[go: up one dir, main page]

JPH06327251A - Semiconductor converter - Google Patents

Semiconductor converter

Info

Publication number
JPH06327251A
JPH06327251A JP11079493A JP11079493A JPH06327251A JP H06327251 A JPH06327251 A JP H06327251A JP 11079493 A JP11079493 A JP 11079493A JP 11079493 A JP11079493 A JP 11079493A JP H06327251 A JPH06327251 A JP H06327251A
Authority
JP
Japan
Prior art keywords
semiconductor elements
semiconductor
cooling conductor
cooling
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11079493A
Other languages
Japanese (ja)
Inventor
Itsuo Kawamura
逸生 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11079493A priority Critical patent/JPH06327251A/en
Publication of JPH06327251A publication Critical patent/JPH06327251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Abstract

(57)【要約】 【目的】並列数の大きな半導体素子の、素子間の電流不
平衡を小さくする。 【構成】転流期間中の電流が同時に流れ得るu,v,w
の3つの相の二次リード31u,31v,31wを冷却
導体5Aの長手方向に直角の平面に並べて配置し、半導
体素子4uも同じように冷却導体5Aの表面に取付ける
ことによって、転流期間中の時間的変化の大きな電流成
分は冷却導体5Aの長手方向に直角の方向に流れて相手
の相の半導体素子4v、又は4wに流れ、しかも、複数
の半導体素子4u1,4u2,4u3,4u4の電流の
流れる経路が同じになることから、それぞれの半導体素
子4u1,4u2,4u3,4u4とこれに接続される
二次リード31uAのインダクタンスの差が小さくなり
その結果それぞれの半導体素子間の電流分担の不平衡が
小さくなる。
(57) [Abstract] [Purpose] To reduce the current imbalance between semiconductor elements with a large number of parallel elements. [Configuration] u, v, w at which currents can flow simultaneously during commutation
During the commutation period, the three-phase secondary leads 31u, 31v, and 31w are arranged side by side on a plane perpendicular to the longitudinal direction of the cooling conductor 5A, and the semiconductor element 4u is similarly attached to the surface of the cooling conductor 5A. Of the semiconductor element 4v, 4u3, 4u4 of the plurality of semiconductor elements 4u1, 4u2, 4u3, 4u4 flows in the direction perpendicular to the longitudinal direction of the cooling conductor 5A and flows in the semiconductor element 4v or 4w of the opposite phase. Are the same, the difference between the inductances of the respective semiconductor elements 4u1, 4u2, 4u3, 4u4 and the secondary lead 31uA connected thereto is small, and as a result, the current sharing between the respective semiconductor elements is unbalanced. The equilibrium becomes smaller.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ダイオードなどの半
導体素子が多数並列接続して構成される整流装置のよう
な半導体変換装置、特にそれぞれの半導体素子に流れる
電流を均一にするための構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor conversion device such as a rectifier constructed by connecting a large number of semiconductor elements such as diodes in parallel, and more particularly to a structure for equalizing the current flowing through each semiconductor element. .

【0002】[0002]

【従来の技術】図5は半導体変換装置の一例としてのダ
ブルスター結線変圧整流装置の回路図である。この図に
おいて、三相交流電源1の電力は整流器用変圧器2によ
って高電圧から所定の低電圧に降圧されて整流器4に供
給される。整流器用変圧器2には星形結線の2つの二次
巻線22,23が備わっており、これらから引き出され
た二次リード31(図の6本の二次リードを代表する)
にそれぞれ半導体素子4(6つの半導体素子を代表す
る)が設けられ、これらの正極側が一括して接続されP
端子5に接続されている。二次巻線22,23のそれぞ
れの中性点は相関リアクトル3を介してN端子50に接
続される。
2. Description of the Related Art FIG. 5 is a circuit diagram of a double star connection transformer rectifier as an example of a semiconductor converter. In this figure, the power of the three-phase AC power supply 1 is stepped down from a high voltage to a predetermined low voltage by a rectifier transformer 2 and supplied to a rectifier 4. The rectifier transformer 2 is provided with two secondary windings 22 and 23 of star connection, and a secondary lead 31 drawn from these (representing the six secondary leads in the figure).
Are respectively provided with semiconductor elements 4 (representing 6 semiconductor elements), and the positive electrodes of these are collectively connected to P
It is connected to terminal 5. The neutral points of the secondary windings 22 and 23 are connected to the N terminal 50 via the correlation reactor 3.

