[go: up one dir, main page]

JPH06323701A - Operating method for ice-making machine using supercooled water - Google Patents

Operating method for ice-making machine using supercooled water

Info

Publication number
JPH06323701A
JPH06323701A JP13948493A JP13948493A JPH06323701A JP H06323701 A JPH06323701 A JP H06323701A JP 13948493 A JP13948493 A JP 13948493A JP 13948493 A JP13948493 A JP 13948493A JP H06323701 A JPH06323701 A JP H06323701A
Authority
JP
Japan
Prior art keywords
water
ice
heat exchanger
storage tank
supercooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13948493A
Other languages
Japanese (ja)
Inventor
Yasutoshi Senoo
泰利 妹尾
Yasuhiro Kawakami
泰博 河上
Yoshitaka Kono
義孝 光野
Akiyoshi Itabashi
明吉 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP13948493A priority Critical patent/JPH06323701A/en
Publication of JPH06323701A publication Critical patent/JPH06323701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To obtain an operating method of an ice-making machine using supercooled water, which prevents freezing in a heat exchanger and enhances the loading efficiency of ice in an ice storage tank. CONSTITUTION:An ice-making machine using supercooled water consists of a refrigerating machine 1, a supercooled water heat exchanger 2 and an ice storage tank 3. The refrigerating machine 1 is started with a little amount of water in the ice storage tank 3, and when ice forming starts in the ice storage tank 3 and the temperature of water supplied to the supercooled water heat exchanger 2 drops to the specified temperature or lower, makeup water of 1/40-1/5 of the amount of the supply water is supplied through a makeup water passage 10, mixed with circulation water to rise its temperature up to a specified temperature or higher and supplied to the supercooled heat exchanger 2. A nozzle 7a of a cooled water circulation passage 7 have a specified slope and the collision point to ice is moved with a rise in the water level in the ice storage tank 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば、空調設備や
食品用冷却装置等に冷水を供給する蓄熱式製氷装置の運
転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a heat storage type ice making device for supplying cold water to, for example, an air conditioner or a food cooling device.

【0002】[0002]

【従来の技術】従来の蓄熱式製氷装置は、図4に示すよ
うに、蓄氷タンク31と過冷却水用熱交換器32との間
を循環路33で連通するとともに、前記過冷却水用熱交
換器32と冷凍機34との間も冷媒循環路35で連通し
た構成となっている。この蓄熱式製氷装置は、電力料金
の安い深夜電力を利用して蓄氷タンク31内に氷を蓄え
ておき、負荷の要求に応じ蓄氷タンク31上方より解氷
水を供給して冷水を取り出すようにしている。ところ
で、この製氷装置の駆動は、蓄氷タンク31に水を満た
した後冷凍機34を運転し、冷却媒体を熱交換器32内
を循環させるとともに、蓄氷タンク31内の被冷却水も
熱交換器32内を循環させて熱交換し、過冷却水を蓄氷
タンク31内へ供給するが、蓄氷タンク31内に製氷が
始まり循環する被冷却水の温度が1℃以下になると熱交
換器32内で凍結が起き易くなり、さらに、水温が0.
4℃以下になると短時間の運転で凍結する。そこで、従
来は、その対策として蓄氷タンク31から熱交換器32
までの間の循環路33の熱絶縁を悪くしたり、或いは、
補助熱交換器(図示省略)を設け必要に応じて熱交換器
32の入口温度を高めるとか、被冷却水の温度を高める
ため積極的に加熱する方法で対処していた。しかしなが
ら、この加熱手段により温度を高めた被冷却水は、熱交
換器32で過冷却するため効率が悪く、それだけ性能が
低下することになる。又、蓄氷タンク31内に蓄氷する
氷の充填率も悪い。
2. Description of the Related Art In a conventional heat storage type ice making apparatus, as shown in FIG. 4, an ice storage tank 31 and a supercooling water heat exchanger 32 are connected by a circulation path 33, and the above-mentioned supercooling water is used. The heat exchanger 32 and the refrigerator 34 are also connected by a refrigerant circulation path 35. This heat storage type ice making device stores ice in the ice storage tank 31 by using late-night electric power with a low electricity rate, and supplies ice-melting water from above the ice storage tank 31 to take out cold water in response to a load request. I have to. By the way, the ice-making device is driven by operating the refrigerator 34 after filling the ice storage tank 31 with water to circulate the cooling medium in the heat exchanger 32 and heat the cooled water in the ice storage tank 31 as well. The heat is exchanged by circulating the inside of the exchanger 32, and the supercooled water is supplied into the ice storage tank 31, but when the temperature of the cooled water to be circulated in the ice storage tank 31 becomes 1 ° C or less, the heat exchange is performed. Freezing is likely to occur in the vessel 32, and the water temperature is 0.
When the temperature falls below 4 ° C, it freezes after a short period of operation. Therefore, conventionally, as a countermeasure, from the ice storage tank 31 to the heat exchanger 32.
The heat insulation of the circulation path 33 between
An auxiliary heat exchanger (not shown) is provided to raise the inlet temperature of the heat exchanger 32 as necessary, or a method of positively heating to raise the temperature of the water to be cooled has been dealt with. However, the water to be cooled whose temperature has been raised by this heating means is supercooled by the heat exchanger 32, so that the efficiency is poor and the performance is reduced accordingly. Further, the filling rate of ice stored in the ice storage tank 31 is also poor.

【0003】[0003]

【発明が解決しようとする課題】この発明は、上記問題
点に鑑み、前記熱交換器入口において、被冷却水の温度
を所定温度以上に高め熱交換器内での凍結を防止させる
とともに、蓄氷タンク内の氷の充填率を高める製氷装置
の運転方法を提供することを目的とするものである。
In view of the above problems, the present invention raises the temperature of water to be cooled to a predetermined temperature or higher at the inlet of the heat exchanger to prevent freezing in the heat exchanger and to store the stored water. It is an object of the present invention to provide an operation method of an ice making device for increasing the filling rate of ice in an ice tank.

