ f (5) -Μ / β in the equation is the sensitivity coefficient (λ) when the supply amount fluctuation δQ f of the quantitative feeder is detected by the change amount δ (Δp) of the differential pressure, and this λ is a very high value as described above. With.
【0021】このため、供給量変動δQf はギヤポンプ
前後の差圧Δpによって高精度で検出することができ
る。したがって、この差圧Δpによって定量フィーダの
供給量を制御することによって、定量フィーダの特性変
化による外乱に対処でき、所定量の原料を供給すること
ができる。Therefore, the supply amount fluctuation δQ f can be detected with high accuracy by the differential pressure Δp before and after the gear pump. Therefore, by controlling the supply amount of the quantitative feeder by this differential pressure Δp, it is possible to cope with the disturbance due to the characteristic change of the quantitative feeder and supply the predetermined amount of raw material.
【0022】一方、フィーダ供給量が変らなければギヤ
ポンプ前後の差圧Δpは一定である。したがって、もし
Δpが一定で、ギヤポンプの入口側圧力p1 又は出口側
圧力p2 或はギヤポンプの入口側圧力に対応する2軸押
出機の押出側圧力p0 が上ったら、この上昇原因はフィ
ルタの目詰りと判断でき、これらのいずれかの信号によ
ってギヤポンプの回転数を制御することによって、フィ
ルタの目詰りによる影響を除去することができる。On the other hand, if the feeder supply amount does not change, the differential pressure Δp before and after the gear pump is constant. Therefore, if Δp is constant and the inlet side pressure p 1 or outlet side pressure p 2 of the gear pump or the extruder side pressure p 0 of the twin-screw extruder corresponding to the inlet side pressure of the gear pump rises, the cause of this rise is It can be determined that the filter is clogged, and the influence of the filter clogging can be eliminated by controlling the rotation speed of the gear pump with any of these signals.
【0023】また、フィーダの供給量変動とフィルタの
目詰りが同時に発生したとしても、ギヤポンプ前後の差
圧Δpはフィーダの供給量変動にだけ反応する。したが
って、この差圧Δpに基づいてフィーダの供給量変動に
よる成分とフィルタの目詰りによる成分に分けることが
できる。Further, even if the feeder supply amount variation and the filter clogging occur simultaneously, the differential pressure Δp before and after the gear pump reacts only to the feeder supply amount variation. Therefore, based on this differential pressure Δp, it is possible to divide into a component due to the fluctuation of the supply amount of the feeder and a component due to the clogging of the filter.
【0024】また、請求項3記載の発明においては、第
1発明と同一原理によって、第1の押出機の押出側圧力
が設定圧力になるように第2の押出機の駆動モータを制
御することにより、フィルタ目詰りの影響を除去するこ
とができる。According to the third aspect of the invention, the drive motor of the second extruder is controlled so that the pressure on the extrusion side of the first extruder becomes a set pressure according to the same principle as the first invention. This makes it possible to eliminate the effect of filter clogging.
【0025】[0025]
【実施例】以下、添付図面を参照して本発明の実施例に
ついて説明する。Embodiments of the present invention will be described below with reference to the accompanying drawings.
【0026】図1は本発明方法を実施する装置のブロッ
ク図であって、定量フィーダ1から2軸押出機2に供給
された原料は、その2軸押出機2で混練されながら加
熱、溶融されてギヤポンプ3に送り込まれ、そこで上記
2軸押出機2から連続的に搬送されてくる原料が一定量
づつ計量され、フィルタ4を経てダイ5に供給され、そ
のダイ5から定量吐出が行なわれる。FIG. 1 is a block diagram of an apparatus for carrying out the method of the present invention, in which the raw material supplied from the fixed amount feeder 1 to the twin-screw extruder 2 is heated and melted while being kneaded by the twin-screw extruder 2. Is fed to the gear pump 3, where the raw material continuously conveyed from the twin-screw extruder 2 is weighed by a fixed amount, supplied to the die 5 through the filter 4, and discharged quantitatively from the die 5.
【0027】上記ギヤポンプ3の入口側及び出口側には
それぞれ圧力検出器6,7が設けられており、その両圧
力検出器6,7で検出されたギヤポンプ入口側の圧力p
1 及び出口側の圧力p2 の信号が差圧演算器8で比較演
算され、その差圧が比較器9で差圧設定器10の設定値
と比較され、その偏差信号が制御部11に入力され操作
量演算が行なわれるとともにフィーダ供給量の設定値の
補正量が算定される。そしてこの新しい設定値が設定制
御器12に出力され、これによって制御信号が前記定量
フィーダ1の駆動部13に入力され定量フィーダ1によ
る原料供給料が制御される。Pressure detectors 6 and 7 are provided on the inlet side and the outlet side of the gear pump 3, respectively. The pressure p on the inlet side of the gear pump detected by the pressure detectors 6 and 7 is p.
The signals of 1 and the pressure p 2 on the outlet side are compared and calculated by the differential pressure calculator 8, the differential pressure is compared with the set value of the differential pressure setter 10 by the comparator 9, and the deviation signal is input to the control unit 11. Then, the operation amount is calculated and the correction amount of the set value of the feeder supply amount is calculated. Then, this new set value is output to the setting controller 12, whereby a control signal is input to the drive unit 13 of the fixed quantity feeder 1 to control the raw material supply charge by the fixed quantity feeder 1.
【0028】一方、ギヤポンプ3の出口側の圧力を検出
する圧力検出器7からの圧力信号は比較器14にも送ら
れ、そこで圧力設定器15からの設定値と比較され、そ
の偏差信号が制御部16に入力され、ギヤポンプの回転
数の設定値の補正量が算定され、この新しい設定信号が
設定制御器17を経て上記ギヤポンプ3の駆動モータ1
8に入力され、ギヤポンプ3の回転数が制御される。On the other hand, the pressure signal from the pressure detector 7 for detecting the pressure on the outlet side of the gear pump 3 is also sent to the comparator 14, where it is compared with the set value from the pressure setter 15, and the deviation signal is controlled. The correction amount of the set value of the rotation speed of the gear pump is input to the section 16, and this new setting signal is sent to the drive motor 1 of the gear pump 3 via the setting controller 17.
8, and the rotation speed of the gear pump 3 is controlled.
【0029】しかして、ギヤポンプの入口側圧力及び出
口側圧力の差圧Δpにて定量フィーダ1が制御され、定
量フィーダの特性変化による外乱に対する修正が行なわ
れるとともに、ギヤポンプの出口側の圧力変動によって
ギヤポンプの回転数を制御することによってフィルタの
目詰りによる影響が修正される。Therefore, the constant quantity feeder 1 is controlled by the differential pressure Δp between the inlet side pressure and the outlet side pressure of the gear pump, and the disturbance due to the characteristic change of the constant quantity feeder is corrected and the pressure fluctuation at the outlet side of the gear pump is adjusted. By controlling the rotation speed of the gear pump, the effect of filter clogging is corrected.
【0030】ところで、前記両外乱が同時に作用した場
合の両制御ループの操作順序が大切である。両外乱の大
きさを演算によって識別し同時操作を行なうことも可能
であるが、相互干渉があるため、操作方法が複雑にな
る。また、両外乱とも、前述のように周期が長いこと、
特にフィルタの目詰りは単調に増加する性質をもつこと
を考慮すると急いで操作する必要はないと判断される。By the way, the operation order of both control loops when both the disturbances act simultaneously is important. Although it is possible to identify the magnitudes of both disturbances by calculation and perform simultaneous operations, mutual interference causes a complicated operation method. In addition, both disturbances have a long period as described above,
In particular, considering that the clogging of the filter has the property of increasing monotonically, it is judged that it is not necessary to operate it immediately.
【0031】そこで、本実施例においては次のような逐
次操作法を採用する。すなわち、まだすフィーダの供給
量変動をギヤポンプ前後の差圧Δpによってチェックす
る。この時Δpに偏差があればフィーダ供給量の設定値
の修正指令を出すことによってフィーダ供給量の修正を
行なう。Therefore, in this embodiment, the following sequential operation method is adopted. That is, the supply amount fluctuation of the still feeder is checked by the differential pressure Δp before and after the gear pump. At this time, if there is a deviation in Δp, the feeder supply amount is corrected by issuing a correction command for the set value of the feeder supply amount.
【0032】次に、上記操作実行後、差圧Δpが許容範
囲内に入ったら、圧力p2 を調べ、これらの圧力に偏差
があればギヤポンプ速度の修正指令を出す。この操作を
実行した時はギヤポンプ前後の差圧Δpの設定値を必ず
更新しなければならない。この更新時期は上記操作を実
行後、各部圧力が安定した時点で行ない、新しい設定値
は安定状態でp1 ,p2 を実測し、この差圧(p2 −p
1 )の算定値とする。Next, after the above operation, when the differential pressure Δp falls within the allowable range, the pressure p 2 is checked, and if there is a deviation in these pressures, a gear pump speed correction command is issued. When this operation is executed, the set value of the differential pressure Δp before and after the gear pump must be updated without fail. This renewal timing is performed when the pressure of each part becomes stable after the above operation is performed, and new set values are measured in a stable state by measuring p 1 and p 2 , and the differential pressure (p 2 −p 2
Use the value calculated in 1 ).
【0033】上記制御方法の制御フローを図2に示す。The control flow of the above control method is shown in FIG.
【0034】図3は、本発明の他の実施例であり、2軸
押出機2とギヤポンプ3との間にフィルタ20が設けら
れており、このフィルタ20の上流側すなわち2軸押出
機2の吐出側に圧力検出器21が設けられている。FIG. 3 shows another embodiment of the present invention, in which a filter 20 is provided between the twin-screw extruder 2 and the gear pump 3, and the upstream side of the filter 20, that is, the twin-screw extruder 2 is shown. A pressure detector 21 is provided on the discharge side.
【0035】そして、上記圧力検出器21によって検出
された2軸押出機2の押出側圧力p0 が圧力設定器22
の設定値と比較され、その偏差信号が制御部23に入力
され、その制御部23からの出力信号が設定制御器17
を介してギヤポンプ3の駆動モータ18に入力され、ギ
ヤポンプ3の回転数制御が行なわれる。その他は図1に
示すものと同一である。The pressure p 0 on the extrusion side of the twin-screw extruder 2 detected by the pressure detector 21 is the pressure setter 22.
Is compared with the set value, the deviation signal is input to the control unit 23, and the output signal from the control unit 23 is set by the setting controller 17.
Is input to the drive motor 18 of the gear pump 3 via the control unit to control the rotation speed of the gear pump 3. Others are the same as those shown in FIG.
【0036】したがって、この実施例においてもギヤポ
ンプ3の前後の圧力差を検出して、その圧力差に応じて
定量フィーダの供給量が制御されるとともに、2軸押出
機の吐出側の圧力が上昇した場合にはギヤポンプの回転
数が制御されてフィルタの目詰りによる影響が修正され
る。Therefore, also in this embodiment, the pressure difference between the front and rear of the gear pump 3 is detected, the supply amount of the constant amount feeder is controlled according to the pressure difference, and the pressure on the discharge side of the twin-screw extruder rises. In this case, the rotation speed of the gear pump is controlled and the effect of filter clogging is corrected.
【0037】ところで、上記各実施例においては、本来
基準器として一定速度で運転することが望まれるギヤポ
ンプをフィルタの目詰りに対応するために変速してい
る。ところが、ギヤポンプを変速した場合には、定量フ
ィーダの制御に係るギヤポンプ前後の差圧Δpの設定値
を次式に基づいてその都度更新しなければならない。By the way, in each of the above-described embodiments, the gear pump, which is originally desired to be operated at a constant speed as the reference device, is shifted to cope with the clogging of the filter. However, when the speed of the gear pump is changed, the set value of the differential pressure Δp before and after the gear pump related to the control of the constant quantity feeder must be updated each time based on the following equation.
【0038】 Δp=μ/β(αN−Q) (6) このため、定量フィーダの制御系及びギヤポンプの制御
系の2つの制御系間で操作順序等について協調をとる必
要がある。Δp = μ / β (αN−Q) (6) For this reason, it is necessary to coordinate the operation sequence and the like between the two control systems of the quantitative feeder control system and the gear pump control system.
【0039】一方、樹脂の混練度、温度或は脱揮性を許
容範囲内に保つとともに、押出機でのベントアップを防
止するためには、押出機の先端計量部の充満長xを一定
に保たなければならない。On the other hand, in order to keep the degree of kneading, temperature, or volatility of the resin within the allowable range and prevent venting up in the extruder, the filling length x of the tip measuring part of the extruder is kept constant. I have to keep it.
【0040】図4は上記目的を達成することができるよ
うにした他の実施例を示す図で、2軸押出機(第1の押
出機)2の下流側に単軸押出機(第2の押出機)25、
フィルタ26及びギヤポンプ3が順次配設されている。FIG. 4 is a view showing another embodiment capable of achieving the above-mentioned object. A single-screw extruder (second extruder) is provided on the downstream side of the twin-screw extruder (first extruder) 2. Extruder) 25,
The filter 26 and the gear pump 3 are sequentially arranged.
【0041】上記2軸押出機2の押出側には圧力検出器
21が設けられており、その圧力検出器21で検出され
た2軸押出機の押出側圧力が圧力設定器22の設定圧と
比較され、その偏差が制御部に入力され操作量演算が行
なわれる。この操作信号が単軸押出機用駆動モータの設
定制御器27に送られて設定速度の更新が行なわれ、こ
の設定制御器27からの制御信号によって駆動モータ2
8の回転が制御され、単軸押出機25の回転数制御が行
なわれる。A pressure detector 21 is provided on the extrusion side of the twin-screw extruder 2, and the extrusion-side pressure of the twin-screw extruder detected by the pressure detector 21 corresponds to the set pressure of the pressure setter 22. The deviations are compared, and the deviation is input to the control unit to calculate the manipulated variable. This operation signal is sent to the setting controller 27 of the single-screw extruder drive motor to update the set speed. The control signal from the setting controller 27 drives the drive motor 2
The rotation of the single screw extruder 25 is controlled, and the rotation speed of the single screw extruder 25 is controlled.
【0042】一方、定量フィーダ1の制御方法は図1の
ものと全く同一である。On the other hand, the control method of the quantitative feeder 1 is exactly the same as that of FIG.
【0043】ところで、2軸押出機2の先端計量部の充
満長xを検出するための簡便な手段は、その押出機のス
クリュ先端部圧力p0 を計測することである。このp0
は次式のように表わされ、p0 はxに比例する。By the way, a simple means for detecting the filling length x of the tip measuring portion of the twin-screw extruder 2 is to measure the screw tip pressure p 0 of the extruder. This p 0
Is expressed as follows, and p 0 is proportional to x.
【0044】 p0 =μα1 N1 x/β1 ・(1−Q/α1 N1 ) (7) ここで、α1 は2軸押出機の推進流係数、β1 は同背圧
流係数、N1 は同回転数である。P 0 = μα 1 N 1 x / β 1 · (1-Q / α 1 N 1 ) (7) where α 1 is the thrust flow coefficient of the twin-screw extruder and β 1 is the same back pressure flow coefficient. , N 1 are the same number of revolutions.
【0045】したがって、p0 を定値制御することによ
ってxを一定に保つことができる。Therefore, x can be kept constant by controlling p 0 to a constant value.
【0046】一方、図4において、フィルタ4が目詰り
するとギヤポンプ3の出口側圧力p2 がδp′上昇す
る。しかし、フィーダ供給量Qf と等しいギヤポンプ3
の流量Qは一定であるから、ギヤポンプ3前後の差圧Δ
p(=p2 −p1 )は変化しない。つまり、ギヤポンプ
入口側圧力もδp′上昇する。またフィルタ26が目詰
りすると単軸押出機のヘッド圧がδp″上昇する。しか
し流量とスクリュ速度が一定ならギヤポンプの場合と同
様、単軸押出機の入口及び出口間の差圧は変わらず、入
口圧力p0 も同じ量δp″上昇する。結局2軸押出機の
押出側圧力の上昇量δp0 はδp′+δp″となる。On the other hand, in FIG. 4, when the filter 4 is clogged, the outlet side pressure p 2 of the gear pump 3 increases by δp '. However, the gear pump 3 equal to the feeder supply amount Q f
Since the flow rate Q of the pump is constant, the differential pressure Δ before and after the gear pump 3
p (= p 2 −p 1 ) does not change. That is, the pressure on the inlet side of the gear pump also rises by δp '. If the filter 26 is clogged, the head pressure of the single-screw extruder increases by δp ″. However, if the flow rate and the screw speed are constant, the differential pressure between the inlet and the outlet of the single-screw extruder does not change as in the case of the gear pump. The inlet pressure p 0 also rises by the same amount δp ″. After all, the amount of increase δp 0 of the extrusion side pressure of the twin-screw extruder becomes δp ′ + δp ″.
【0047】そして、この2軸押出機2の押出側圧力信
号が前述のように設定値と比較され、偏差信号によって
操作量演算が行なわれる。この演算式は比例・積分、或
は下式が適当とされる。Then, the extrusion side pressure signal of the twin-screw extruder 2 is compared with the set value as described above, and the manipulated variable is calculated by the deviation signal. This calculation formula is appropriately proportional / integral or the following formula.
【0048】 δN2 =−β2 /μα2 ・δp0 (8) ここで、δN2 :単軸押出機の増速量、α2 :同押出機
の推進流係数、β2 :同背流係数である。ΔN 2 = −β 2 / μα 2 · δp 0 (8) where δN 2 is the speed increase amount of the single-screw extruder, α 2 is the thrust flow coefficient of the extruder, and β 2 is the same backflow. It is a coefficient.
【0049】上記演算結果に基づく操作信号が単軸押出
機の駆動モータ28の設定制御器27に送られて設定速
度の増速が行なわれる。この結果、単軸押出機の入口圧
力、したがって2軸押出機のスクリュ先端部圧力p0 は
常に一定に保たれ、充満長さxを一定に維持させること
ができる。An operation signal based on the above calculation result is sent to the setting controller 27 of the drive motor 28 of the single screw extruder to increase the set speed. As a result, the inlet pressure of the single-screw extruder, that is, the screw tip pressure p 0 of the twin-screw extruder is always kept constant, and the filling length x can be kept constant.
【0050】[0050]
【発明の効果】以上説明したように、本発明はギヤポン
プの入口側圧力と出口側圧力との差圧によって定量フィ
ーダの供給量を制御するとともに、ギヤポンプの入口側
圧力、押出機の押出側圧力によってギヤポンプの駆動モ
ータ或は第2の押出機の駆動モータを制御するようにし
たので、フィルタの目詰り等の影響を除去してフィーダ
供給量を一定に制御でき、生産量或はシート厚は常に高
精度で一定に保つことができ、また樹脂の混練度、温度
或は脱揮性を許容範囲内に保つとともに押出機でのベン
トアップを防止することができる。As described above, according to the present invention, the supply amount of the constant amount feeder is controlled by the differential pressure between the inlet side pressure and the outlet side pressure of the gear pump, and the inlet side pressure of the gear pump and the extruder side pressure of the extruder are controlled. Since the drive motor of the gear pump or the drive motor of the second extruder is controlled by the above, the influence of filter clogging can be eliminated and the feed amount of the feeder can be controlled to be constant. It is possible to always maintain a high precision and a constant level, and to keep the degree of kneading, temperature or devolatilization of the resin within an allowable range and prevent venting up in the extruder.
【図1】本発明方法の一実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the method of the present invention.
【図2】本発明の制御フローを示す図。FIG. 2 is a diagram showing a control flow of the present invention.
【図3】本発明の他の実施例を示すブロック図。FIG. 3 is a block diagram showing another embodiment of the present invention.
【図4】本発明のさらに他の実施例を示すブロック図。FIG. 4 is a block diagram showing still another embodiment of the present invention.
1 定量フィーダ 2 2軸押出機 3 ギヤポンプ 4 フィルタ 5 ダイ 6,7,21 圧力検出器 11,16 制御部 12,17,27 設定制御器 25 単軸押出機 1 Quantitative Feeder 2 2 Screw Extruder 3 Gear Pump 4 Filter 5 Die 6,7,21 Pressure Detector 11,16 Control Unit 12,17,27 Setting Controller 25 Single Screw Extruder
Claims (3)
フィーダと、定量フィーダから原料を供給される押出機
と、その押出機の押出側に連結されるギヤポンプと、ギ
ヤポンプの入口側及び出口側の少なくとも一方に設けら
れたフィルタとを有する複合形押出成形装置の制御方法
において、上記ギヤポンプの入口側の圧力P1 及び出口
側圧力P2 を検出し、その差圧に基づいて定量フィーダ
の供給量を制御するとともに、ギヤポンプの入口側圧力
P1 が予め設定した設定圧力になるようにギヤポンプの
駆動モータを制御することを特徴とする、複合形押出成
形装置の制御方法。1. A quantitative feeder for quantitatively controlling the raw material to feed the extruder, an extruder to which the raw material is fed from the quantitative feeder, a gear pump connected to the extrusion side of the extruder, an inlet side of the gear pump, and In a method of controlling a composite extrusion molding apparatus having a filter provided on at least one of outlet sides, a pressure P 1 on an inlet side and a pressure P 2 on an outlet side of the gear pump are detected, and a quantitative feeder based on the differential pressure thereof. Is controlled and the drive motor of the gear pump is controlled so that the inlet pressure P 1 of the gear pump becomes a preset pressure.
フィーダと、定量フィーダから原料を供給される押出機
と、その押出機の押出側に連結されるギヤポンプと、ギ
ヤポンプの入口側及び出口側の少なくとも一方に設けら
れたフィルタとを有する複合形押出成形装置の制御方法
において、上記ギヤポンプの入口側圧力P1 及び出口側
圧力P2 を検出し、その差圧に基づいて定量フィーダの
供給量を制御するとともに、押出機の押出圧力P0 を検
出し、その圧力が予め設定した設定圧力になるようにギ
ヤポンプの駆動モータを制御することを特徴とする、複
合形押出成形装置の制御方法。2. A quantitative feeder for quantitatively controlling the raw material to feed the extruder, an extruder to which the raw material is fed from the quantitative feeder, a gear pump connected to the extrusion side of the extruder, an inlet side of the gear pump, and In a method for controlling a composite extrusion molding apparatus having a filter provided on at least one of outlet sides, an inlet side pressure P 1 and an outlet side pressure P 2 of the gear pump are detected, and a constant amount feeder pressure is detected based on the differential pressure. Controlling the supply amount, detecting the extrusion pressure P 0 of the extruder, and controlling the drive motor of the gear pump so that the pressure becomes a preset pressure, control of the composite extrusion molding apparatus Method.
フィーダと、定量フィーダから原料を供給される第1の
押出機と、その第1の押出機に接続された第2の押出機
と、その第2の押出機の押出側に連結されるギヤポンプ
と、ギヤポンプの入口側及び出口側の少なくとも一方に
設けられたフィルタとを有する複合形押出成形装置の制
御方法において、上記ギヤポンプの入口側圧力P1 及び
出口側圧力P2 を検出し、その差圧に基づいて定量フィ
ーダの供給量を制御するとともに、前記第1の押出機の
押出側圧力P0 を検出しその圧力が予め設定した設定圧
力になるように第2の押出機の駆動モータを制御するこ
とを特徴とする、複合形押出成形装置の制御方法。3. A quantitative feeder for quantitatively controlling the raw material to feed the extruder, a first extruder to which the raw material is fed from the quantitative feeder, and a second extruder connected to the first extruder. And a gear pump connected to the extrusion side of the second extruder, and a filter provided on at least one of the inlet side and the outlet side of the gear pump, the inlet of the gear pump The side pressure P 1 and the outlet side pressure P 2 are detected, the supply amount of the quantitative feeder is controlled based on the differential pressure, and the extrusion side pressure P 0 of the first extruder is detected and the pressures are set in advance. A method for controlling a composite extrusion-molding apparatus, characterized in that the drive motor of the second extruder is controlled so as to achieve the set pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12244193A JP3323277B2 (en) | 1993-05-25 | 1993-05-25 | Control method of compound extrusion molding equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12244193A JP3323277B2 (en) | 1993-05-25 | 1993-05-25 | Control method of compound extrusion molding equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06328546A true JPH06328546A (en) | 1994-11-29 |
JP3323277B2 JP3323277B2 (en) | 2002-09-09 |
Family
ID=14835929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12244193A Expired - Fee Related JP3323277B2 (en) | 1993-05-25 | 1993-05-25 | Control method of compound extrusion molding equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3323277B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0888827A3 (en) * | 1997-07-04 | 2000-08-30 | Kawasaki Jukogyo Kabushiki Kaisha | Viscous fluid supply control apparatus and method thereof |
JP2002160284A (en) * | 2000-11-22 | 2002-06-04 | Bridgestone Corp | Method for extruding rubber material for tire and extrusion device |
JP2003062891A (en) * | 2001-08-30 | 2003-03-05 | Hitachi Zosen Corp | Extrusion equipment |
JP2004303030A (en) * | 2003-03-31 | 2004-10-28 | Sanyo Electric Co Ltd | Controller and discharge controller |
JP2017035789A (en) * | 2015-08-07 | 2017-02-16 | 東レ株式会社 | Manufacturing method of sheet and manufacturing device of sheet |
WO2020021875A1 (en) | 2018-07-26 | 2020-01-30 | ダイキン工業株式会社 | Molded resin body production method |
KR20230033734A (en) * | 2016-04-20 | 2023-03-08 | 산토리 홀딩스 가부시키가이샤 | A preform manufacturing device |
-
1993
- 1993-05-25 JP JP12244193A patent/JP3323277B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0888827A3 (en) * | 1997-07-04 | 2000-08-30 | Kawasaki Jukogyo Kabushiki Kaisha | Viscous fluid supply control apparatus and method thereof |
CN1080600C (en) * | 1997-07-04 | 2002-03-13 | 川崎重工业株式会社 | Viscous fluid supply control apparatus and method thereof |
JP2002160284A (en) * | 2000-11-22 | 2002-06-04 | Bridgestone Corp | Method for extruding rubber material for tire and extrusion device |
JP2003062891A (en) * | 2001-08-30 | 2003-03-05 | Hitachi Zosen Corp | Extrusion equipment |
JP2004303030A (en) * | 2003-03-31 | 2004-10-28 | Sanyo Electric Co Ltd | Controller and discharge controller |
JP4497829B2 (en) * | 2003-03-31 | 2010-07-07 | 三洋電機株式会社 | Transmission control device |
JP2017035789A (en) * | 2015-08-07 | 2017-02-16 | 東レ株式会社 | Manufacturing method of sheet and manufacturing device of sheet |
KR20230033734A (en) * | 2016-04-20 | 2023-03-08 | 산토리 홀딩스 가부시키가이샤 | A preform manufacturing device |
WO2020021875A1 (en) | 2018-07-26 | 2020-01-30 | ダイキン工業株式会社 | Molded resin body production method |
US12138845B2 (en) | 2018-07-26 | 2024-11-12 | Daikin Industries, Ltd. | Molded resin body production method |
Also Published As
Publication number | Publication date |
---|---|
JP3323277B2 (en) | 2002-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2048759A (en) | Regulating the output of a thermoplastic material extruder | |
US7018191B2 (en) | Plastics extruder dimension and viscosity control system | |
JPH06328546A (en) | Control method for composite extrusion molding device | |
US5639404A (en) | Method and apparatus for preparing thermoplastic sheets, films, and plates | |
JPS5811129A (en) | Extruder provided with control system | |
JPH0474173B2 (en) | ||
JPS6331731A (en) | Precision control of extruder or the like | |
JP3758913B2 (en) | Series two-stage extrusion equipment | |
JPH0647797A (en) | Method for controlling extrusion machine | |
JPH02137911A (en) | Dimensional control device for molded material in inflation molding line | |
JPH05245908A (en) | Extruding quantity control method of extruder with gear pump and its apparatus | |
JP3860903B2 (en) | Series two-stage extrusion equipment | |
JPS6176337A (en) | Molten resin extruder | |
JP3517902B2 (en) | Discharge stability control method for multi-screw extruder | |
JP2003245935A (en) | Apparatus for forming rubber sheet | |
JP3183792B2 (en) | Material measuring device for extruder | |
JPH10329200A (en) | Method and apparatus for controlling composite extrusion molding machine | |
JP3236407B2 (en) | Flow measurement method for highly viscous fluid | |
JPH0566851B2 (en) | ||
JPH0142818B2 (en) | ||
JPH0596608A (en) | Molten resin supply equipment | |
JPS59115824A (en) | Controlling method of extrusion quantity of extruder | |
SU1380991A1 (en) | Apparatus for automatic control of extruder | |
JP3610393B2 (en) | Extruder molding machine | |
JPH05245907A (en) | Extruding quantity-control method of extruder with gear pump and its apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080628 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080628 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080628 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090628 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |