JPH06322520A - Separating plate of radio wave and infrared ray and production thereof - Google Patents
Separating plate of radio wave and infrared ray and production thereofInfo
- Publication number
- JPH06322520A JPH06322520A JP11280993A JP11280993A JPH06322520A JP H06322520 A JPH06322520 A JP H06322520A JP 11280993 A JP11280993 A JP 11280993A JP 11280993 A JP11280993 A JP 11280993A JP H06322520 A JPH06322520 A JP H06322520A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- rare earth
- radio wave
- fluoride
- infrared rays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/361—Coatings of the type glass/metal/inorganic compound/metal/inorganic compound/other
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3621—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a fluoride
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3657—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
- C03C17/366—Low-emissivity or solar control coatings
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Optical Filters (AREA)
- Physical Vapour Deposition (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電波と赤外線との分離
板に関する。さらに詳しくは、電波を透過し赤外線を反
射することにより電波と赤外線を分離する、電波と赤外
線との分離板、およびその製法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separating plate for radio waves and infrared rays. More specifically, the present invention relates to a separation plate for separating radio waves and infrared rays by transmitting radio waves and reflecting infrared rays, and a method for manufacturing the same.
【0002】ここに電波とは赤外線より周波数が低く、
電気通信に用いられる電磁波をいい、ここではとくにマ
イクロ波帯とミリ波帯の電磁波をいう。Radio waves have a lower frequency than infrared rays,
It refers to electromagnetic waves used in telecommunications, especially microwave and millimeter wave electromagnetic waves.
【0003】[0003]
【従来の技術】最近の航空機、ミサイル、船舶、戦車な
どの防衛装備品に備えられるレーダーや赤外線探知機
は、高性能化の一途を辿っており、これらを構成する部
品に対しても多岐に渡る機能が求められている。たとえ
ば、探知装置の複合化はその一つであり、電波による探
知システムと赤外線による探知システムとを一体化する
ことにより探知性能と耐妨害性とを大幅に向上すること
ができるが、そのためには目標物からの信号である反射
電波と放射赤外線とを分離してそれぞれの検知器で検知
することが必要である。2. Description of the Related Art Recently, radars and infrared detectors provided in defense equipments such as aircrafts, missiles, ships, and tanks have been improved in performance, and various components are included in them. The ability to cross is required. For example, the compounding of the detection device is one of them. By integrating the detection system by radio waves and the detection system by infrared rays, it is possible to significantly improve the detection performance and the anti-interference property. It is necessary to separate the reflected radio wave, which is the signal from the target object, and the radiated infrared light and detect them by their respective detectors.
【0004】前記複合探知システムを実現させるための
電波と赤外線との分離は、たとえば電波を透過し赤外線
を反射することにより行われ、従来、このような電波を
透過し赤外線を反射することにより電波と赤外線とを分
離する技術としては、赤外線のフィルター技術を応用
し、電波を吸収しない誘電体材料を基板として、誘電体
材料または半導体材料により赤外線を高反射させるコー
ティングを行うことにより、電波は吸収されることなく
透過し赤外線を反射させることによって分離されてい
る。この赤外線を高反射させるコーティングは、たとえ
ばエイチ エイ マクロード(H.A.Macleod)(小倉、中
島、矢部、吉田訳)による「光学薄膜」(日刊工業新聞
社発行、1989年)の191〜217頁に記載されているよう
に、高屈折率物質と低屈折率物質とを反射したい赤外線
の波長をλとしてλ/4の光学膜厚で交互に積層するこ
とにより実現される。ここに光学膜厚とは、実際の膜厚
×波長λの電磁波に対する物質の屈折率をいう。高屈折
率物質の屈折率をnH、低屈折率物質の屈折率をnL、基
板の屈折率をnS、積層数を2p+1(pは自然数)と
すると、赤外線の反射率RはSeparation of radio waves and infrared rays for realizing the above-mentioned composite detection system is carried out, for example, by transmitting radio waves and reflecting infrared rays. Conventionally, radio waves are transmitted by transmitting such radio waves and reflecting infrared rays. As a technology for separating infrared rays from infrared rays, by applying infrared filter technology, a dielectric material that does not absorb radio waves is used as a substrate, and a dielectric material or a semiconductor material is used to perform coating that highly reflects infrared rays. They are separated by being transmitted without being reflected and reflecting infrared rays. This coating for highly reflecting infrared rays is described, for example, on pages 191 to 217 of "Optical Thin Film" (published by Nikkan Kogyo Shimbun, 1989) by HAMacleod (translated by Ogura, Nakajima, Yabe, Yoshida). As described above, the high refractive index substance and the low refractive index substance are realized by alternately laminating the optical film thickness of λ / 4, where λ is the wavelength of infrared rays to be reflected. Here, the optical film thickness refers to the actual film thickness × refractive index of a substance with respect to electromagnetic waves of wavelength λ. Assuming that the refractive index of the high refractive index material is n H , the refractive index of the low refractive index material is n L , the refractive index of the substrate is n S , and the number of layers is 2p + 1 (p is a natural number), the infrared reflectance R is
【0005】[0005]
【数1】 と表される。[Equation 1] Is expressed as
【0006】また、赤外線反射膜の各層の光学膜厚がλ
/4のばあい、反射率の高い波長帯域λ±Δλは、The optical film thickness of each layer of the infrared reflecting film is λ.
In the case of / 4, the wavelength band λ ± Δλ with high reflectance is
【0007】[0007]
【数2】 と表される。すなわち、積層数が多く、高屈折率物質と
低屈折率物質との屈折率比が大きいほど反射率は高く、
またこの屈折率比が大きいほど反射率の高い波長帯域は
広くなる。[Equation 2] Is expressed as That is, the larger the number of stacked layers and the larger the refractive index ratio between the high refractive index substance and the low refractive index substance, the higher the reflectance,
Further, the larger the refractive index ratio, the wider the wavelength band having high reflectance.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、波長が
10μm近傍の赤外線に対するコーティング材料として
は、一般に、高屈折率物質として赤外線での屈折率が4
であるゲルマニウム(Ge)、低屈折率物質として屈折
率が2.2である硫化亜鉛(ZnS)がよく選ばれるが、
硫化亜鉛はそれほど屈折率が小さくないという問題があ
る。However, when the wavelength is
As a coating material for infrared rays in the vicinity of 10 μm, a high refractive index substance generally has a refractive index of 4
Is often selected, and zinc sulfide (ZnS) having a refractive index of 2.2 is often selected as the low refractive index material.
Zinc sulfide has a problem that its refractive index is not so small.
【0009】また前記の問題を解消するために、屈折率
が1.4と小さいフッ化カルシウム(CaF2)やクライオ
ライト(Na3AlF6)が使われることがあるが、これ
らは吸湿性を有するため、耐湿性に問題がある。In order to solve the above problems, calcium fluoride (CaF 2 ) and cryolite (Na 3 AlF 6 ) having a small refractive index of 1.4 are sometimes used, but they have hygroscopicity. , There is a problem in moisture resistance.
【0010】さらに、波長が10μm程度の赤外線フィル
ターの基板としては、ゲルマニウム、硫化亜鉛、セレン
化亜鉛(ZnSe)、フッ化カルシウム(特開昭63-151
904号公報および特開昭64-80906号公報参照)などが使
用されるが、これらの材料は一般に高価であるばかりで
なく、目的とする厚さに加工したり、所望の形状に加工
するのに、加工性がわるく、工数を多く要するという問
題がある。Further, as a substrate for an infrared filter having a wavelength of about 10 μm, germanium, zinc sulfide, zinc selenide (ZnSe), calcium fluoride (JP-A-63-151)
No. 904 and Japanese Patent Laid-Open No. 64-80906) are used, but these materials are not only generally expensive, but also processed into a desired thickness or processed into a desired shape. In addition, there is a problem that the workability is poor and a lot of man-hours are required.