【0004】即ち、この発明は、冷凍機、過冷却水用熱
交換器および蓄氷タンクからなる過冷却水による製氷装
置において、前記蓄氷タンクの水量が少ない状態で前記
冷凍機の運転を開始し、蓄氷タンク内で製氷が始まり前
記過冷却水用熱交換器に供給する水の温度が所定温度以
下に降下すると、供給する水量の1/40〜1/5の補
給水を補給水路より供給して循環水と混合し、水を所定
の温度以上に高めた後、前記過冷却水用熱交換器に供給
することを特徴とし、請求項2は、前記過冷却水用熱交
換器の冷水還流路のノズルを、少なくとも垂直方向から
30°以上水平方向に勾配を付して配置し、ノズルより
噴出する過冷却水と前記蓄氷タンク内の水面上の氷との
衝突点を、蓄氷タンク内の水位上昇とともに移動させる
ことを特徴としている。
That is, according to the present invention, in an ice making device using supercooled water, which comprises a refrigerator, a heat exchanger for supercooled water, and an ice storage tank, the operation of the refrigerator is started in a state where the amount of water in the ice storage tank is small. Then, when ice making starts in the ice storage tank and the temperature of the water supplied to the supercooling water heat exchanger drops below a predetermined temperature, 1/40 to 1/5 of the supplied water is supplied from the makeup water channel. The heat exchanger for supercooled water is supplied to the heat exchanger for supercooled water after being supplied to and mixed with circulating water to raise the temperature of the water to a predetermined temperature or higher. The nozzles of the cold water return passage are arranged with a horizontal gradient of at least 30 ° from the vertical direction, and the collision point between the supercooled water ejected from the nozzle and the ice on the water surface in the ice storage tank is stored. Characterized by moving as the water level rises in the ice tank That.

【0005】[0005]

【実施例】以下、この発明の具体的実施例を図面に基づ
いて詳細に説明する。図1は、この発明に係る過冷却水
による製氷装置の概略説明図で、この製氷装置は、冷凍
機1、過冷却水用熱交換器2(以下熱交換器という)お
よび蓄氷タンク3から構成されている。冷凍機1は、た
とえば液化した冷媒(例えばフロン)を膨張弁1aで減
圧した後、熱交換器2を介して被冷却水を冷媒の蒸発潜
熱によって直接冷却する方式を利用したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic explanatory view of an ice making device using supercooled water according to the present invention. The ice making device includes a refrigerator 1, a heat exchanger 2 for supercooled water (hereinafter referred to as a heat exchanger), and an ice storage tank 3. It is configured. The refrigerator 1 uses a system in which, for example, a liquefied refrigerant (for example, freon) is decompressed by the expansion valve 1a, and then the water to be cooled is directly cooled via the heat exchanger 2 by latent heat of vaporization of the refrigerant.

【0006】熱交換器2は、図1に示すように、外管2
aを螺旋状(実施に応じては、直線状でも可能)に形成
し、その内部に内管2bを挿入した二重管構造であっ
て、外管2aと内管2bとの間に蓄氷タンク3から供給
される被冷却水が流通し、内管2b内には冷凍機1より
供給される冷媒が流通するようになっている。したがっ
て、被冷却水を内管2bの外周から冷却して過冷却水を
製造する構造となっている。
As shown in FIG. 1, the heat exchanger 2 has an outer tube 2
a has a double pipe structure in which a is formed in a spiral shape (a straight shape is also possible depending on the implementation), and an inner pipe 2b is inserted therein, and ice storage is provided between the outer pipe 2a and the inner pipe 2b. The water to be cooled supplied from the tank 3 flows, and the refrigerant supplied from the refrigerator 1 flows in the inner pipe 2b. Therefore, the cooling water is cooled from the outer circumference of the inner pipe 2b to produce supercooled water.

【0007】冷凍機1と熱交換器2の内管2bとは、膨
張弁1aを介して冷媒供給路4を接続するとともに冷媒
還流路5を接続して冷媒を循環させる。一方、被冷却水
は、熱交換器2の外管2aと蓄氷タンク3との間を冷水
供給路6および冷水還流路7を介して接続されており、
冷水供給路6には、冷水ポンプ8と温度センサ9を挿入
している。そして、この発明に係る補給水路10を前記
冷水供給路6の冷水ポンプ8上流側に接続し、途中に電
磁弁11を設けている。尚、前記冷水還流路7のノズル
7aは、図1に示すように、過冷却水を斜めに入れるた
め垂直方向から30°以上水平方向に所定の勾配をつけ
ている。
The refrigerator 1 and the inner pipe 2b of the heat exchanger 2 are connected to the refrigerant supply path 4 via the expansion valve 1a and the refrigerant return path 5 to circulate the refrigerant. On the other hand, the water to be cooled is connected between the outer pipe 2a of the heat exchanger 2 and the ice storage tank 3 via a cold water supply passage 6 and a cold water return passage 7.
A cold water pump 8 and a temperature sensor 9 are inserted in the cold water supply passage 6. Then, the makeup water passage 10 according to the present invention is connected to the chilled water pump 8 upstream of the chilled water supply passage 6, and an electromagnetic valve 11 is provided on the way. Incidentally, as shown in FIG. 1, the nozzle 7a of the cold water return passage 7 has a predetermined inclination in the horizontal direction of 30 ° or more from the vertical direction in order to allow the supercooled water to enter obliquely.

【0008】図中12は、解氷水路であって途中に電磁
弁13をもうけている。また、図中14は、冷水取水路
であって、途中に電磁弁15、16を設けている。そし
て、この製氷装置より得た冷水を利用して熱交換する熱
負荷装置17を蓄氷タンク3の近傍に配置している。図
中18は、前記熱負荷装置17と熱交換する冷水路であ
り、前記冷水取水路14の電磁弁15,16の間より分
岐して接続し、他端を前記解氷水路12に接続し途中に
電磁弁19を設け、この電磁弁19と熱負荷装置17と
の間より分岐した冷水循環路20を接続し他端を前記補
給水路10に接続し途中に電磁弁21を設けている。
又、図中22は、冷水取水路14に設けた給水ポンプで
あり、図中23は、熱負荷流体路である。尚、前記冷凍
機1、給水ポンプ8、22、温度センサ9および各流路
に設けた各電磁弁は、図示省略の回線を介して制御器に
連通している。
In the figure, reference numeral 12 is a deicing channel having a solenoid valve 13 in the middle thereof. Further, reference numeral 14 in the drawing denotes a cold water intake passage, and solenoid valves 15 and 16 are provided on the way. A heat load device 17 for exchanging heat using the cold water obtained from the ice making device is arranged near the ice storage tank 3. In the figure, reference numeral 18 denotes a cold water channel for exchanging heat with the heat load device 17, which is branched and connected from between the electromagnetic valves 15 and 16 of the cold water intake channel 14 and the other end is connected to the deicing water channel 12. An electromagnetic valve 19 is provided on the way, a cold water circulation path 20 branched from the electromagnetic valve 19 and the heat load device 17 is connected, the other end is connected to the makeup water path 10, and an electromagnetic valve 21 is provided on the way.
Reference numeral 22 in the drawing is a water supply pump provided in the cold water intake passage 14, and 23 in the drawing is a heat load fluid passage. The refrigerator 1, the water supply pumps 8 and 22, the temperature sensor 9, and each solenoid valve provided in each flow path are in communication with a controller via a line (not shown).

【0009】つぎに、上記構成の製氷装置の運転方法を
説明する。尚、製氷装置の各電磁弁は閉状態としてい
る。まず、前記解氷水路12の電磁弁13を開き、蓄氷
タンク3内に約20%の水を溜めた状態で電磁弁13を
閉じ、冷凍機1を運転するとともに給水ポンプ8を駆動
し過冷却水の製造を始める。そして、蓄氷タンク3内の
水が熱交換器2を介して過冷却水となり、冷水還流路7
のノズル7aにおいて水温が0℃以下となり、蓄氷タン
ク3内に氷ができ始めて暫くすると、冷水供給路6より
熱交換器2に流入する循環水の水温が約0.5℃にまで
低下する。水温が0.5℃に低下すると温度センサ9よ
りの情報により制御器(図示省略)は、前記補給水路1
0の電磁弁11を図2に示す熱交換器2へ供給する水量
と水温の計算例にしたがって開弁し、所定水温で所定水
量の被冷却水を熱交換器2へ供給する。
Next, a method of operating the ice making device having the above-mentioned structure will be described. The electromagnetic valves of the ice making device are closed. First, the electromagnetic valve 13 of the deicing water channel 12 is opened, and the electromagnetic valve 13 is closed in a state where about 20% of water is stored in the ice storage tank 3, the refrigerator 1 is operated and the water supply pump 8 is driven. Production of cooling water begins. Then, the water in the ice storage tank 3 becomes supercooled water via the heat exchanger 2, and the cold water return path 7
When the water temperature in the nozzle 7a becomes 0 ° C. or less and ice begins to form in the ice storage tank 3 for a while, the water temperature of the circulating water flowing into the heat exchanger 2 from the cold water supply passage 6 drops to about 0.5 ° C. . When the water temperature drops to 0.5 ° C, the controller (not shown) controls the replenishment water channel 1 according to the information from the temperature sensor 9.
The solenoid valve 11 of 0 is opened according to the calculation example of the amount of water supplied to the heat exchanger 2 and the water temperature shown in FIG. 2, and a predetermined amount of water to be cooled is supplied to the heat exchanger 2 at a predetermined water temperature.

【0010】即ち、熱交換器2へ供給する被冷却水の温
度を熱交換器2内で凍結しない0.6℃に保つために、
蓄氷タンク3より循環する水温0℃の水に補給水を混入
するが、この混入する補給水の水量は、その水温によっ
て異るが前記蓄氷タンク3より循環する水量の1/40
以上で1/5以下となる。これは、図2の計算例に示す
ように、蓄氷タンク3内で製氷される氷mi =0.02
3 は、熱交換器2へ供給する被冷却水m3 =1.00
3 の約2%であり、一方、補給水量m2 =0.04m
3 であるから前記m3 =1.00m3 の約4%となり、
蓄氷タンク3内に増加する水量はm2 (0.04m3
−mi (0.02m3 )=mw (0.02m3 )とな
る。したがって、蓄氷タンク3内には氷と水がともに増
加し蓄積されてゆく氷と水の割合、mi /mw は、補給
水の水温と熱交換器2へ供給する被冷却水の水温および
過冷却水の温度によって変化する。
That is, in order to maintain the temperature of the water to be cooled supplied to the heat exchanger 2 at 0.6 ° C. at which it does not freeze in the heat exchanger 2,
Make-up water is mixed with water having a water temperature of 0 ° C. which circulates from the ice storage tank 3, and the amount of the make-up water mixed therein is 1/40 of the amount of water circulated from the ice storage tank 3 although it depends on the water temperature.
It becomes 1/5 or less by the above. As shown in the calculation example of FIG. 2, this is the ice m i = 0.02 produced in the ice storage tank 3.
m 3 is the water to be cooled supplied to the heat exchanger 2, m 3 = 1.00
It is about 2% of m 3 , while the amount of makeup water m 2 = 0.04 m
Since 3 is about 4% of the above m 3 = 1.00 m 3 ,
The amount of water that increases in the ice storage tank 3 is m 2 (0.04 m 3 ).
To become -m i (0.02m 3) = m w (0.02m 3). Therefore, the ratio of ice and water in which both ice and water increase and accumulate in the ice storage tank 3, m i / m w is the water temperature of the makeup water and the water temperature of the cooled water to be supplied to the heat exchanger 2. And changes depending on the temperature of the supercooled water.

【0011】上記のようにして製氷装置を運転し所定量
の氷を蓄氷タンク3内に蓄えるが、冷水還流路7のノズ
ル7aを所定の勾配にしているので、蓄氷タンク3内の
水が少ないときには図3のAに示すように右端の方で氷
が形成され、蓄氷タンク3内の水が多いときは図3のB
に示すように左端の方で氷が形成される。したがって、
水位が上がるにつれて氷の形成位置が右から左に移ると
ともに、その間に氷筍かくずれてゆくので氷を蓄氷タン
ク3内に効率よく蓄えることができる。そして、所定量
の氷を蓄えた後運転を停止し、負荷の要求に応じ解氷水
路12の電磁弁13を開き解氷水を供給し、冷水取水路
14の電磁弁15、16を開きポンプ22を駆動して冷
水を供給する。尚、上記運転方法では、蓄氷タンク3内
の氷の充填率を高くするため、運転開始時の水量を少な
くしておくことが望ましい。
The ice making device is operated as described above to store a predetermined amount of ice in the ice storage tank 3. However, since the nozzle 7a of the cold water return passage 7 has a predetermined slope, the water in the ice storage tank 3 is When the amount of water is small, ice is formed at the right end as shown in A of FIG. 3, and when the amount of water in the ice storage tank 3 is large, B of FIG.
As shown in, ice is formed at the left end. Therefore,
As the water level rises, the ice formation position moves from the right to the left, and during that time, the ice-bamboo shifts so that the ice can be efficiently stored in the ice storage tank 3. Then, after storing a predetermined amount of ice, the operation is stopped, the electromagnetic valve 13 of the deicing water channel 12 is opened to supply deicing water in response to a load request, and the electromagnetic valves 15 and 16 of the cold water intake channel 14 are opened to open the pump 22. To supply cold water. In the above operating method, in order to increase the filling rate of ice in the ice storage tank 3, it is desirable to reduce the amount of water at the start of the operation.

【0012】つぎに、前記運転方法にかわる運転方法に
ついて説明する。図1の蓄氷タンク3の近傍に設けた熱
交換器などの熱負荷装置17に、冷水取水路14より冷
水を供給し、熱交換後の戻り水を解氷水および補給水と
して循環使用するものである。即ち、熱負荷流体路23
内の流体は、冷水取水路14の電磁弁15を開きポンプ
22を駆動し冷水路18を介して冷水と熱負荷装置17
内で熱交換し、冷水路18の、電磁弁19と冷水路18
より分岐した戻り水路20の電磁弁21を同時に開き、
戻り水の一部を戻り水路20を介して補給水として冷水
供給路6に混入させるとともに、解氷水路12を介して
解氷水として循環使用するようにしたものである。この
運転方法も前述の運転方法と同様に熱交換器2へ供給す
る被冷却水の水温は、温度センサ9と制御器との間で調
整し所定水温の水を供給する。
Next, an operation method which is an alternative to the above operation method will be described. Cold water is supplied from the cold water intake passage 14 to a heat load device 17 such as a heat exchanger provided near the ice storage tank 3 in FIG. 1, and the return water after heat exchange is circulated and used as deicing water and makeup water. Is. That is, the heat load fluid path 23
The fluid inside opens the solenoid valve 15 of the cold water intake passage 14 and drives the pump 22 to pass the cold water and the heat load device 17 through the cold water passage 18.
Heat is exchanged inside the solenoid valve 19 and the cold water passage 18 of the cold water passage 18.
Simultaneously open the solenoid valve 21 of the more branched return water channel 20,
A part of the return water is mixed into the cold water supply passage 6 as make-up water via the return water passage 20 and is also circulated and used as the deicing water via the ice melting water passage 12. In this operating method as well, the water temperature of the water to be cooled supplied to the heat exchanger 2 is adjusted between the temperature sensor 9 and the controller to supply water of a predetermined water temperature, as in the above operating method.

【0013】つぎに、参考として、熱交換器の能力をア
ップし、補給水に対する製氷割合を高めるときの条件の
一例を示す。即ち、図2に示す計算例のうち熱交換器出
口m4 =1.00m3 のt4 =−3℃とすると、蓄氷タ
ンク3内の時間当たり製氷量mi =0.0375m3
なり製氷割合は90%を越えることになる。
Next, as a reference, an example of conditions for increasing the capacity of the heat exchanger and increasing the ratio of ice making to make-up water will be shown. That is, if t 4 = -3 ° C. Calculation examples of which heat exchanger outlet m 4 = 1.00 m 3 of shown in FIG. 2, the time per ice amount m i = 0.0375m 3 next ice in蓄氷tank 3 The ratio will exceed 90%.

【0014】[0014]

【発明の効果】この発明は、蓄氷タンクの水量が少ない
状態で製氷装置の運転を開始し、熱交換器へ還流する水
量の1/40〜1/5の補給水を供給して混合し、水を
所定温度以上に高めた後熱交換器へ供給するようにした
ので、熱交換器内で水が凍結することは少ない。したが
って、従来のように補助熱交換器で昇温する等の強制加
熱は必要なく、効率よく製氷装置を運転することができ
る。又、ノズルに勾配をつけたので、蓄氷タンク内の水
位上昇とともに氷の衝突点が自動的に移動するので、氷
の充填率を高めることができる。
According to the present invention, the operation of the ice making device is started in a state where the amount of water in the ice storage tank is small, and 1/40 to 1/5 of the amount of water recirculated to the heat exchanger is supplied and mixed. Since the water is supplied to the heat exchanger after being heated to a predetermined temperature or higher, the water rarely freezes in the heat exchanger. Therefore, unlike the conventional case, forced heating such as temperature rise in the auxiliary heat exchanger is not required, and the ice making device can be efficiently operated. Further, since the nozzle is inclined, the collision point of ice automatically moves as the water level in the ice storage tank rises, so that the filling rate of ice can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す過冷却水による製氷
装置の概略説明図である。
FIG. 1 is a schematic explanatory view of an ice making device using supercooled water according to an embodiment of the present invention.

【図2】図1の製氷装置の熱交換器へ供給する水量と水
温の計算例を示す説明図である。
FIG. 2 is an explanatory diagram showing a calculation example of a water amount and a water temperature supplied to a heat exchanger of the ice making device of FIG.

【図3】図1の蓄氷タンクの水位の変化による水筍の状
態を示す説明図である。
FIG. 3 is an explanatory diagram showing a state of a water stalagmite caused by a change in water level in the ice storage tank of FIG.

【図4】従来の過冷却水による製氷装置の概略説明図で
ある。
FIG. 4 is a schematic explanatory view of a conventional ice making device using supercooled water.

【符号の説明】[Explanation of symbols]

1…冷凍機 2…過冷却水用熱交換器 3…蓄氷タンク 7…冷水還流路 7a…ノズル 10…補給水路 1 ... Refrigerator 2 ... Heat exchanger for supercooled water 3 ... Ice storage tank 7 ... Cold water return passage 7a ... Nozzle 10 ... Make-up water passage

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月14日[Submission date] July 14, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 過冷却水による製氷装置の運転
方法
[Title of Invention] Method of operating ice making device with supercooled water

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば、空調設備や
食品用冷却装置等に冷水を供給する蓄熱式製氷装置の運
転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a heat storage type ice making device for supplying cold water to, for example, an air conditioner or a food cooling device.

【0002】[0002]

【従来の技術】従来の蓄熱式製氷装置は、図4に示すよ
うに、蓄氷タンク31と過冷却水用熱交換器32との間
を循環路33で連通するとともに、前記過冷却水用熱交
換器32と冷凍機34との間も冷媒循環路35で連通し
た構成となっている。この蓄熱式製氷装置は、電力料金
の安い深夜電力を利用して蓄氷タンク31内に氷を蓄え
ておき、負荷の要求に応じ蓄氷タンク31上方より解氷
水を供給して冷水を取り出すようにしている。ところ
で、この製氷装置の駆動は、蓄氷タンク31に水を満た
した後冷凍機34を運転し、冷却媒体を熱交換器32内
を循環させるとともに、蓄氷タンク31内の被冷却水も
熱交換器32内を循環させて熱交換し、過冷却水を蓄氷
タンク31内へ供給するが、蓄氷タンク31内に製氷が
始まり循環する被冷却水の温度が1℃以下になると熱交
換器32内で凍結が起き易くなり、さらに、水温が0.
4℃以下になると短時間の運転で凍結する。そこで、従
来は、その対策として蓄氷タンク31から熱交換器32
までの間の循環路33の熱絶縁を悪くしたり、或いは、
補助熱交換器(図示省略)を設け必要に応じて熱交換器
32の入口温度を高めるとか、被冷却水の温度を高める
ため積極的に加熱する方法で対処していた。しかしなが
ら、この加熱手段により温度を高めた被冷却水は、熱交
換器32で過冷却するため効率が悪く、それだけ性能が
低下することになる。又、蓄氷タンク31内に蓄氷する
氷の充填率も悪い。
2. Description of the Related Art In a conventional heat storage type ice making apparatus, as shown in FIG. 4, an ice storage tank 31 and a supercooling water heat exchanger 32 are connected by a circulation path 33, and the above-mentioned supercooling water is used. The heat exchanger 32 and the refrigerator 34 are also connected by a refrigerant circulation path 35. This heat storage type ice making device stores ice in the ice storage tank 31 by using late-night electric power with a low electricity rate, and supplies ice-melting water from above the ice storage tank 31 to take out cold water in response to a load request. I have to. By the way, the ice-making device is driven by operating the refrigerator 34 after filling the ice storage tank 31 with water to circulate the cooling medium in the heat exchanger 32 and heat the cooled water in the ice storage tank 31 as well. The heat is exchanged by circulating the inside of the exchanger 32, and the supercooled water is supplied into the ice storage tank 31, but when the temperature of the cooled water to be circulated in the ice storage tank 31 becomes 1 ° C or less, the heat exchange is performed. Freezing is likely to occur in the vessel 32, and the water temperature is 0.
When the temperature falls below 4 ° C, it freezes after a short period of operation. Therefore, conventionally, as a countermeasure, from the ice storage tank 31 to the heat exchanger 32.
The heat insulation of the circulation path 33 between
An auxiliary heat exchanger (not shown) is provided to raise the inlet temperature of the heat exchanger 32 as necessary, or a method of actively heating to raise the temperature of the water to be cooled has been dealt with. However, the water to be cooled whose temperature has been raised by this heating means is supercooled by the heat exchanger 32, so that the efficiency is poor and the performance is reduced accordingly. Further, the filling rate of ice stored in the ice storage tank 31 is also poor.

【0003】[0003]

【発明が解決しようとする課題】この発明は、上記問題
点に鑑み、前記熱交換器入口において、被冷却水の温度
を所定温度以上に高め熱交換器内での凍結を防止させる
とともに、蓄氷タンク内の氷の充填率を高める製氷装置
の運転方法を提供することを目的とするものである。
In view of the above problems, the present invention raises the temperature of water to be cooled to a predetermined temperature or higher at the inlet of the heat exchanger to prevent freezing in the heat exchanger and to store the stored water. It is an object of the present invention to provide an operation method of an ice making device for increasing the filling rate of ice in an ice tank.

【0004】 [0004]

【課題を解決するための手段】 即ち、この発明は、冷凍
機、過冷却水用熱交換器および蓄氷タンクからなる過冷
却水による製氷装置において、前記蓄氷タンクの水量が
少ない状態で前記冷凍機の運転を開始し、蓄氷タンク内
で製氷が始まり前記過冷却水用熱交換器に供給する水の
温度が所定温度以下に降下すると、供給する水量の1/
40〜1/5の補給水を補給水路より供給して循環水と
混合し、水を所定の温度以上に高めた後、前記過冷却水
用熱交換器に供給することを特徴とし、請求項2は、前
記過冷却水用熱交換器の冷水還流路のノズルを、少なく
とも垂直方向から30°以上水平方向に勾配を付して配
置し、ノズルより噴出する過冷却水と前記蓄氷タンク内
の水面上の氷との衝突点を、蓄氷タンク内の水位上昇と
ともに移動させることを特徴としている。
Means for Solving the Problems] That is, the present invention is refrigerator, the ice making apparatus according supercooled water consisting of supercooling water heat exchanger and蓄氷tank, the state of the water is less the蓄氷tank When the operation of the refrigerator is started and ice making starts in the ice storage tank and the temperature of the water supplied to the heat exchanger for supercooled water drops below a predetermined temperature,
40 to ⅕ of makeup water is supplied from a makeup water channel to be mixed with circulating water, the water is heated to a predetermined temperature or higher, and then supplied to the supercooling water heat exchanger. No. 2 shows that the nozzles of the cold water return path of the heat exchanger for supercooled water are arranged with a gradient of at least 30 ° or more from the vertical direction in the horizontal direction, and the supercooled water ejected from the nozzles and the inside of the ice storage tank The feature is that the collision point with the ice on the surface of the water is moved as the water level rises in the ice storage tank.

【0005】[0005]

【実施例】以下、この発明の具体的実施例を図面に基づ
いて詳細に説明する。図1は、この発明に係る過冷却水
による製氷装置の概略説明図で、この製氷装置は、冷凍
機1、過冷却水用熱交換器2(以下熱交換器という)お
よび蓄氷タンク3から構成されている。冷凍機1は、た
とえば液化した冷媒(例えばフロン)を膨張弁1aで減
圧した後、熱交換器2を介して被冷却水を冷媒の蒸発潜
熱によって直接冷却する方式を利用したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic explanatory view of an ice making device using supercooled water according to the present invention. The ice making device includes a refrigerator 1, a heat exchanger 2 for supercooled water (hereinafter referred to as a heat exchanger), and an ice storage tank 3. It is configured. The refrigerator 1 uses a system in which, for example, a liquefied refrigerant (for example, freon) is decompressed by the expansion valve 1a, and then the water to be cooled is directly cooled via the heat exchanger 2 by latent heat of vaporization of the refrigerant.

【0006】熱交換器2は、図1に示すように、外管2
aを螺旋状(実施に応じては、直線状でも可能)に形成
し、その内部に内管2bを挿入した二重管構造であっ
て、外管2aと内管2bとの間に蓄氷タンク3から供給
される被冷却水が流通し、内管2b内には冷凍機1より
供給される冷媒が流通するようになっている。したがっ
て、被冷却水を内管2bの外周から冷却して過冷却水を
製造する構造となっている。
As shown in FIG. 1, the heat exchanger 2 has an outer tube 2
a has a double pipe structure in which a is formed in a spiral shape (a straight shape is also possible depending on the implementation), and an inner pipe 2b is inserted therein, and ice storage is provided between the outer pipe 2a and the inner pipe 2b. The water to be cooled supplied from the tank 3 flows, and the refrigerant supplied from the refrigerator 1 flows in the inner pipe 2b. Therefore, the cooling water is cooled from the outer circumference of the inner pipe 2b to produce supercooled water.

【0007】冷凍機1と熱交換器2の内管2bとは、膨
張弁1aを介して冷媒供給路4を接続するとともに冷媒
還流路5を接続して冷媒を循環させる。一方、被冷却水
は、熱交換器2の外管2aと蓄氷タンク3との間を冷水
供給路6および冷水還流路7を介して接続されており、
冷水供給路6には、冷水ポンプ8と温度センサ9を挿入
している。そして、この発明に係る補給水路10を前
記冷水供給路6の冷水ポンプ8上流側に接続し、途中に
電磁弁11を設けている。尚、前記冷水還流路7のノズ
ル7aは、図1に示すように、過冷却水を斜めに入れる
ため垂直方向から30°以上水平方向に所定の勾配をつ
けている。
The refrigerator 1 and the inner pipe 2b of the heat exchanger 2 are connected to the refrigerant supply path 4 via the expansion valve 1a and the refrigerant return path 5 to circulate the refrigerant. On the other hand, the water to be cooled is connected between the outer pipe 2a of the heat exchanger 2 and the ice storage tank 3 via a cold water supply passage 6 and a cold water return passage 7.
A cold water pump 8 and a temperature sensor 9 are inserted in the cold water supply passage 6. Then, connect the supply water path 10 Ru engaged Wa to the present invention the cold water pump 8 upstream of the cold-water supply passage 6, and a solenoid valve 11 provided midway. Incidentally, as shown in FIG. 1, the nozzle 7a of the cold water return passage 7 has a predetermined inclination in the horizontal direction of 30 ° or more from the vertical direction in order to allow the supercooled water to enter obliquely.

【0008】図中12は、解氷水路であって途中に電磁
弁13をけている。また、図中14は、冷水取水路で
あって、途中に電磁弁15、16を設けている。そし
て、この製氷装置より得た冷水を利用して熱交換する熱
負荷装置17を蓄氷タンク3の近傍に配置している。図
中18は、前記熱負荷装置17と熱交換する冷水路であ
り、前記冷水取水路14の電磁弁15,16の間より分
岐して接続し、他端を前記解氷水路12に接続し途中に
電磁弁19を設け、この電磁弁19と熱負荷装置17と
の間より分岐した冷水循環路20を接続し他端を前記補
給水路10に接続し途中に電磁弁21を設けている。
又、図中22は、冷水取水路14に設けた給水ポンプで
あり、図中23は、熱負荷流体路である。尚、前記冷凍
機1、給水ポンプ8、22、温度センサ9および各流路
に設けた各電磁弁は、図示省略の回線を介して制御器に
連通している。
[0008] figure 12 is only set the electromagnetic valve 13 on the way to a solution of ice water path. Further, reference numeral 14 in the drawing denotes a cold water intake passage, and solenoid valves 15 and 16 are provided on the way. A heat load device 17 for exchanging heat using the cold water obtained from the ice making device is arranged near the ice storage tank 3. In the figure, reference numeral 18 denotes a cold water channel for exchanging heat with the heat load device 17, which is branched and connected from between the electromagnetic valves 15 and 16 of the cold water intake channel 14 and the other end is connected to the deicing water channel 12. An electromagnetic valve 19 is provided on the way, a cold water circulation path 20 branched from the electromagnetic valve 19 and the heat load device 17 is connected, the other end is connected to the makeup water path 10, and an electromagnetic valve 21 is provided on the way.
Reference numeral 22 in the drawing is a water supply pump provided in the cold water intake passage 14, and 23 in the drawing is a heat load fluid passage. The refrigerator 1, the water supply pumps 8 and 22, the temperature sensor 9, and each solenoid valve provided in each flow path are in communication with a controller via a line (not shown).

【0009】つぎに、上記構成の製氷装置の運転方法を
説明する。尚、製氷装置の各電磁弁は閉状態としてい
る。まず、前記解氷水路12の電磁弁13を開き、蓄氷
タンク3内に約20%の水を溜めた状態で電磁弁13を
閉じ、冷凍機1を運転するとともに給水ポンプ8を駆動
し過冷却水の製造を始める。そして、蓄氷タンク3内の
水が熱交換器2を介して過冷却水となり、冷水還流路7
のノズル7aにおいて水温が0℃以下となり、蓄氷タン
ク3内に氷ができ始めて暫くすると、冷水供給路6より
熱交換器2に流入する循環水の水温が約0.5℃にまで
低下する。水温が0.5℃に低下すると温度センサ9よ
りの情報により制御器(図示省略)は、前記補給水路1
0の電磁弁11を図2に示す熱交換器2へ供給する水量
と水温の計算例にしたがって開弁し、所定水温で所定水
量の被冷却水を熱交換器2へ供給する。
Next, a method of operating the ice making device having the above-mentioned structure will be described. The electromagnetic valves of the ice making device are closed. First, the electromagnetic valve 13 of the deicing water channel 12 is opened, and the electromagnetic valve 13 is closed in a state where about 20% of water is stored in the ice storage tank 3, the refrigerator 1 is operated and the water supply pump 8 is driven. Production of cooling water begins. Then, the water in the ice storage tank 3 becomes supercooled water via the heat exchanger 2, and the cold water return path 7
When the water temperature in the nozzle 7a becomes 0 ° C. or less and ice begins to form in the ice storage tank 3 for a while, the water temperature of the circulating water flowing into the heat exchanger 2 from the cold water supply passage 6 drops to about 0.5 ° C. . When the water temperature drops to 0.5 ° C, the controller (not shown) controls the replenishment water channel 1 according to the information from the temperature sensor 9.
The solenoid valve 11 of 0 is opened according to the calculation example of the amount of water supplied to the heat exchanger 2 and the water temperature shown in FIG. 2, and a predetermined amount of water to be cooled is supplied to the heat exchanger 2 at a predetermined water temperature.

【0010】即ち、熱交換器2へ供給する被冷却水の温
度を熱交換器2内で凍結しない0.6℃に保つために、
蓄氷タンク3より循環する水温0℃の水に補給水を混入
するが、この混入する補給水の水量は、その水温によっ
て異るが前記蓄氷タンク3より循環する水量の1/40
以上で1/5以下となる。これは、図2の計算例に示す
ように、蓄氷タンク3内で製氷される氷mi =0.02
3 は、熱交換器2へ供給する被冷却水m3 =1.00
3 の約2%であり、一方、補給水量m2 =0.04m
3 であるから前記m3 =1.00m3 の約4%となり、
蓄氷タンク3内に増加する水量はm2 (0.04m3
−mi (0.02m3 )=mw (0.02m3 )とな
る。したがって、蓄氷タンク3内には氷と水がともに増
加し蓄積されてゆく氷と水の割合、mi /mw は、補給
水の水温と熱交換器2へ供給する被冷却水の水温および
過冷却水の温度によって変化する。
That is, in order to maintain the temperature of the water to be cooled supplied to the heat exchanger 2 at 0.6 ° C. at which it does not freeze in the heat exchanger 2,
Make-up water is mixed with water having a water temperature of 0 ° C. which circulates from the ice storage tank 3, and the amount of the make-up water mixed therein is 1/40 of the amount of water circulated from the ice storage tank 3 although it depends on the water temperature.
It becomes 1/5 or less by the above. As shown in the calculation example of FIG. 2, this is the ice m i = 0.02 produced in the ice storage tank 3.
m 3 is the water to be cooled supplied to the heat exchanger 2, m 3 = 1.00
It is about 2% of m 3 , while the amount of makeup water m 2 = 0.04 m
Since 3 is about 4% of the above m 3 = 1.00 m 3 ,
The amount of water that increases in the ice storage tank 3 is m 2 (0.04 m 3 ).
To become -m i (0.02m 3) = m w (0.02m 3). Therefore, the ratio of ice and water in which both ice and water increase and accumulate in the ice storage tank 3, m i / m w is the water temperature of the makeup water and the water temperature of the cooled water to be supplied to the heat exchanger 2. And changes depending on the temperature of the supercooled water.

【0011】上記のようにして製氷装置を運転し所定量
の氷を蓄氷タンク3内に蓄えるが、冷水還流路7のノズ
ル7aを所定の勾配にしているので、蓄氷タンク3内の
水が少ないときには図3のAに示すように右端の方で氷
が形成され、蓄氷タンク3内の水が多いときは図3のB
に示すように左端の方で氷が形成される。したがって、
水位が上がるにつれて氷の形成位置が右から左に移ると
ともに、その間に氷筍くずれてゆくので氷を蓄氷タン
ク3内に効率よく蓄えることができる。そして、所定量
の氷を蓄えた後運転を停止し、負荷の要求に応じ解氷水
路12の電磁弁13を開き解氷水を供給し、冷水取水路
14の電磁弁15、16を開きポンプ22を駆動して冷
水を供給する。尚、上記運転方法では、蓄氷タンク3内
の氷の充填率を高くするため、運転開始時の水量を少な
くしておくことが望ましい。
The ice making device is operated as described above to store a predetermined amount of ice in the ice storage tank 3. However, since the nozzle 7a of the cold water return passage 7 has a predetermined slope, the water in the ice storage tank 3 is When the amount of water is small, ice is formed at the right end as shown in A of FIG. 3, and when the amount of water in the ice storage tank 3 is large, B of FIG.
As shown in, ice is formed at the left end. Therefore,
With the formation position of the ice as the water level rises moves from right to left, can be stored efficiently蓄氷tank 3 ice because Koritakenoko Yuku collapse therebetween. Then, after storing a predetermined amount of ice, the operation is stopped, the electromagnetic valve 13 of the deicing water channel 12 is opened to supply deicing water in response to a load request, and the electromagnetic valves 15 and 16 of the cold water intake channel 14 are opened to open the pump 22. To supply cold water. In the above operating method, in order to increase the filling rate of ice in the ice storage tank 3, it is desirable to reduce the amount of water at the start of the operation.

【0012】つぎに、前記運転方法にかわる運転方法に
ついて説明する。図1の蓄氷タンク3の近傍に設けた熱
交換器などの熱負荷装置17に、冷水取水路14より冷
水を供給し、熱交換後の戻り水を解氷水および補給水と
して循環使用するものである。即ち、熱負荷流体路23
内の流体は、冷水取水路14の電磁弁15を開きポンプ
22を駆動し冷水路18を介して冷水と熱負荷装置17
内で熱交換し、冷水路18の、電磁弁19と冷水路18
より分岐した戻り水路20の電磁弁21を同時に開き、
戻り水の一部を戻り水路20を介して補給水として冷水
供給路6に混入させるとともに、解氷水路12を介して
解氷水として循環使用するようにしたものである。この
運転方法も前述の運転方法と同様に熱交換器2へ供給す
る被冷却水の水温は、温度センサ9と制御器との間で調
整し所定水温の水を供給する。
Next, an operation method which is an alternative to the above operation method will be described. Cold water is supplied from the cold water intake passage 14 to a heat load device 17 such as a heat exchanger provided near the ice storage tank 3 in FIG. 1, and the return water after heat exchange is circulated and used as deicing water and makeup water. Is. That is, the heat load fluid path 23
The fluid inside opens the solenoid valve 15 of the cold water intake passage 14 and drives the pump 22 to pass the cold water and the heat load device 17 through the cold water passage 18.
Heat is exchanged inside the solenoid valve 19 and the cold water passage 18 of the cold water passage 18.
Simultaneously open the solenoid valve 21 of the more branched return water channel 20,
A part of the return water is mixed into the cold water supply passage 6 as make-up water via the return water passage 20 and is also circulated and used as the deicing water via the ice melting water passage 12. In this operating method as well, the water temperature of the water to be cooled supplied to the heat exchanger 2 is adjusted between the temperature sensor 9 and the controller to supply water of a predetermined water temperature, as in the above operating method.

【0013】つぎに、参考として、熱交換器の能力をア
ップし、補給水に対する製氷割合を高めるときの条件の
一例を示す。即ち、図2に示す計算例のうち熱交換器出
口m4 =1.00m3 のt4 =−3℃とすると、蓄氷タ
ンク3内の時間当たり製氷量mi =0.0375m3
なり製氷割合は90%を越えることになる。
Next, as a reference, an example of conditions for increasing the capacity of the heat exchanger and increasing the ratio of ice making to make-up water will be shown. That is, if t 4 = -3 ° C. Calculation examples of which heat exchanger outlet m 4 = 1.00 m 3 of shown in FIG. 2, the time per ice amount m i = 0.0375m 3 next ice in蓄氷tank 3 The ratio will exceed 90%.

【0014】[0014]

【発明の効果】この発明は、蓄氷タンクの水量が少ない
状態で製氷装置の運転を開始し、熱交換器へ還流する水
量の1/40〜1/5の補給水を供給して混合し、水を
所定温度以上に高めた後熱交換器へ供給するようにした
ので、熱交換器内で水が凍結することは少ない。したが
って、従来のように補助熱交換器で昇温する等の強制加
熱は必要なく、効率よく製氷装置を運転することができ
る。又、ノズルに勾配をつけたので、蓄氷タンク内の水
位上昇とともに氷の衝突点が自動的に移動するので、氷
の充填率を高めることができる。
According to the present invention, the operation of the ice making device is started in a state where the amount of water in the ice storage tank is small, and 1/40 to 1/5 of the amount of water recirculated to the heat exchanger is supplied and mixed. Since the water is supplied to the heat exchanger after being heated to a predetermined temperature or higher, the water rarely freezes in the heat exchanger. Therefore, unlike the conventional case, forced heating such as temperature rise in the auxiliary heat exchanger is not required, and the ice making device can be efficiently operated. Further, since the nozzle is inclined, the collision point of ice automatically moves as the water level in the ice storage tank rises, so that the filling rate of ice can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す過冷却水による製氷
装置の概略説明図である。
FIG. 1 is a schematic explanatory view of an ice making device using supercooled water according to an embodiment of the present invention.

【図2】図1の製氷装置の熱交換器へ供給する水量と水
温の計算例を示す説明図である。
FIG. 2 is an explanatory diagram showing a calculation example of a water amount and a water temperature supplied to a heat exchanger of the ice making device of FIG.

【図3】図1の蓄氷タンクの水位の変化による水筍の状
態を示す説明図である。
FIG. 3 is an explanatory diagram showing a state of a water stalagmite caused by a change in water level in the ice storage tank of FIG.

【図4】従来の過冷却水による製氷装置の概略説明図で
ある。
FIG. 4 is a schematic explanatory view of a conventional ice making device using supercooled water.

【符号の説明】 1…冷凍機 2…過冷却水用熱交換器 3…蓄氷タンク 7…冷水還流路 7a…ノズル 10…補給水路[Explanation of reference symbols] 1 ... Refrigerator 2 ... Heat exchanger for supercooled water 3 ... Ice storage tank 7 ... Cold water return passage 7a ... Nozzle 10 ... Make-up water passage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 板橋 明吉 愛媛県松山市堀江町7番地 株式会社三浦 研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Akiyoshi Itabashi 7 Horie-cho, Matsuyama-shi, Ehime Prefecture Miura Research Institute, Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷凍機1、過冷却水用熱交換器2および
蓄氷タンク3からなる過冷却水による製氷装置におい
て、前記蓄氷タンク3の水量が少ない状態で前記冷凍機
1の運転を開始し、蓄氷タンク3内で製氷が始まり前記
過冷却水用熱交換器2に供給する循環水の温度が所定温
度以下に降下すると、供給する水量の1/40〜1/5
の補給水を補給水路10より供給して循環と混合し、水
を所定温度以上に高めた後、前記過冷却水用熱交換器2
に供給することを特徴とする過冷却水による製氷装置の
運転方法。
1. In an ice making device using supercooled water, which comprises a refrigerator 1, a heat exchanger 2 for supercooled water, and an ice storage tank 3, the operation of the refrigerator 1 is performed with a small amount of water in the ice storage tank 3. When the temperature of the circulating water supplied to the supercooling water heat exchanger 2 drops below a predetermined temperature, 1/40 to 1/5 of the supplied water amount is started.
Supply water from the make-up water channel 10 to mix with the circulation to raise the water to a predetermined temperature or higher, and then to the supercooling water heat exchanger 2
And a method for operating an ice making device using supercooled water.
【請求項2】請求項1に記載の過冷却水による製氷装置
の運転方法において、前記過冷却水用熱交換器2の冷水
還流路7のノズル7aを、少なくとも垂直方向から30
°以上水平方向に勾配を付して配置し、ノズル7aより
噴出する過冷却水と前記蓄氷タンク3内の水面上の氷と
の衝突点を、蓄氷タンク3内の水位上昇とともに移動さ
せることを特徴とする過冷却水による製氷装置の運転方
法。
2. The method for operating an ice making device using supercooled water according to claim 1, wherein the nozzle 7a of the cold water return passage 7 of the heat exchanger 2 for supercooled water is at least 30 from the vertical direction.
Arranged in a horizontal direction with an inclination of not less than 0 °, and the collision point between the supercooled water ejected from the nozzle 7a and the ice on the water surface in the ice storage tank 3 is moved as the water level in the ice storage tank 3 rises. A method of operating an ice making device using supercooled water, comprising:
JP13948493A 1993-05-17 1993-05-17 Operating method for ice-making machine using supercooled water Pending JPH06323701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13948493A JPH06323701A (en) 1993-05-17 1993-05-17 Operating method for ice-making machine using supercooled water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13948493A JPH06323701A (en) 1993-05-17 1993-05-17 Operating method for ice-making machine using supercooled water

Publications (1)

Publication Number Publication Date
JPH06323701A true JPH06323701A (en) 1994-11-25

Family

ID=15246332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13948493A Pending JPH06323701A (en) 1993-05-17 1993-05-17 Operating method for ice-making machine using supercooled water

Country Status (1)

Country Link
JP (1) JPH06323701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288571A (en) * 2016-10-12 2017-01-04 广州高菱能源技术有限公司 A kind of subcooled water characteristics of dynamic ice slurry manufactures system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288571A (en) * 2016-10-12 2017-01-04 广州高菱能源技术有限公司 A kind of subcooled water characteristics of dynamic ice slurry manufactures system

Similar Documents

Publication Publication Date Title
CN100575801C (en) Refrigerant-based thermal energy storage and cooling systems with enhanced heat exchange performance
JP2008164253A (en) Cold insulation vehicle or cold insulation box, and its cold insulation method and cold insulation system
JPH06323701A (en) Operating method for ice-making machine using supercooled water
JPH09159232A (en) Controlling method for ice storage type water chiller
JP3419366B2 (en) Ice storage device
JP4964439B2 (en) Operation method of heat storage enhancement system by cooling coil
JP3856572B2 (en) Heat storage system
JP3947780B2 (en) Remodeling existing air conditioning system
EP0050611A4 (en) Method and apparatus for conserving energy in an air conditioning system.
JP4399309B2 (en) Ice heat storage device
JPH074799A (en) Method and equipment for removing freezing of heat exchanger of supercooled water type ice making equipment
JPH0616031A (en) Heat pump type air conditioning system
JPH09126593A (en) Antifreezing structure of heat exchanger for supercooling water
JP3365371B2 (en) Ice storage device
JP2001254974A (en) Ice storage device
JPH08210673A (en) Antifreezing device for heat exchanger in supercooling water type ice making device
JPH07293948A (en) Cooler
JPH10332178A (en) Heat storage type low-temperature air supply system
JPH06229591A (en) Storage type water cooling apparatus
JP3251766B2 (en) Cooling system
JP3642238B2 (en) Ice heat storage device
JPH0849952A (en) Water temperature control and water temperature controller in mixed water supply system
JPH04236032A (en) Ice heat accumulation device
JP2006112652A (en) Ice storage method and apparatus for heat storage
JPH05340567A (en) Ice heat accumulating device