【0003】図6は図5のダブルスター結線変圧整流装
置の部分立面図、図7は同じく部分側面図であり、半導
体素子4が設けられている整流器用変圧器2の上部の部
分を主に図示してある。これらの図において、P端子で
もある冷却導体5が図6の左右に沿って設けられてお
り、右側に示す矢印は符号を付けない冷却水の流入、流
出を示すもので、冷却水は冷却導体5に埋め込まれた符
号を付けない冷却管に入り左側に図示してある半円状の
冷却管を通って再度冷却導体5内の冷却管を通り右側か
ら外部に出る。この間冷却水は冷却導体5を冷却しこれ
によって半導体素子4u,4v,4w及び冷却導体5の
反対側に取付けられていて図6では見えない半導体素子
4x,4y,4zが冷却される。
FIG. 6 is a partial elevational view of the double star connection transformer / rectifier of FIG. 5, and FIG. 7 is a partial side view of the same, mainly showing the upper portion of the rectifier transformer 2 provided with the semiconductor element 4. It is shown in FIG. In these figures, a cooling conductor 5 which is also a P terminal is provided along the left and right of FIG. 6, and the arrows shown on the right side show inflow and outflow of cooling water without reference numerals, and the cooling water is the cooling conductor. 5 enters a cooling pipe embedded in the reference numeral 5, passes through a semicircular cooling pipe shown on the left side, passes through the cooling pipe in the cooling conductor 5 again, and exits from the right side. During this time, the cooling water cools the cooling conductor 5, thereby cooling the semiconductor elements 4u, 4v, 4w and the semiconductor elements 4x, 4y, 4z attached to the opposite side of the cooling conductor 5 and not visible in FIG.

【0004】整流器用変圧器2から引き出された二次リ
ード31uの先端部に半導体素子4uの一方の面が取り
つけられ他方の面が冷却導体5の正面に取付けられる。
図5では1つの素子の記号で示してある半導体素子4u
は実際には4つの素子4u1,4u2,4u3,4u4
で成り立っている。素子の数が4つというのは単なる例
であり、実際の装置では20個からなる場合もある。
One surface of the semiconductor element 4u is attached to the tip of the secondary lead 31u drawn from the rectifier transformer 2, and the other surface is attached to the front surface of the cooling conductor 5.
In FIG. 5, the semiconductor device 4u indicated by the symbol of one device is shown.
Is actually four elements 4u1, 4u2, 4u3, 4u4
It consists of The number of elements is four, which is merely an example, and may be twenty in an actual device.

【0005】半導体素子4uの隣に半導体素子4vが、
更にその隣に半導体素子4wが冷却導体5にそれぞれ冷
却導体5の長手方向に並べて同じ構造で取付けられいて
る。半導体素子4x,4y,4zも半導体素子4u,4
v,4wとは反対側の冷却導体5の表面に取付けられて
いる。なお、図5のN端子50は図7に示すように二次
リード31とは別に整流器用変圧器2から引き出されて
いる。
A semiconductor element 4v is provided next to the semiconductor element 4u.
Next to that, the semiconductor elements 4w are attached to the cooling conductor 5 in the same structure side by side in the longitudinal direction of the cooling conductor 5. The semiconductor elements 4x, 4y, 4z are also semiconductor elements 4u, 4
It is attached to the surface of the cooling conductor 5 opposite to v and 4w. The N terminal 50 of FIG. 5 is drawn out from the rectifier transformer 2 separately from the secondary lead 31 as shown in FIG. 7.

【0006】図8は半導体素子4uを構成する半導体素
子4u1,4u2,4u3,4u4の電流分担を示す波
形図である。この図において、横軸は時間、縦軸は電流
値であり、波形101は半導体素子4u1の、波形10
2は半導体素子4u2の、同様にして波形103、10
4はそれぞれ半導体素子4u3,4u4のものである。
期間T1 はu相が点弧してが電流が立ち上がるときの転
流期間、T2 はその間の非転流期間、期間T3 は電流が
立ち下がるときの転流期間である。
FIG. 8 is a waveform diagram showing current sharing of the semiconductor elements 4u1, 4u2, 4u3, 4u4 constituting the semiconductor element 4u. In this figure, the horizontal axis represents time and the vertical axis represents current value. Waveform 101 is waveform 10 of semiconductor element 4u1.
2 is the same as the waveforms 103 and 10 of the semiconductor element 4u2.
Reference numerals 4 are semiconductor elements 4u3 and 4u4, respectively.
The period T 1 is a commutation period when the current rises after the u phase is ignited, T 2 is a non-commutation period during that period, and the period T 3 is a commutation period when the current falls.

【0007】期間T1 の最初に4つの波形101〜10
4は一斉に立ち上がるが、番号の若い波形ほど立ち上が
り角度が大きい。したがって、転流期間T1 の間に到達
する電流値は波形101が最も大きく波形104が最も
小さい。期間T2 に入ると主にそれぞれの半導体素子の
順方向の電圧─電流特性によって決まる電流の最終値に
向かってそれぞれの素子の時定数に基づいて収束する変
化をする。次の期間T 3 に入ってそれぞれの電流は急激
に減少し最後はそれぞれの波形の電流は零になってこの
相の半サイクルの通流が終わる。
Period T1The first four waveforms 101-10
4 rises all at once, but the lower the number, the better the rise
The angle is large. Therefore, the commutation period T1Reached between
Waveform 101 has the largest current value and waveform 104 has the largest
small. Period T2When entering, mainly of each semiconductor element
Forward voltage-final value of current determined by current characteristics
To converge based on the time constant of each element.
Convert Next period T 3Each current suddenly entered
And finally the current of each waveform becomes zero
The half-cycle flow of phases ends.

【0008】期間T1 において波形101の立ち上がり
角度が大きいのは半導体素子4u1これが設けられてあ
る二次リード31u1とのインダクタンスが小さいため
である。周知のように並列回路での電流分担は高周波の
ように時間的変化の大きい電流に対しては主に回路のイ
ンダクタンスで決まり、そのインダクタンス値に差があ
ると電流分担は不平衡になる。
The rising angle of the waveform 101 in the period T 1 is large because the inductance between the semiconductor element 4u1 and the secondary lead 31u1 provided with the semiconductor element 4u1 is small. As is well known, the current sharing in a parallel circuit is mainly determined by the inductance of the circuit for a current having a large temporal change such as high frequency, and if there is a difference in the inductance values, the current sharing becomes unbalanced.

【0009】図6で分かるように半導体素子4u1は半
導体素子4vや4wに近い側にあり、半導体素子4u4
はその反対に最も遠い位置にある。転流期間では時間的
に急激に変化する電流成分は異なる相の間で反対方向に
流れるから、仮に転流期間T 1 がu相とv相との間の転
流であるとし、二次リード3uに図6の上向きの方向の
電流が流れるとすると、リード3vにはその反対に下向
きの電流が流れる。このような電流分布の場合には相手
のリードに近いリードほどインダクタンスが小さくなる
ことが知られている。このことから前述のような転流時
の電流不平衡が生ずる。
As can be seen in FIG. 6, the semiconductor element 4u1 is half
Located on the side close to the conductor elements 4v and 4w, the semiconductor element 4u4
Is the farthest position on the contrary. Temporal in the commutation period
The current component that changes rapidly to
Since it flows, the commutation period T 1Is between the u phase and the v phase
6 and the secondary lead 3u in the upward direction of FIG.
If an electric current flows, the lead 3v goes down in the opposite direction.
Current flows. In case of such current distribution
The smaller the lead, the smaller the inductance
It is known. From this, when commutating as described above
Current imbalance occurs.

【0010】[0010]

【発明が解決しようとする課題】前述のような並列接続
された半導体素子の間に電流不平衡があると、最も分担
電流の大きな半導体素子で全体の電流容量が決まってし
まい、結果的に同じ素子で同じ並列数であっても電流不
平衡率が大きいと装置の電流容量が小さくなる。したが
って、必要とする電流容量を得るためには素子の並列数
をもっと増やす必要が生じ、その結果装置がコストアッ
するという問題がある。更には、一般に電流不平衡率は
並列数が大きいほど大きくなるという関係もあるから、
電流容量を確保するために並列数を増やすと不平衡率が
大きくなって並列数を増やしたほどには電流容量が増え
ず更に並列数を増やさなければならなくなり、いわばい
たちごっこになってしまうという場合もあり得る。
If there is a current imbalance between the semiconductor elements connected in parallel as described above, the semiconductor element having the largest shared current determines the total current capacity, resulting in the same current capacity. Even with the same number of parallel elements, the current capacity of the device decreases when the current imbalance ratio is high. Therefore, in order to obtain the required current capacity, it is necessary to increase the number of elements in parallel, resulting in a problem that the device costs up. Furthermore, in general, there is a relationship that the current imbalance rate increases as the number of parallels increases.
When the number of parallels is increased to secure the current capacity, the unbalance rate increases, and as the number of parallels increases, the current capacity does not increase and the number of parallels must be further increased. There is also a possibility.

【0011】この発明の目的は、このような問題を解決
し、半導体素子の並列数が大きくても素子間の電流不平
衡を有効に低減することのできる半導体変換装置を提供
することにある。
An object of the present invention is to solve the above problem and to provide a semiconductor conversion device capable of effectively reducing the current imbalance between elements even if the number of parallel semiconductor elements is large.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、三相整流器用変圧器の二次側か
ら引き出される各相ごとの二次側リード、これら二次リ
ードに設けられ1つの相に対して複数の並列接続される
半導体素子、全ての相のこれら半導体素子の同じ極が取
付けられて半導体素子の冷却と集電を兼ねる冷却導体を
備えた半導体変換装置において、転流期間中の電流が同
時に流れ得る3つの相の二次リードが、冷却導体の長手
方向に直角の平面に並べてそれぞれ引き出され、それぞ
れの相の二次リードに取付けられた半導体素子が冷却導
体の長手方向に対して対称に冷却導体表面に配置して取
付けられてなるものとし、また、冷却導体の断面形状が
正方形であり、その2つの側面と下面との3つの表面に
3つの相の半導体素子それぞれが取付けられてなるもの
とし、また、冷却導体の断面形状が正三角形であり、そ
の2つの側面と下面との3つの表面に3つの相の半導体
素子それぞれ取付けられてなるものとする。
In order to solve the above-mentioned problems, according to the present invention, a secondary side lead for each phase drawn from the secondary side of a transformer for a three-phase rectifier, and these secondary leads are provided. In a semiconductor conversion device provided with a plurality of semiconductor elements connected in parallel to one phase and provided with a cooling conductor that is attached to the same poles of these semiconductor elements of all phases and that also serves as a cooling and current collector for the semiconductor elements, Secondary leads of three phases, through which currents can flow at the same time during the commutation period, are drawn out side by side in a plane perpendicular to the longitudinal direction of the cooling conductor, and semiconductor elements attached to the secondary leads of the respective phases are cooled conductors. Of the cooling conductor is symmetrically arranged with respect to the longitudinal direction of the cooling conductor, and the cooling conductor has a square cross-sectional shape, and the three surfaces of the two side surfaces and the lower surface have three phases. semiconductor Shall each child is attached, also, the cross-sectional shape of the cooling conductor is equilateral triangle, and made respectively attached semiconductor elements of the three phases into three surfaces of its two sides and bottom.

【0013】[0013]

【作用】この発明の構成において、転流期間中の電流が
同時に流れ得る3つの相の二次リードを、冷却導体の長
手方向に直角の平面に並べて引き出して配置し、それぞ
れの相の二次リードに取付けられた半導体素子を冷却導
体の長手方向に対して対称に冷却導体表面に配置して取
付けることによって、転流期間中の時間的変化の急激な
電流は冷却導体の長手方向に直角の方向に相間を流れる
ことから、それぞれの半導体素子ごとの電流の流れる経
路が同じになってそれぞれの半導体素子ごとの転流イン
ダクタンスの差が小さくなりその結果電流分担の不平衡
が小さくなる。また、冷却導体の断面形状を正方形にす
るか、正三角形にして3つの相の半導体素子をそれぞれ
取付ける表面を3つ確保することができる。
In the structure of the present invention, the secondary leads of the three phases through which currents can simultaneously flow during the commutation period are arranged side by side in a plane perpendicular to the longitudinal direction of the cooling conductor, and the secondary leads of the respective phases are arranged. By arranging and mounting the semiconductor elements attached to the leads on the surface of the cooling conductor symmetrically with respect to the longitudinal direction of the cooling conductor, a rapid current that changes with time during commutation is perpendicular to the longitudinal direction of the cooling conductor. Since the currents flow between the phases in the same direction, the current flow paths of the respective semiconductor elements are the same, the difference in the commutation inductance between the respective semiconductor elements is small, and as a result, the imbalance in current sharing is small. Further, it is possible to make the cross-sectional shape of the cooling conductor square or equilateral triangle to secure three surfaces on which the semiconductor elements of the three phases are respectively mounted.

【0014】[0014]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の実施例を示すダブルスター結線変圧整
流装置の部分立面図、図2は同じく部分側面図であり、
図6、図7と同じ構成要素に対しては共通の符号を付け
て詳しい説明を省く。これらの図において、二次リード
31uA,31vA,31wAは図2の紙面に並べて配
置された状態で整流器用変圧器2からさ引き出されその
まま半導体素子4u,4v,4wを介して冷却導体5A
に取付けられる。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a partial elevation view of a double star connection transformer rectifier showing an embodiment of the present invention, and FIG. 2 is a partial side view of the same.
The same components as those in FIGS. 6 and 7 are designated by common reference numerals, and detailed description thereof will be omitted. In these drawings, the secondary leads 31uA, 31vA and 31wA are drawn out from the rectifier transformer 2 in a state of being arranged side by side on the paper surface of FIG. 2, and are directly subjected to the cooling conductor 5A via the semiconductor elements 4u, 4v and 4w.
Mounted on.

【0015】冷却導体5Aの断面形状は正方形をしてい
て、その側面と下面にそれぞれ半導体素子4u,4v,
4wが取付けられており、これに伴ってこれらの先端部
に半導体素子4が取付けられる二次リード31が適宜引
き回されている。図1で、図示されている半導体素子4
uと二次リード31uAに対して半導体素子4vは二次
リード31uAに隠れて見えないので点線でその位置を
図示してある。その二次リード31vAは図2の二次リ
ード31yAと同じ構成である。半導体素子4wと二次
リード31wAは半導体素子4uと二次リード31uA
の反対側にある。すなわち、u,v,wの3つの相半導
体素子4や二次リード31Aは冷却導体5Aの長手方向
に対して同じ位置に配置されている。x,y,zの3つ
の相も同様である。図5で説明したように、半導体素子
4u,4v,4wの転流時の時間的変化が急激な電流成
分は互いに反対方向に流れる。したがって、前述のよう
に、二次リード31や半導体素子4を配置することによ
って、前述の電流成分は冷却導体5Aの長手方向に対し
て直角な方向に流れ、4つの半導体素子4u1、4u
2、4u3、4u4と相手の4つの半導体素子4v1、
4v2、4v3又は半導体素子4w1、4w2、4w
3、4w4との間に流れる電流は平行ししかも経路が同
じ長さになる。その結果、従来の構成の場合に比べてそ
れぞれの半導体素子4間の転流インダクタンスの差が小
さくなって電流不平衡率が小さくなる。半導体素子4
x、4y、4zの場合も同様である。
The cooling conductor 5A has a square cross-sectional shape, and the semiconductor elements 4u, 4v, and
4w is attached, and along with this, the secondary leads 31 to which the semiconductor element 4 is attached are appropriately routed around these tips. The semiconductor device 4 shown in FIG.
Since the semiconductor element 4v is hidden by the secondary lead 31uA and invisible with respect to u and the secondary lead 31uA, its position is shown by a dotted line. The secondary lead 31vA has the same structure as the secondary lead 31yA in FIG. The semiconductor element 4w and the secondary lead 31wA are the semiconductor element 4u and the secondary lead 31uA.
On the other side of. That is, the three phase semiconductor elements 4 of u, v, and w and the secondary lead 31A are arranged at the same position in the longitudinal direction of the cooling conductor 5A. The same applies to the three phases x, y, and z. As described with reference to FIG. 5, the current components having a rapid temporal change during commutation of the semiconductor elements 4u, 4v, 4w flow in opposite directions. Therefore, as described above, by disposing the secondary lead 31 and the semiconductor element 4, the aforementioned current component flows in the direction perpendicular to the longitudinal direction of the cooling conductor 5A, and the four semiconductor elements 4u1 and 4u.
2, 4u3, 4u4 and the other four semiconductor elements 4v1,
4v2, 4v3 or semiconductor elements 4w1, 4w2, 4w
The currents flowing between 3 and 4w4 are parallel, and the paths have the same length. As a result, the difference in the commutation inductance between the respective semiconductor elements 4 becomes smaller and the current imbalance rate becomes smaller than in the case of the conventional configuration. Semiconductor element 4
The same applies to x, 4y, and 4z.

【0016】冷却導体5Aの断面形状は正方形としてあ
るが、これは図2において半導体素子4x,4y,4z
を取付けるのに必要な辺の長さが同じであるためであ
る。図7の冷却導体5では図の左右方向の寸法である厚
み寸法は電流値から決まる小さな値で良かったのに対し
て、図2の冷却導体5Aでは幅寸法と厚み寸法とを少な
くとも半導体素子4を取付けるのに必要な寸法にする必
要がありその場合には必要とする冷却導体の断面積を越
えることが多いので、辺の長さをできるだけ短くして断
面積を減らし材料の節約を計ることになるが、そうする
と必然的に図示のように正方形になる。
The cross-sectional shape of the cooling conductor 5A is a square, which is shown in FIG. 2 as semiconductor elements 4x, 4y, 4z.
This is because the sides required for mounting have the same length. In the cooling conductor 5 of FIG. 7, the thickness dimension, which is the dimension in the left-right direction of the figure, may be a small value determined from the current value, whereas in the cooling conductor 5A of FIG. 2, the width dimension and the thickness dimension are at least the semiconductor element 4. Since it is necessary to make it the size necessary for mounting, and in that case it often exceeds the required cross-sectional area of the cooling conductor, shorten the side length as much as possible to reduce the cross-sectional area and save material. However, if you do so, it will inevitably become a square as shown.

【0017】図3はこの発明の別の実施例を示すダブル
スター結線変圧整流装置の部分立面図、図4は同じく部
分側面図であり、図1、図2と同じ構成要素に対しては
共通の符号を付けて詳しい説明を省く。これら図3と図
4の特徴は冷却導体5Bの断面形状が正三角形であるこ
とである。図2の冷却導体5Aと辺の長さが同じであれ
ば当然図4の冷却導体5Bの断面積の方が小さくしたが
って材料が節約されまた軽くなる。冷却導体5Bの形状
に合わせて二次リード31Bもその引き回し形状を適切
なものにしている。なお、正三角形の1辺を下に持って
きたのは、この場合が二次リード31Bの引き回しが最
も合理的だからである。
FIG. 3 is a partial elevational view of a double star connection transformer rectifier showing another embodiment of the present invention, and FIG. 4 is a partial side view of the same, showing the same components as those in FIGS. 1 and 2. A common code is attached and detailed explanation is omitted. The feature of these FIG. 3 and FIG. 4 is that the cross-sectional shape of the cooling conductor 5B is an equilateral triangle. If the cooling conductor 5A of FIG. 2 has the same side length, the cooling conductor 5B of FIG. 4 naturally has a smaller cross-sectional area, thus saving material and making it lighter. The secondary lead 31B also has an appropriate routing shape according to the shape of the cooling conductor 5B. In addition, the reason why one side of the equilateral triangle is brought down is that the secondary lead 31B is most rational in this case.

【0018】[0018]

【発明の効果】この発明は前述のように、転流期間中の
電流が同時に流れ得る3つの相の二次リードを、冷却導
体の長手方向に直角の平面に並べて配置し、半導体素子
を長手方向に対称に配置かたことによって、転流期間中
の時間的変化の大きな電流成分は冷却導体の長手方向に
直角の方向に流れて相間を流れ、しかも、複数の半導体
素子のそれぞれごとの電流の流れる経路が同じになるこ
とから、それぞれの半導体素子と二次リードのインダク
タンスの差が小さくなりその結果それぞれの半導体素子
間の電流分担の不平衡が小さくなる。このことは、電流
分担が最大の半導体素子の電流値が小さくなることを意
味し、その結果同じ電流容量を確保するために半導体素
子の並列数を低減でき、それに伴い半導体変換装置のコ
ストダウンとコンパクト化が実現できるという効果が得
られる。また、冷却導体の断面形状を正方形にするか、
正三角形にして3つの相の半導体素子をそれぞれ取付け
る表面を3つ確保して前述の効果を適切に実現すること
ができる。
As described above, according to the present invention, the secondary leads of three phases in which currents can simultaneously flow during the commutation period are arranged side by side on a plane perpendicular to the longitudinal direction of the cooling conductor, and the semiconductor element is elongated. Due to the symmetrical arrangement in the direction, the current component with a large temporal change during the commutation period flows in the direction perpendicular to the longitudinal direction of the cooling conductor and flows between the phases, and the current of each of the plurality of semiconductor elements is different. Are the same, the difference in the inductance between the respective semiconductor elements and the secondary lead is small, and as a result, the imbalance in current sharing between the respective semiconductor elements is small. This means that the current value of the semiconductor element with the largest current sharing becomes smaller, and as a result, the number of parallel semiconductor elements can be reduced to secure the same current capacity, which leads to a reduction in the cost of the semiconductor conversion device. The effect is that compactness can be realized. Also, make the cross-sectional shape of the cooling conductor square,
The effect described above can be appropriately realized by forming three equilateral triangles and securing three surfaces for mounting the semiconductor elements of the three phases.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すダブルスター結線変圧
整流装置の部分立面図
FIG. 1 is a partial elevation view of a double star connection transformer rectifier showing an embodiment of the present invention.

【図2】図1の部分側面図FIG. 2 is a partial side view of FIG.

【図3】この発明の別の実施例を示すダブルスター結線
変圧整流装置の部分立面図
FIG. 3 is a partial elevation view of a double star connection transformer / rectifier showing another embodiment of the present invention.

【図4】図3の部分側面図FIG. 4 is a partial side view of FIG.

【図5】半導体変換装置の一例としてのダブルスター結
線変圧整流装置の回路図
FIG. 5 is a circuit diagram of a double star connection transformer rectifier as an example of a semiconductor converter.

【図6】従来のダブルスター結線変圧整流装置の部分立
面図
FIG. 6 is a partial elevation view of a conventional double star connection transformer rectifier.

【図7】図6の部分側面図7 is a partial side view of FIG.

【図8】半導体素子の電流分担を示す波形図FIG. 8 is a waveform diagram showing current sharing of a semiconductor element.

【符号の説明】[Explanation of symbols]

2 三相整流器用変圧器 22 二次巻線 31 二次リード 31uA,31vA,31wA,二次リード 31xA,31yA,31zA,二次リード 31uB、31vB,31wB 二次リード 31xB,31yB,31zB 二次リード 4 半導体素子 4u 半導体素子 4u,4v,4A 半導体素子 4x,4y,4z 半導体素子 4u1,4u2,4u3,4u4 半導体素子 5A 冷却導体 5B 冷却導体 2 Transformer for three-phase rectifier 22 Secondary winding 31 Secondary lead 31uA, 31vA, 31wA, Secondary lead 31xA, 31yA, 31zA, Secondary lead 31uB, 31vB, 31wB Secondary lead 31xB, 31yB, 31zB Secondary lead 4 semiconductor element 4u semiconductor element 4u, 4v, 4A semiconductor element 4x, 4y, 4z semiconductor element 4u1, 4u2, 4u3, 4u4 semiconductor element 5A cooling conductor 5B cooling conductor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】整流器用変圧器の二次巻線から引き出され
る各相ごとの二次リード、これら二次リードに設けられ
1つの相に対して複数の並列接続される半導体素子、複
数の相のこれら半導体素子の同じ極が取付けられて半導
体素子の冷却と集電を兼ねる冷却導体を備えた半導体変
換装置において、 転流期間中の電流が同時に流れ得る3つの相の二次リー
ドが、冷却導体の長手方向に直角の平面に並べてそれぞ
れ引き出され、それぞれの相の二次リードに取付けられ
た半導体素子が冷却導体の長手方向に対して対称に冷却
導体表面に配置して取付けられてなることを特徴とする
半導体変換装置。
1. A secondary lead for each phase drawn from a secondary winding of a rectifier transformer, a plurality of semiconductor elements provided on these secondary leads and connected in parallel to one phase, and a plurality of phases. In the semiconductor conversion device equipped with the same pole of these semiconductor elements and having a cooling conductor that also serves as a cooling and current collector for the semiconductor elements, the secondary leads of the three phases in which currents can simultaneously flow during the commutation period are cooled. The semiconductor elements attached to the secondary leads of the respective phases arranged side by side in a plane perpendicular to the longitudinal direction of the conductor and arranged symmetrically with respect to the longitudinal direction of the cooling conductor and mounted on the surface of the cooling conductor. A semiconductor conversion device characterized by:
【請求項2】冷却導体の断面形状が正方形であり、その
2つの側面と下面との3つの表面に3つの相の半導体素
子それぞれが取付けられてなることを特徴とする請求項
1記載の半導体変換装置。
2. The semiconductor device according to claim 1, wherein the cooling conductor has a square cross-sectional shape, and semiconductor elements of three phases are attached to three surfaces of two side surfaces and a lower surface of the cooling conductor. Converter.
【請求項3】冷却導体の断面形状が正三角形であり、そ
の2つの側面と下面との3つの表面に3つの相の半導体
素子それぞれ取付けられてなることを特徴とする請求項
1記載の半導体変換装置。
3. The semiconductor according to claim 1, wherein the cooling conductor has an equilateral triangular cross-sectional shape, and the semiconductor elements of three phases are attached to the three surfaces of the two side surfaces and the lower surface, respectively. Converter.
JP11079493A 1993-05-13 1993-05-13 Semiconductor converter Pending JPH06327251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11079493A JPH06327251A (en) 1993-05-13 1993-05-13 Semiconductor converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11079493A JPH06327251A (en) 1993-05-13 1993-05-13 Semiconductor converter

Publications (1)

Publication Number Publication Date
JPH06327251A true JPH06327251A (en) 1994-11-25

Family

ID=14544811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11079493A Pending JPH06327251A (en) 1993-05-13 1993-05-13 Semiconductor converter

Country Status (1)

Country Link
JP (1) JPH06327251A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501119A (en) * 2013-10-24 2014-01-08 昆明有色冶金设计研究院股份公司 Large rectifying equipment connecting device
JP2014143864A (en) * 2013-01-25 2014-08-07 Hitachi Ltd Power conversion device and dc power transmission system
CN115764933A (en) * 2022-11-21 2023-03-07 山东华科信息技术有限公司 Intelligent phase-changing method and system considering three-phase current unbalance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143864A (en) * 2013-01-25 2014-08-07 Hitachi Ltd Power conversion device and dc power transmission system
CN103501119A (en) * 2013-10-24 2014-01-08 昆明有色冶金设计研究院股份公司 Large rectifying equipment connecting device
CN115764933A (en) * 2022-11-21 2023-03-07 山东华科信息技术有限公司 Intelligent phase-changing method and system considering three-phase current unbalance
CN115764933B (en) * 2022-11-21 2023-06-23 山东华科信息技术有限公司 Intelligent phase change method and system considering three-phase current unbalance

Similar Documents

Publication Publication Date Title
JP4502510B2 (en) VSC converter
JP2004072846A (en) Rectifying device
JPWO2013051475A1 (en) Power converter
JPWO2013051476A1 (en) Power converter
JP2013542708A (en) Small high-power diode / thyristor rectifier structure
JP3532386B2 (en) Capacitor connection method and power converter
JPH06327251A (en) Semiconductor converter
JP2003189633A (en) Power converter
JPH01194344A (en) How to connect power transistors in parallel
US6208230B1 (en) Transformer for cycloconverter
JP2002044960A (en) Power converter
KR0182647B1 (en) Single phase induction motor for pole-change
CN109616297B (en) Dry-type transformer for railway in-phase power supply traction system
CN218513291U (en) Transformer lead structure
Fuentes Current distribution in paralleled thyristors-a comparative analysis of 5 real cases in high current transformer-rectifiers
JPH0124913Y2 (en)
JPH08335520A (en) Scott connected transformer
JPS63121499A (en) Welding generator
JPH08223917A (en) Rectifier for large current
JP3812782B2 (en) Three-phase AC generator for vehicles
JP3031015B2 (en) DC power supply
JP6934275B2 (en) Power converter
SU1098073A2 (en) Three-phase combined winding for a.c.electric machine
JPS63234872A (en) Transformer for rectifier
RU1551206C (en) Electric drive