【0011】本発明は、このような問題を解決するため
になされたもので、赤外線の反射性と基板の加工性に優
れた電波と赤外線との分離板およびその製法を提供する
ことを目的とする。The present invention has been made to solve the above problems, and an object of the present invention is to provide a separating plate for radio waves and infrared rays, which is excellent in infrared reflectivity and substrate workability, and a manufacturing method thereof. To do.
【0012】[0012]
【課題を解決するための手段】本発明の電波と赤外線と
の分離板は、誘電体基板の片側表面に電波を透過し赤外
線を反射する赤外線反射膜が設けられ、該赤外線反射膜
はゲルマニウムと希土類フッ化物とがこの順序で交互に
積層されているものである。According to the separator for radio waves and infrared rays of the present invention, an infrared reflecting film for transmitting radio waves and reflecting infrared rays is provided on one surface of a dielectric substrate, and the infrared reflecting film is made of germanium. The rare earth fluoride and the rare earth fluoride are alternately laminated in this order.
【0013】前記希土類フッ化物は、フッ化セリウムま
たはフッ化セリウムを50重量%以上含む希土類フッ化物
の混合物であることが好ましい。The rare earth fluoride is preferably cerium fluoride or a mixture of rare earth fluorides containing 50% by weight or more of cerium fluoride.
【0014】また、前記赤外線反射膜はゲルマニウムと
希土類フッ化物とがこの順序で交互に5層以上21層以下
の奇数回積層されていることが好ましい。Further, it is preferable that the infrared reflective film is formed by alternately stacking germanium and rare earth fluoride in this order in an odd number of times of 5 or more and 21 or less.
【0015】また、前記赤外線反射膜のゲルマニウム層
と希土類フッ化物層のそれぞれの光学膜厚が反射したい
赤外線の波長をλとしてλ/4に設定され、少なくとも
2種類の赤外線の波長の反射膜が積層されていることが
好ましい。Further, the respective optical film thicknesses of the germanium layer and the rare earth fluoride layer of the infrared reflection film are set to λ / 4 where λ is the wavelength of infrared light to be reflected, and at least two kinds of reflection films having infrared wavelengths are formed. It is preferably laminated.
【0016】また前記誘電体基板が石英ガラスまたは石
英ガラスを20重量%以上含むガラスからなることが好ま
しい。The dielectric substrate is preferably made of quartz glass or glass containing 20% by weight or more of quartz glass.
【0017】また前記誘電体基板の厚さが、該誘電体基
板の比誘電率をε、透過したい電波の波長をΛとして、
Λ/(2ε1/2)の整数倍となるように設定されている
ことが好ましい。Further, with respect to the thickness of the dielectric substrate, the relative permittivity of the dielectric substrate is ε, and the wavelength of the radio wave to be transmitted is Λ,
It is preferably set to be an integral multiple of Λ / (2ε 1/2 ).
【0018】また、本発明の電波と赤外線との分離板の
製法は、誘電体基板の片側表面にゲルマニウム層と希土
類フッ化物層とをこの順序で交互に電子ビーム蒸着によ
って積層して赤外線反射膜を形成する電波と赤外線との
分離板の製法であって、前記誘電体基板を130〜250℃に
加熱しながら前記ゲルマニウム層および希土類フッ化物
層を積層することを特徴とするものである。Further, the method for producing a separating plate for radio waves and infrared rays according to the present invention is an infrared reflecting film in which a germanium layer and a rare earth fluoride layer are alternately laminated in this order on one surface of a dielectric substrate by electron beam evaporation. A method for producing a separating plate for radio waves and infrared rays, which comprises: forming the germanium layer and the rare earth fluoride layer while heating the dielectric substrate to 130 to 250 ° C.
【0019】[0019]
【作用】本発明による電波と赤外線との分離板は、誘電
体基板の表面に、ゲルマニウム層と希土類フッ化物層と
をこの順序で交互にコーティングしているので、両層の
屈折率の差を大きくすることができ、式(1)より大き
な反射率がえられると共に、電波の透過性が優れ、電波
と赤外線を効率よく分離することができる。しかも希土
類フッ化物は耐湿性にも優れており、信頼性の高い分離
板がえられる。In the separation plate for radio waves and infrared rays according to the present invention, since the surface of the dielectric substrate is coated with the germanium layer and the rare earth fluoride layer alternately in this order, the difference in the refractive index between the two layers is prevented. It can be increased, a reflectance higher than that of the formula (1) can be obtained, and radio wave transmission is excellent, so that radio waves and infrared rays can be efficiently separated. Moreover, the rare earth fluoride has excellent moisture resistance, and a highly reliable separator can be obtained.
【0020】前記希土類フッ化物としてフッ化セリウム
またはフッ化セリウムを50重量%以上含む希土類フッ化
物の混合物を用いれば、安価に入手でき、取扱い易く、
前記特性の分離板を容易にうることができる。If a rare earth fluoride or a mixture of rare earth fluorides containing 50% by weight or more of cerium fluoride is used as the rare earth fluoride, it can be obtained at low cost and is easy to handle.
It is possible to easily obtain the separating plate having the above characteristics.
【0021】また、前記赤外線反射膜としてゲルマニウ
ムと希土類フッ化物とを5層以上21層以下で奇数回交互
に積層したばあいは、積層膜のクラックの発生を防止で
きるなど信頼性を低下させることなく、赤外線の反射率
が一層優れたものになる。Further, when germanium and rare earth fluoride are alternately laminated in an amount of 5 to 21 in an odd number of times as the infrared reflecting film, it is possible to prevent the occurrence of cracks in the laminated film and reduce reliability. In addition, the reflectance of infrared rays is further improved.
【0022】また、前記赤外線反射膜のゲルマニウム層
と希土類フッ化物層の光学膜厚が、反射したい赤外線の
波長をλとして、λ/4に設定されるとともに、少なく
とも2種類の赤外線の波長の反射膜が積層されているば
あいは、広い範囲の赤外線の波長帯域で反射率が大きい
ものになる。The optical film thicknesses of the germanium layer and the rare earth fluoride layer of the infrared reflecting film are set to λ / 4, where λ is the wavelength of the infrared ray to be reflected, and at least two types of infrared wavelengths are reflected. When the films are laminated, the reflectance is large in a wide range of infrared wavelength band.
【0023】また、前記誘電体基板が石英ガラスまたは
石英ガラスを20重量%以上含むガラスからなるばあい
は、基板のコストを低減できると共に加工性に優れ、精
度のよい所定厚さの基板となり、電波の透過特性が向上
する。Further, when the dielectric substrate is made of quartz glass or glass containing 20% by weight or more of quartz glass, the cost of the substrate can be reduced, the workability is excellent, and the substrate has a precise and predetermined thickness. Radio wave transmission characteristics are improved.
【0024】また、前記誘電体基板の厚さが、誘電体基
板の比誘電率をε、透過したい電波の波長をΛとして、
Λ/(2ε1/2)の整数倍となるように設定することに
より、誘電体基板から直接射出される電波と多重反射に
より射出される電波の位相が合致し、電波の無反射条件
を満たし、電波透過性の優れたものとなる。Further, with respect to the thickness of the dielectric substrate, the relative permittivity of the dielectric substrate is ε, and the wavelength of the radio wave to be transmitted is Λ,
By setting it to be an integral multiple of Λ / (2ε 1/2 ), the phase of the radio wave directly emitted from the dielectric substrate matches the phase of the radio wave emitted by multiple reflection, and the non-reflection condition of the radio wave is satisfied. , With excellent radio wave transparency.
【0025】また、本発明による電波と赤外線との分離
板の製法は、電子ビーム蒸着によって赤外線反射膜を積
層する際に、基板を130〜250℃に加熱しながら行うた
め、希土類フッ化物層でも剥離やクラックを生じること
がなく積層でき、密着性、耐湿性に優れた多層膜とな
る。Further, since the method for producing the separating plate for radio waves and infrared rays according to the present invention is carried out while heating the substrate at 130 to 250 ° C. when laminating the infrared reflecting film by electron beam vapor deposition, even a rare earth fluoride layer is used. It can be laminated without causing peeling or cracks, resulting in a multilayer film having excellent adhesion and moisture resistance.
【0026】[0026]
【実施例】つぎに図面を参照しながら本発明の電波と赤
外線との分離板について詳細に説明する。図1は、本発
明の一実施例である電波と赤外線との分離板の構造を示
す断面図、図2は、本発明の電波と赤外線との分離板を
製造するのに用いられる真空蒸着装置の説明図、図3は
電波と赤外線との分離板の電波透過特性を調べるための
構成図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a radio wave and infrared ray separating plate of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing the structure of a radio wave / infrared ray separating plate according to an embodiment of the present invention, and FIG. 2 is a vacuum vapor deposition apparatus used for manufacturing the radio wave / infrared ray separating plate of the present invention. FIG. 3 is a configuration diagram for investigating the radio wave transmission characteristics of the separation plate for radio waves and infrared rays.
【0027】本発明の電波と赤外線との分離板21は、図
1に示されるように、電波を透過する誘電体基板1の上
に赤外線反射膜4が設けられ、赤外線反射膜4はゲルマ
ニウム層2と希土類のフッ化物層3との積層体であるこ
とに特徴がある。As shown in FIG. 1, the separation plate 21 for radio waves and infrared rays according to the present invention is provided with an infrared reflection film 4 on a dielectric substrate 1 which transmits radio waves, and the infrared reflection film 4 is a germanium layer. 2 and a rare earth fluoride layer 3 are laminated.
【0028】誘電体基板1としては電波を損失させずに
透過させると共に、赤外線反射膜4を保持できる材料で
あればよく、ガラス基板やセラミック基板などを用いる
ことができるが、(1)その表面にコーティングされる
赤外線反射膜4の希土類フッ化物層3の密着性がよいこ
と、(2)前述の式(1)より、反射率を大きくするた
めには誘電体基板1の屈折率nsが大きいほどよいこ
と、(3)ガラスは加工性がよく、高い寸法精度がえら
れ、信頼性の高い製品がえられ易いこと、などの点から
ガラス基板が好んで用いられる。ガラスの中でも、二酸
化ケイ素は他の成分よりも比誘電率が3.2〜3.4程度と小
さく、電波の透過性がよいこと、およびつぎに述べる好
ましい基板の光学的厚さに対しても幾何学的厚さを厚く
できるため加工し易いことなどから、二酸化ケイ素を主
成分とする石英ガラスまたは少なくとも二酸化ケイ素の
含有率が20重量%以上のガラス基板がとくに好ましい。Any material can be used as the dielectric substrate 1 as long as it can transmit radio waves without loss and can hold the infrared reflection film 4, and a glass substrate, a ceramic substrate or the like can be used. (1) Surface The adhesion of the rare earth fluoride layer 3 of the infrared reflective film 4 coated on the substrate is good. (2) From the above formula (1), in order to increase the reflectance, the refractive index n s of the dielectric substrate 1 is The glass substrate is preferably used from the viewpoints that the larger the size, the better, (3) the glass has good workability, high dimensional accuracy can be obtained, and a highly reliable product can be easily obtained. Among the glass, silicon dioxide has a relative permittivity of 3.2 to 3.4, which is smaller than that of other components, and has good radio wave transmission, and also has a geometrical thickness with respect to the preferable optical thickness of the substrate described below. Quartz glass containing silicon dioxide as a main component or a glass substrate having a silicon dioxide content of at least 20% by weight or more is particularly preferable because it can be thickened and is easily processed.
【0029】誘電体基板1の厚さは、電波をできるだけ
透過させ易い厚さに設定することが好ましい。すなわ
ち、赤外線反射膜4側から入射した電波は赤外線反射膜
4や誘電体基板1には殆ど吸収されないで誘電体基板1
側から射出されるが、誘電体基板1から空気中に射出す
る際に一部は反射して戻り、再度赤外線反射膜4との境
界面で反射して誘電体基板1から射出する。この電波の
位相を直接射出する電波の位相と合わせることにより相
殺されず、透過率を向上することができるため、電波の
波長をΛ、誘電体基板の比誘電率をεとしたとき、誘電
体基板の厚さをΛ/(2ε1/2)またはその整数倍にす
ることが好ましい。The thickness of the dielectric substrate 1 is preferably set to a thickness that allows radio waves to pass through as easily as possible. That is, the radio wave incident from the infrared reflecting film 4 side is hardly absorbed by the infrared reflecting film 4 and the dielectric substrate 1, and the dielectric substrate 1
Although it is emitted from the side, when it is emitted from the dielectric substrate 1 into the air, it is partially reflected and returned, and is reflected again at the interface with the infrared reflection film 4 and emitted from the dielectric substrate 1. If the phase of this radio wave is not canceled by combining it with the phase of the radio wave that is directly emitted, the transmittance can be improved, so when the wavelength of the radio wave is Λ and the relative permittivity of the dielectric substrate is ε, the dielectric The thickness of the substrate is preferably Λ / (2ε 1/2 ) or an integral multiple thereof.
【0030】赤外線反射膜4はゲルマニウム層2と希土
類のフッ化物層3とが交互にそれぞれλ/4の光学膜厚
(λは反射する赤外線の波長)で積層されたもので、積
層数は奇数層とし、両端はゲルマニウム層で形成されて
いる。前述の(1)式より積層数が多い程反射率が大き
くなり好ましいが、余り積層数が多くなると膜にクラッ
クが入り易くなるため、製造上21層程度が限度となる。
また下限については後述する具体的な各実施例に示され
るように5層で形成することにより、電波と赤外線とを
分離するのに充分な赤外線の反射率をうることができ
る。すなわち赤外線反射膜の積層数は5層から21層で形
成されることが好ましい。The infrared reflection film 4 is formed by alternately stacking a germanium layer 2 and a rare earth fluoride layer 3 with an optical film thickness of λ / 4 (λ is the wavelength of infrared rays reflected), and the number of layers is odd. It is a layer, and both ends are formed of a germanium layer. From the above formula (1), the larger the number of laminated layers, the higher the reflectance, which is preferable. However, if the number of laminated layers is too large, cracks are likely to occur in the film, and therefore, the number of layers is about 21 in terms of manufacturing.
Regarding the lower limit, as shown in each of the specific examples described later, by forming the layer with five layers, it is possible to obtain a sufficient reflectance of infrared rays for separating the radio waves and the infrared rays. That is, the number of laminated infrared reflective films is preferably 5 to 21.
【0031】本発明における赤外線反射膜4には低屈折
率層として希土類のフッ化物層3が用いられている。希
土類のフッ化物層3は屈折率が1.4程度と小さく、しか
も耐湿性に優れているため、安定した膜で高反射率がえ
られる。一方、希土類のフッ化物層3はコーティングし
てゲルマニウムとの交互多層膜を形成する際に、剥離や
クラックが生じ易いという製造上の問題があるが、後述
するように、希土類フッ化物のコーティング時に誘電体
基板を130〜250℃に加熱しながら行うことにより、この
問題を解決した。In the infrared reflecting film 4 of the present invention, a rare earth fluoride layer 3 is used as a low refractive index layer. Since the rare earth fluoride layer 3 has a small refractive index of about 1.4 and is excellent in moisture resistance, it is a stable film and has a high reflectance. On the other hand, when the rare earth fluoride layer 3 is coated to form an alternate multilayer film with germanium, there is a manufacturing problem that peeling or cracking easily occurs. This problem was solved by heating the dielectric substrate to 130 to 250 ℃.
【0032】希土類フッ化物としては、フッ化セリウム
またはフッ化セリウムを50重量%以上含む希土類フッ化
物の混合物が安価で入手し易いため好ましいが、その他
のフッ化ランタン、フッ化プラセオジム、フッ化ネオジ
ム、フッ化サマリウム、フッ化ユウロピウム、フッ化ガ
ドリニウム、フッ化テルビウム、フッ化ジスプロシウ
ム、フッ化ホルミウム、フッ化エルビウム、フッ化イッ
テルビウムなどの希土類フッ化物またはこれらの混合物
も屈折率は1.45〜1.6程度で、同様に使用することがで
きる。As the rare earth fluoride, cerium fluoride or a mixture of rare earth fluorides containing 50% by weight or more of cerium fluoride is preferable because it is inexpensive and easily available, but other lanthanum fluoride, praseodymium fluoride, neodymium fluoride are preferable. , Rare earth fluorides such as samarium fluoride, europium fluoride, gadolinium fluoride, terbium fluoride, dysprosium fluoride, holmium fluoride, erbium fluoride, ytterbium fluoride or mixtures thereof with a refractive index of about 1.45 to 1.6. , Can be used as well.
【0033】つぎに、赤外線反射膜4の積層体の形成法
について説明する。Next, a method for forming a laminated body of the infrared reflecting film 4 will be described.
【0034】図2は前記電波と赤外線との分離板を製造
するための蒸着装置を示す説明図である。図2において
4は高真空をうるための真空容器、5は誘電体基板1を
取りつける基板取付けドームで、蒸着中は膜の均一性を
向上するために回転される。また基板取付けドーム5に
取りつけられた誘電体基板1はヒータ7によって加熱さ
れる。8は蒸着物質を入れるるつぼで、るつぼ回転ステ
ージ9によって、蒸着されるべき物質の入ったるつぼ8
が電子銃10から放出される電子ビームの当たる位置に移
動される。電子ビームによって加熱され、蒸発した物質
は誘電体基板1の表面に蒸着され、膜となる。この蒸着
膜の厚さは、真空容器4の上方に取りつけられた反射式
光学膜厚計11により、モニター用のガラス基板12の膜厚
を計測することによって測定され、所要の厚さになった
ときシャッター13を閉じる。以下、同様にして順次異な
る層の蒸着膜を所定の厚さだけ形成する。FIG. 2 is an explanatory view showing a vapor deposition apparatus for manufacturing the separating plate for the radio wave and the infrared ray. In FIG. 2, 4 is a vacuum container for obtaining a high vacuum, and 5 is a substrate mounting dome on which the dielectric substrate 1 is mounted, which is rotated during vapor deposition to improve the uniformity of the film. The dielectric substrate 1 attached to the substrate mounting dome 5 is heated by the heater 7. Reference numeral 8 is a crucible for containing a vapor deposition material, and a crucible 8 containing a substance to be vapor deposited by the crucible rotating stage 9.
Are moved to a position where the electron beam emitted from the electron gun 10 hits. The substance heated and evaporated by the electron beam is deposited on the surface of the dielectric substrate 1 to form a film. The thickness of this vapor-deposited film was measured by measuring the film thickness of the glass substrate 12 for monitoring with a reflection type optical film thickness meter 11 mounted above the vacuum container 4, and became the required thickness. When closing shutter 13. Thereafter, similarly, vapor deposition films of different layers are sequentially formed to have a predetermined thickness.
【0035】前述のゲルマニウムと希土類のフッ化物の
多層膜を形成する際に、誘電体基板1を130〜250℃、さ
らに好ましくは160〜180℃に加熱しながら行うことによ
り、剥離やクラックが生じなく、しかも密着性や耐湿性
に優れた多層膜がえられる。これは加熱することによ
り、膜に発生する内部応力が最小となるためであり、13
0℃より低すぎると剥れて膜形成ができず、250℃より高
すぎると膜表面に無数のクラックが生じ好ましくない。When forming the above-mentioned multilayer film of germanium and rare earth fluoride, by heating the dielectric substrate 1 to 130 to 250 ° C., more preferably 160 to 180 ° C., peeling or cracking occurs. It is possible to obtain a multi-layered film that is excellent in adhesiveness and moisture resistance. This is because the internal stress generated in the film is minimized by heating.
If the temperature is lower than 0 ° C, the film peels off and the film cannot be formed.
【0036】つぎに、電波と赤外線の分離板の分離特性
の検査法について説明する。分離特性は分離板を透過す
る電波の透過量と分離板により反射される赤外線の反射
率をそれぞれ測定することにより、電波の透過量が大き
く、赤外線の反射率が大きい程分離特性が良いという判
断に基づいている。この反射率は赤外線光学系における
他の光学素子とのバランスから、8〜12μmの波長に対
しては少なくとも90%以上、3〜5μmおよび8〜12μ
mの波長の広い範囲に対しては、80%以上であることが
望ましい。Next, a method of inspecting the separation characteristics of the radio wave and infrared ray separation plates will be described. The separation characteristics are determined by measuring the amount of transmission of radio waves that pass through the separation plate and the reflectance of infrared rays reflected by the separation plate, and the greater the amount of transmission of radio waves and the greater the reflectance of infrared rays, the better the separation characteristics. Is based on. Due to the balance with other optical elements in the infrared optical system, this reflectance is at least 90% or more for wavelengths of 8 to 12 μm, 3 to 5 μm and 8 to 12 μm.
For a wide range of wavelengths of m, it is desirable that it is 80% or more.
【0037】図3は電波と赤外線との分離板の電波透過
性を調べるための装置の構成を示す図で、送信アンテナ
ホーン14と受信アンテナホーン15とのあいだに電波と赤
外線との分離板21を置く。送信機17と受信機18により、
一定の出力の電波に対し、分離板21を挿入しないばあい
に対し、分離板21を挿入したばあいの受信機18による受
信パワーの変化を測定することにより、分離板の挿入に
よる減衰の割合を測定した。なお、送信機の送信周波数
は94GHzで行った。この電磁波の透過率は、アンテナ
の利得特性から、−0.5dB以上であることが好まし
い。FIG. 3 is a view showing the arrangement of an apparatus for examining the radio wave transmissivity of the separation plate for radio waves and infrared rays. The separation plate 21 for radio waves and infrared rays is provided between the transmitting antenna horn 14 and the receiving antenna horn 15. Put. With transmitter 17 and receiver 18,
For the radio wave of constant output, when the separation plate 21 is not inserted, by measuring the change in the received power by the receiver 18 when the separation plate 21 is inserted, the attenuation rate due to the insertion of the separation plate can be determined. It was measured. The transmission frequency of the transmitter was 94 GHz. The transmittance of this electromagnetic wave is preferably −0.5 dB or more from the gain characteristics of the antenna.
【0038】また赤外線の反射率はフーリエ変換赤外分
光光度計(商品名、堀場製作所(株)製)により、アル
ミニウムミラーを基準(赤外線の反射率98%)として測
定した。The infrared reflectance was measured with a Fourier transform infrared spectrophotometer (trade name, manufactured by Horiba Ltd.) using an aluminum mirror as a reference (infrared reflectance of 98%).
【0039】また、この電波と赤外線との分離板の耐湿
性は、該分離板を高温、高湿槽の中に置き、温度50℃、
湿度95%以上に48時間曝したのち、コーティング面を目
視にて観察することにより、しみ、曇り、剥離などの有
無を確かめた。The moisture resistance of the separating plate for radio waves and infrared rays is 50 ° C. when the separating plate is placed in a high temperature and high humidity tank.
After 48 hours of exposure to a humidity of 95% or higher, the coated surface was visually observed to check for stains, cloudiness, peeling, and the like.
【0040】つぎに、具体的な実施例により、さらに詳
細に説明する。Next, more detailed description will be given with reference to specific examples.
【0041】[実施例1]誘電体基板1として厚さ1.73
mmの石英ガラスからなるガラス基板を用い、赤外線反
射膜4は、基板1の温度を約180℃にして、電子ビーム
蒸着法によってゲルマニウム層2とフッ化セリウムから
なる希土類フッ化物層3をそれぞれ光学膜厚が2.5μm
になるように、この順序で交互に5層積層することによ
って形成した。なお、基板1の石英ガラスの厚さを1.73
mmにしたのは、電波の周波数(94GHz)に対して基
板1の比誘電率3.4の1/2乗と厚さとの積が電波の波
長3.2mmの1/2の2倍とし、無反射条件に合致する
ようにしたためである。[Example 1] The thickness of the dielectric substrate 1 was 1.73.
Using a glass substrate made of quartz glass of mm, the infrared reflection film 4 has a temperature of the substrate 1 of about 180 ° C., and a germanium layer 2 and a rare earth fluoride layer 3 made of cerium fluoride are optically formed by an electron beam evaporation method. Film thickness is 2.5 μm
5 layers were alternately laminated in this order. The thickness of the quartz glass on the substrate 1 is 1.73
mm is set so that the product of the 1/2 power of the relative permittivity 3.4 of the substrate 1 and the thickness of the frequency of the radio wave (94 GHz) is twice the half of the wavelength 3.2 mm of the radio wave under the non-reflective condition. This is because it is adapted to.
【0042】この分離板1による赤外線の分光反射率は
図5のAに示すように、赤外線の波長8〜12μmでの反
射率は90%以上で高い反射率を示すと共に、94GHzの
電波の透過率は−0.3dB以上であった。また耐湿性に
ついては前述の測定法により調べた結果、しみ、曇り、
剥離などは一切生じなかった。As shown in FIG. 5A, the spectral reflectance of infrared rays by the separating plate 1 shows a high reflectance of 90% or more at the infrared wavelength of 8 to 12 μm, and also allows transmission of 94 GHz radio waves. The rate was -0.3 dB or more. As for the moisture resistance, as a result of examining by the above-mentioned measuring method, stains, cloudiness,
No peeling occurred.
【0043】[実施例2]電波と赤外線との分離板21と
して、厚さ1.47mmで石英の含有率が64重量%、酸化ア
ルミニウム(Al2O3)の含有率が25重量%、残りが他
の酸化物である、SiO2−Al2O3−MgO−Na2O
を組成とするアルミノケイ酸塩ガラスからなるガラス基
板1を用い、実施例1と同様、図1に示すように、その
表面にこのガラス基板1の温度を180℃にして、前述の
電子ビーム蒸着法によってゲルマニウムと、フッ化セリ
ウムの含有率が70重量%、その他の希土類フッ化物であ
るフッ化ランタン(LaF3)、フッ化ネオジム(Nd
F3)の含有率が30重量%である混合物との交互多層膜
を、それぞれ光学膜厚が2.5μmになるように、この順
序で5層積層することによって形成した。[Embodiment 2] The separator 21 for radio waves and infrared rays has a thickness of 1.47 mm, a quartz content of 64% by weight, an aluminum oxide (Al 2 O 3 ) content of 25% by weight, and the rest. is other oxides, SiO 2 -Al 2 O 3 -MgO -Na 2 O
Using a glass substrate 1 made of aluminosilicate glass having the composition of, the temperature of the glass substrate 1 is set to 180 ° C. on the surface thereof as in Example 1, and the electron beam evaporation method described above is used. Content of germanium and cerium fluoride 70% by weight, other rare earth fluorides such as lanthanum fluoride (LaF 3 ), neodymium fluoride (Nd)
An alternating multilayer film with a mixture having a F 3 ) content of 30% by weight was formed by stacking 5 layers in this order so that the optical film thickness was 2.5 μm.
【0044】なお、ガラス基板1の厚さを1.47mmにし
たのは、電波の周波数に対してガラス基板1の比誘電率
4.7の1/2乗と厚さとの積が電波の波長3.2mmの1/
2の2倍とし、無反射条件に合致するようにしたためで
ある。The thickness of the glass substrate 1 is 1.47 mm because the relative permittivity of the glass substrate 1 with respect to the frequency of radio waves.
The product of the 1/2 power of 4.7 and the thickness is 1 / 3.2 mm of the wavelength of the radio wave.
This is because it is set to twice the value of 2 so as to meet the non-reflection condition.
【0045】また、同じガラスの組成でも二酸化ケイ素
の含有比率が高くなると誘電率が小さくなるため、前述
のように、二酸化ケイ素の含有率は20重量%以上にする
ことが望ましい。Further, even with the same glass composition, the dielectric constant becomes smaller as the content ratio of silicon dioxide becomes higher. Therefore, as described above, the content ratio of silicon dioxide is preferably 20% by weight or more.
【0046】この分離板による赤外線の分光反射率は実
施例1と同じで、図5のAに示すように、赤外線の波長
8〜12μmでの反射率が90%以上と高い反射率を示すと
共に、94GHzの電波の透過率は−0.4dB以上であっ
た。また耐湿性に付いては前述の測定法で調べた結果、
しみ、曇り、剥離などは一切生じなかった。The spectral reflectance of infrared rays by this separating plate is the same as in Example 1, and as shown in FIG. 5A, the reflectance of infrared rays at a wavelength of 8 to 12 μm is 90% or more, and the reflectance is high. , 94 GHz radio wave transmittance was -0.4 dB or more. Regarding the moisture resistance, as a result of the above-mentioned measurement method,
No stain, cloudiness or peeling occurred.
【0047】[実施例3]電波と赤外線との分離板21と
して、図4に示すように、誘電体基板1として厚さ1.73
mmの石英ガラスからなる基板1に、この基板1の温度
を180℃にして、前述の電子ビーム蒸着によってゲルマ
ニウム層2とフッ化セリウムからなる希土類フッ化物層
3との交互多層膜をこの順序で交互に7層積層すること
により電波と赤外線との分離板とした。7層のうち下層
の3層2a、3a、2bは光学膜厚を2.5μm、4層目
のフッ化セリウム層3bは光学膜厚を0.8μm、上層の
3層2c、3c、2dは光学膜厚を1μmとした。下層
の3層2a、3a、2bは波長が8〜12μmの赤外線に
対し高反射率となる作用を有し、上層の3層2c、3
c、2dは波長が3〜5μmの赤外線に対し高反射率と
なる作用を有するもので、中間にあるフッ化セリウム層
3bはその両者の効果が相殺しないようにするための調
整層である。[Embodiment 3] As a separating plate 21 for radio waves and infrared rays, as shown in FIG. 4, a dielectric substrate 1 having a thickness of 1.73 is used.
On the substrate 1 made of quartz glass of mm, the temperature of the substrate 1 is set to 180 ° C., and the alternating multilayer film of the germanium layer 2 and the rare earth fluoride layer 3 made of cerium fluoride is formed in this order by the electron beam evaporation. By alternately laminating 7 layers, a separation plate for radio waves and infrared rays was obtained. Of the seven layers, the lower three layers 2a, 3a, 2b have an optical film thickness of 2.5 μm, the fourth cerium fluoride layer 3b has an optical film thickness of 0.8 μm, and the upper three layers 2c, 3c, 2d have optical films. The thickness was 1 μm. The lower three layers 2a, 3a and 2b have a function of having a high reflectance for infrared rays having a wavelength of 8 to 12 μm, and the upper three layers 2c and 3b.
c and 2d have a function of providing a high reflectance for infrared rays having a wavelength of 3 to 5 μm, and the cerium fluoride layer 3b in the middle is an adjustment layer for preventing the effects of both of them from canceling each other out.
【0048】この分離板による赤外線の反射率は図6に
示すように、赤外線の波長3〜5μmに対しても90%以
上の反射率がえられると共に、波長が8〜12μmの赤外
線に対しても平均の反射率で少なくとも80%以上の高い
反射率がえられた。本実施例では波長が8〜12μmの赤
外線に対して、反射率が実施例1および2より劣ってい
るのは、積層数が8〜12μmの波長用として3層で形成
されているためと考えられる。本実施例のように目的に
応じた赤外線の波長に対する光学膜厚の積層膜を形成す
ることにより、広い範囲の赤外線反射膜を形成すること
ができる。また、電波の透過率に関しては−0.4dB以
上で実施例2と変らなかった。また、耐湿性については
前述の測定法により調べた結果、しみ、曇り、剥離など
は一切生じなかった。As shown in FIG. 6, the reflectance of infrared rays by this separating plate is 90% or more for the infrared rays having a wavelength of 3 to 5 μm, and the infrared rays having a wavelength of 8 to 12 μm. The average reflectance was high at least 80%. In the present embodiment, the reflectance is inferior to the infrared rays having a wavelength of 8 to 12 μm as compared with the first and second embodiments, probably because the number of layers is three layers for the wavelength of 8 to 12 μm. To be By forming a laminated film having an optical film thickness corresponding to the wavelength of infrared rays according to the purpose as in the present embodiment, it is possible to form an infrared reflective film in a wide range. Further, the transmittance of radio waves was -0.4 dB or more, which was the same as that in Example 2. Further, the moisture resistance was examined by the above-mentioned measuring method, and as a result, no stain, cloudiness, peeling or the like occurred.
【0049】[実施例4]電波と赤外線との分離板21
を、図1に示すように、誘電体基板1として石英ガラス
からなる基板1の厚さを7.8mmとすることのほかは、
実施例1と同様の構成により形成した。なお、基板1の
石英ガラスの厚さを7.8mmにしたのは、電波の周波数
に対して基板の比誘電率3.74の1/2乗と基板の厚さと
の積が電波の波長30mmの1/2倍とし、無反射条件に
合致するようにしたためである。[Embodiment 4] Separating plate 21 for separating radio waves and infrared rays
As shown in FIG. 1, except that the thickness of the substrate 1 made of quartz glass as the dielectric substrate 1 is 7.8 mm,
It was formed with the same configuration as in Example 1. The thickness of the quartz glass of the substrate 1 is set to 7.8 mm because the product of the relative permittivity of the substrate, 3.74, and the thickness of the substrate is 1/30 of the wavelength of 30 mm of the radio wave with respect to the frequency of the radio wave. This is because it is doubled to meet the non-reflection condition.
【0050】この分離板による赤外線の反射率は実施例
1と同じで、図5のAに示すように、赤外線の波長8〜
12μmでの反射率が90%以上の高い反射率を示してい
る。本実施例では、電波の周波数が10GHzのばあいに
透過率が低下しないように基板1の厚さを調整したもの
で、図3に示す構成で送信機17の発振周波数を10GHz
にして電波の透過率を調べた結果、−0.25dB以上とな
り、94GHzのばあいより一層よい透過率をうることが
できた。また、耐湿性については前述の測定法により調
べた結果、実施例1と同様にしみ、曇り、剥離などは生
じなかった。The reflectance of infrared rays by this separating plate is the same as that of Example 1, and as shown in FIG.
It shows a high reflectance of 90% or more at 12 μm. In this embodiment, the thickness of the substrate 1 is adjusted so that the transmittance does not decrease when the frequency of the radio wave is 10 GHz, and the oscillation frequency of the transmitter 17 is 10 GHz with the configuration shown in FIG.
As a result of examining the radio wave transmittance, it was -0.25 dB or more, and it was possible to obtain a better transmittance than in the case of 94 GHz. The moisture resistance was examined by the above-mentioned measuring method, and as a result, as in the case of Example 1, no stain, fogging or peeling occurred.
【0051】[比較例1]前記各実施例と比較するた
め、赤外線反射膜4としてゲルマニウムと硫化亜鉛の積
層膜を用い、電波と赤外線との分離板を、厚さ1.73mm
の石英からなるガラス基板の表面に光学膜厚が2.5μm
のゲルマニウムと硫化亜鉛を実施例1と同様に、この順
序で交互に5層積層することによって形成した。[Comparative Example 1] In order to compare with each of the above Examples, a laminated film of germanium and zinc sulfide was used as the infrared reflecting film 4, and a separating plate for radio waves and infrared rays had a thickness of 1.73 mm.
The optical film thickness is 2.5 μm on the surface of the quartz glass substrate.
In the same manner as in Example 1, germanium and zinc sulfide of Example 1 were alternately laminated in this order to form five layers.
【0052】この分離板による赤外線の反射率は、図5
のBに示すように、波長が8μmや12μmでは反射率が
80%程度に低下すると共に、そのあいだの波長に対して
も平均88%程度で実施例1、2および4より低下してい
ることがわかる。また、耐湿性について前述の測定法に
より調べた結果、しみが発生していることが確かめられ
た。The reflectance of infrared rays by this separating plate is shown in FIG.
As shown in B of Figure 6, the reflectance is 8 μm or 12 μm.
It can be seen that the average wavelength is reduced to about 80% and the average wavelength is also reduced to about 88% from Examples 1, 2 and 4. Further, as a result of examining the moisture resistance by the above-mentioned measuring method, it was confirmed that stains were generated.
【0053】[比較例2]さらに、前記各実施例と比較
するため、赤外線反射膜4としてゲルマニウムとフッ化
カルシウムの積層膜を用い、電波と赤外線との分離板
を、厚さ1.73mmの石英ガラスからなる基板1の表面に
光学膜厚がそれぞれ2.5μmのゲルマニウムとフッ化カ
ルシウムを実施例1と同様にこの順序で交互に5層積層
することにより形成した。その結果、耐湿性について前
述の測定法により調べた結果、曇りが発生していること
が確かめられた。[Comparative Example 2] Further, in order to compare with each of the above-mentioned Examples, a laminated film of germanium and calcium fluoride was used as the infrared reflecting film 4, and a separation plate for radio waves and infrared rays was made of quartz with a thickness of 1.73 mm. On the surface of the substrate 1 made of glass, germanium and calcium fluoride each having an optical film thickness of 2.5 μm were alternately laminated in this order in the same manner as in Example 1 to form five layers. As a result, as a result of examining the moisture resistance by the above-mentioned measuring method, it was confirmed that fogging occurred.
【0054】[比較例3]電波と赤外線との分離板の製
造方法として、厚さ1.73mmの石英ガラスからなる基板
1の表面に、ゲルマニウムとフッ化セリウムを電子ビー
ム蒸着するときに、この基板1の温度を(A)70℃、
(B)270℃の2種類の加熱をしながら、ゲルマニウム
とフッ化セリウムの交互多層膜を、光学膜厚が2.5μm
になるように、この順序で5層積層することによって電
波と赤外線との分離板を形成した。[Comparative Example 3] As a method for producing a separation plate for radio waves and infrared rays, when a germanium and cerium fluoride were electron beam evaporated on the surface of a substrate 1 made of quartz glass having a thickness of 1.73 mm, this substrate was used. The temperature of 1 is (A) 70 ℃,
(B) An alternating multilayer film of germanium and cerium fluoride having an optical film thickness of 2.5 μm while being heated at two types at 270 ° C.
5 layers were laminated in this order to form a separating plate for radio waves and infrared rays.
【0055】このようにして形成された電波と赤外線と
の分離板は、基板温度を(A)の70℃としたばあい、フ
ッ化セリウム層はコーティングの途中で剥離が発生し、
赤外線の高反射交互多層膜を形成することができなかっ
た。また、基板温度を(B)の270℃としたばあい、蒸
着後のコーティング面に、無数のクラックが発生してい
た。When the substrate temperature of the separation plate for radio waves and infrared rays thus formed is 70 ° C. (A), the cerium fluoride layer peels off during coating,
It was not possible to form an alternating multi-layer film with high reflection of infrared rays. Further, when the substrate temperature was 270 ° C. as in (B), numerous cracks were generated on the coating surface after vapor deposition.
【0056】以上説明した、実施例1から4の電波の透
過率を表にまとめると、表1のようになる。なお、この
ときの電波の周波数すなわち、送信機17からの送信周波
数は実施例1から3が94GHz、実施例4が10GHz
で、透過率をデシベル(dB)で表した。The radio wave transmittances of Examples 1 to 4 described above are summarized in a table as shown in Table 1. The frequency of the radio wave at this time, that is, the transmission frequency from the transmitter 17 is 94 GHz in the first to third embodiments and 10 GHz in the fourth embodiment.
The transmittance was expressed in decibel (dB).
【0057】[0057]
【表1】 表1からわかるように、本発明の電波と赤外線との分離
板は、レーダで使用される周波数が5〜110GHz範囲
でも電波の透過率が−0.5dB以上であり、高い電波の
透過性を有していることがわかる。したがって、本発明
による電波と赤外線との分離板によって、電波を透過し
赤外線を反射することにより電波と赤外線を分離するこ
とが可能になり、実用上多大な効果がえられる。[Table 1] As can be seen from Table 1, the radio wave / infrared ray separating plate of the present invention has a radio wave transmittance of −0.5 dB or more even in a frequency range used in a radar of 5 to 110 GHz, and has a high radio wave transparency. You can see that Therefore, it becomes possible to separate the radio wave and the infrared ray by transmitting the radio wave and reflecting the infrared ray by the separating plate for the radio wave and the infrared ray according to the present invention, and a great effect can be obtained in practical use.
【0058】[実施例5]前記の各実施例では、希土類
フッ化物としてフッ化セリウム、またはフッ化セリウム
を主成分としたものを用いたが、これらの代りに、La
F3(フッ化ランタン)、PrF3(フッ化プラセオジ
ム)、NdF3(フッ化ネオジム)、SmF3(フッ化サ
マリウム)、EuF3(フッ化ユウロピウム)、GdF3
(フッ化ガドリニウム)、TbF3(フッ化テルビウ
ム)、DyF3(フッ化ジスプロシウム)、HoF3(フ
ッ化ホルミウム)、ErF3(フッ化エルビウム)、Y
bF3(フッ化イッテルビウム)などの他の希土類フッ
化物を用いても同様の効果がえられた。[Embodiment 5] In each of the above-mentioned embodiments, cerium fluoride or one containing cerium fluoride as a main component was used as the rare earth fluoride, but instead of these, La was used.
F 3 (lanthanum fluoride), PrF 3 (praseodymium fluoride), NdF 3 (neodymium fluoride), SmF 3 (samarium fluoride), EuF 3 (europium fluoride), GdF 3
(Gadolinium fluoride), TbF 3 (terbium fluoride), DyF 3 (dysprosium fluoride), HoF 3 (holmium fluoride), ErF 3 (erbium fluoride), Y
Similar effects were obtained using other rare earth fluorides such as bF 3 (ytterbium fluoride).
【0059】[0059]
【発明の効果】本発明の電波と赤外線との分離板によれ
ば、誘電体基板の表面に赤外線反射膜として、ゲルマニ
ウム層と希土類フッ化物層とをそれぞれ光学膜厚がλ/
4になるように交互に積層しているため、その赤外線反
射膜は赤外線の反射率が大きく、耐湿性を有していると
共に、電波の透過率が大きく、低コストで分離特性のよ
い分離板がえられる。According to the separating plate for radio waves and infrared rays of the present invention, the germanium layer and the rare earth fluoride layer each have an optical film thickness of λ /
Since the infrared reflective film has a large infrared reflectance and a high moisture resistance because it is alternately laminated so as to have a thickness of 4, the separator plate has a large radio wave transmittance, a low cost, and good separation characteristics. Can be obtained.
【0060】また誘電体基板を加熱しながら電子ビーム
蒸着によりゲルマニウム層とフッ化物層を積層すること
により、剥離やクラックがなく密着性、耐湿性に優れた
赤外線反射膜がえられる。Further, by stacking the germanium layer and the fluoride layer by electron beam evaporation while heating the dielectric substrate, an infrared reflection film excellent in adhesion and moisture resistance without peeling or cracking can be obtained.
【図1】本発明の電波と赤外線との分離板の一実施例の
構造を示す断面説明図である。FIG. 1 is a cross-sectional explanatory view showing a structure of an embodiment of a separation plate for radio waves and infrared rays according to the present invention.
【図2】本発明の電波と赤外線との分離板の製造するの
に用いられる真空蒸着装置の説明図である。FIG. 2 is an explanatory diagram of a vacuum vapor deposition apparatus used to manufacture the radio wave and infrared ray separation plate of the present invention.
【図3】電波と赤外線との分離板の電波の透過性を調べ
るための装置の構成図である。FIG. 3 is a configuration diagram of an apparatus for examining the radio wave transparency of a separation plate for radio waves and infrared rays.
【図4】本発明の電波と赤外線との分離板の他の実施例
の構造を示す断面説明図である。FIG. 4 is an explanatory sectional view showing the structure of another embodiment of the separation plate for radio waves and infrared rays according to the present invention.
【図5】本発明の実施例1、2、4および比較例1の赤
外線の分光反射率を示す図である。FIG. 5 is a diagram showing infrared spectral reflectances of Examples 1, 2, 4 and Comparative Example 1 of the present invention.
【図6】本発明の実施例3の赤外線の分光反射率を示す
図である。FIG. 6 is a diagram showing infrared spectral reflectance in Example 3 of the present invention.
1 誘電体基板 2 ゲルマニウム層 3 希土類フッ化物層 4 赤外線反射膜 7 ヒータ 21 電波と赤外線との分離板 1 Dielectric Substrate 2 Germanium Layer 3 Rare Earth Fluoride Layer 4 Infrared Reflective Film 7 Heater 21 Separating Plate for Radio Wave and Infrared Ray
Claims (7)
を反射する赤外線反射膜が設けられ、該赤外線反射膜は
ゲルマニウムと希土類フッ化物とがこの順序で交互に積
層されてなる電波と赤外線との分離板。1. A dielectric substrate is provided with an infrared reflection film for transmitting radio waves and reflecting infrared rays on a surface thereof, and the infrared reflection film is formed by alternately laminating germanium and rare earth fluoride in this order. With a separation plate.
たはフッ化セリウムを50重量%以上含む希土類フッ化物
の混合物である請求項1記載の電波と赤外線との分離
板。2. The radio wave / infrared ray separating plate according to claim 1, wherein the rare earth fluoride is cerium fluoride or a mixture of rare earth fluorides containing 50% by weight or more of cerium fluoride.
類フッ化物とがこの順序で交互に5層以上21層以下の奇
数回積層されてなる請求項1記載の電波と赤外線との分
離板。3. The electromagnetic wave and infrared ray separating plate according to claim 1, wherein the infrared reflecting film is formed by alternately stacking germanium and rare earth fluoride in this order in an odd number of times from 5 to 21 layers.
土類フッ化物層のそれぞれの光学膜厚が反射したい赤外
線の波長をλとしてλ/4に設定され、少なくとも2種
類の赤外線の波長の反射膜が積層されてなる請求項1記
載の電波と赤外線との分離板。4. The optical film thickness of each of the germanium layer and the rare earth fluoride layer of the infrared reflecting film is set to λ / 4 where λ is the wavelength of infrared light to be reflected, and at least two types of reflecting films of infrared wavelengths are provided. The separation plate for radio waves and infrared rays according to claim 1, which is laminated.
ガラスを20重量%以上含むガラスからなる請求項1記載
の電波と赤外線との分離板。5. The radio wave / infrared ray separating plate according to claim 1, wherein the dielectric substrate is made of quartz glass or glass containing 20% by weight or more of quartz glass.
の比誘電率をε、透過したい電波の波長をΛとして、Λ
/(2ε1/2)の整数倍となるように設定されてなる請
求項1記載の電波と赤外線との分離板。6. The thickness of the dielectric substrate is Λ, where ε is the relative permittivity of the dielectric substrate and Λ is the wavelength of the radio wave to be transmitted.
The radio wave / infrared ray separating plate according to claim 1, which is set to be an integral multiple of / (2ε 1/2 ).
土類フッ化物層とをこの順序で交互に電子ビーム蒸着に
よって積層して赤外線反射膜を形成する電波と赤外線と
の分離板の製法であって、前記誘電体基板を130〜250℃
に加熱しながら前記ゲルマニウム層および希土類フッ化
物層を積層することを特徴とする電波と赤外線との分離
板の製法。7. A method for producing a separation plate for radio waves and infrared rays, wherein a germanium layer and a rare earth fluoride layer are alternately laminated in this order on the surface of a dielectric substrate by electron beam evaporation to form an infrared reflection film. , The dielectric substrate 130 ~ 250 ℃
A method for producing a separating plate for radio waves and infrared rays, characterized in that the germanium layer and the rare earth fluoride layer are laminated while being heated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05112809A JP3130406B2 (en) | 1993-05-14 | 1993-05-14 | Separation plate between radio wave and infrared ray and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05112809A JP3130406B2 (en) | 1993-05-14 | 1993-05-14 | Separation plate between radio wave and infrared ray and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06322520A true JPH06322520A (en) | 1994-11-22 |
JP3130406B2 JP3130406B2 (en) | 2001-01-31 |
Family
ID=14596079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05112809A Expired - Fee Related JP3130406B2 (en) | 1993-05-14 | 1993-05-14 | Separation plate between radio wave and infrared ray and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3130406B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009038116A1 (en) * | 2007-09-18 | 2009-03-26 | Shin-Etsu Polymer Co., Ltd. | Radio-wave-transmitting decorative member |
JP2009090639A (en) * | 2007-09-18 | 2009-04-30 | Shin Etsu Polymer Co Ltd | Radio wave transmitting decorative member |
JP2011025634A (en) * | 2009-07-29 | 2011-02-10 | Mitsubishi Electric Corp | Electromagnetic wave transmissive decorative component |
JP2013118405A (en) * | 2013-02-28 | 2013-06-13 | Mitsubishi Electric Corp | Electromagnetic wave transmitting decorative component |
JP2014511285A (en) * | 2011-01-27 | 2014-05-15 | エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ | Coating with radar transparency |
US9187820B2 (en) | 2007-09-18 | 2015-11-17 | Shin-Etsu Polymer Co., Ltd. | Radio wave transmitting decorative member |
CN114236661A (en) * | 2021-11-11 | 2022-03-25 | 中国航空工业集团公司洛阳电光设备研究所 | Single crystal germanium infrared crystal spectroscope and preparation method of laser long-wave infrared beam splitting film |
CN116472172A (en) * | 2020-11-18 | 2023-07-21 | Agc株式会社 | Glass substrate with heat insulation film |
-
1993
- 1993-05-14 JP JP05112809A patent/JP3130406B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009038116A1 (en) * | 2007-09-18 | 2009-03-26 | Shin-Etsu Polymer Co., Ltd. | Radio-wave-transmitting decorative member |
JP2009090639A (en) * | 2007-09-18 | 2009-04-30 | Shin Etsu Polymer Co Ltd | Radio wave transmitting decorative member |
US9187820B2 (en) | 2007-09-18 | 2015-11-17 | Shin-Etsu Polymer Co., Ltd. | Radio wave transmitting decorative member |
DE112008002496B4 (en) * | 2007-09-18 | 2019-10-31 | Shin-Etsu Polymer Co., Ltd. | Radio wave transmitting ornamental element |
JP2011025634A (en) * | 2009-07-29 | 2011-02-10 | Mitsubishi Electric Corp | Electromagnetic wave transmissive decorative component |
JP2014511285A (en) * | 2011-01-27 | 2014-05-15 | エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ | Coating with radar transparency |
JP2013118405A (en) * | 2013-02-28 | 2013-06-13 | Mitsubishi Electric Corp | Electromagnetic wave transmitting decorative component |
CN116472172A (en) * | 2020-11-18 | 2023-07-21 | Agc株式会社 | Glass substrate with heat insulation film |
CN114236661A (en) * | 2021-11-11 | 2022-03-25 | 中国航空工业集团公司洛阳电光设备研究所 | Single crystal germanium infrared crystal spectroscope and preparation method of laser long-wave infrared beam splitting film |
CN114236661B (en) * | 2021-11-11 | 2023-09-08 | 中国航空工业集团公司洛阳电光设备研究所 | Single crystal germanium infrared crystal spectroscope and laser long wave infrared beam splitting film preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP3130406B2 (en) | 2001-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5119232A (en) | Infrared-transmissive optical window | |
US4733926A (en) | Infrared polarizing beamsplitter | |
US5198930A (en) | Wide-band half-mirror | |
JP2001512845A (en) | Dichroic polarizer | |
JP3130406B2 (en) | Separation plate between radio wave and infrared ray and its manufacturing method | |
US5022726A (en) | Magnesium film reflectors | |
US4112142A (en) | Method for the production of light-reflecting layers on a surface of a transparent glass article | |
JP3399159B2 (en) | Optical film and optical element for infrared region | |
JP3894107B2 (en) | Infrared antireflection film | |
US3504959A (en) | Multi-spike optical filter | |
JP2003149434A (en) | Optical film for ir region and optical element | |
JP3355786B2 (en) | Manufacturing method of optical components for infrared | |
JP3894108B2 (en) | Infrared antireflection film | |
JP2000147205A (en) | Infrared antireflection film | |
JP3361621B2 (en) | Anti-reflection coating for infrared region | |
JP3031625B2 (en) | Heat ray absorbing reflector | |
JP2991890B2 (en) | Infrared radiation suppressor, radar dome provided with the same, and moving object | |
JP2566634B2 (en) | Multi-layer antireflection film | |
JP2002258035A (en) | Multilayer film cut filter and method for manufacturing the same | |
RU2737824C1 (en) | Dichroic mirror | |
JPS61165701A (en) | Multilayer optical element | |
US20230103350A1 (en) | Optical filter | |
JPH11337703A (en) | Antireflection film for ir region and transmission window | |
JP2725043B2 (en) | Broadband half mirror | |
JP3113376B2 (en) | Multi-layer anti-reflective coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |