JPH06321686A - New production of carbon cluster compound doped with metal atom - Google Patents
New production of carbon cluster compound doped with metal atomInfo
- Publication number
- JPH06321686A JPH06321686A JP6030961A JP3096194A JPH06321686A JP H06321686 A JPH06321686 A JP H06321686A JP 6030961 A JP6030961 A JP 6030961A JP 3096194 A JP3096194 A JP 3096194A JP H06321686 A JPH06321686 A JP H06321686A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- carbon cluster
- single crystal
- org
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 49
- 239000002184 metal Substances 0.000 title claims abstract description 49
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 29
- 150000001875 compounds Chemical class 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000013078 crystal Substances 0.000 claims abstract description 55
- 239000011261 inert gas Substances 0.000 claims abstract description 7
- -1 organic acid salt Chemical class 0.000 claims description 27
- 239000003960 organic solvent Substances 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 9
- 238000002156 mixing Methods 0.000 abstract description 8
- 238000003756 stirring Methods 0.000 abstract description 8
- 239000002904 solvent Substances 0.000 abstract description 7
- 150000003839 salts Chemical class 0.000 abstract description 5
- 229910021645 metal ion Inorganic materials 0.000 abstract description 4
- 229910052697 platinum Inorganic materials 0.000 abstract description 4
- 125000003118 aryl group Chemical group 0.000 abstract description 2
- 239000012454 non-polar solvent Substances 0.000 abstract description 2
- 239000002253 acid Substances 0.000 abstract 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 46
- 238000000034 method Methods 0.000 description 35
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 23
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 14
- 239000000126 substance Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 239000011734 sodium Substances 0.000 description 12
- 238000012937 correction Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 229910001873 dinitrogen Inorganic materials 0.000 description 9
- 238000005868 electrolysis reaction Methods 0.000 description 9
- 238000001914 filtration Methods 0.000 description 8
- 229910052723 transition metal Inorganic materials 0.000 description 8
- 150000003624 transition metals Chemical class 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 7
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 150000001340 alkali metals Chemical class 0.000 description 6
- 150000001721 carbon Chemical class 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 238000000921 elemental analysis Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000001362 electron spin resonance spectrum Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002109 crystal growth method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 229910052701 rubidium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003495 polar organic solvent Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052695 Americium Inorganic materials 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052685 Curium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052766 Lawrencium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052764 Mendelevium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052781 Neptunium Inorganic materials 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000007960 acetonitrile Chemical class 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229910003446 platinum oxide Inorganic materials 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000371 solid-state nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体特性や伝導特性
ないしは超伝導特性を示すことから、とりわけエレクト
ロニクス分野での応用や利用が期待されている、金属原
子をドープした炭素クラスター化合物の湿式化学的法に
よる新規な製造方法に関するものである。BACKGROUND OF THE INVENTION The present invention shows a semiconductor property, a conduction property, or a superconducting property, and is therefore expected to be applied and used particularly in the electronics field. Wet chemistry of a carbon cluster compound doped with a metal atom. The present invention relates to a new manufacturing method by a physical method.
【従来の技術】1985年にはじめてその存在が明らか
になったC60に代表される炭素クラスター化合物は、1
990年にアーク放電法による大量合成製造法が見出さ
れて以来、物理・化学方面の研究が爆発的に進展してい
る。とりわけアルカリ金属,アルカリ土類金属をドープ
したものは伝導性ないしは超伝導性を示すことから物性
的に非常に興味がもたれており、将来的には新規半導体
材料や伝導材料ないしは超伝導材料としてエレクトロニ
クス分野などでの応用も期待されている。しかしなが
ら、この作製方法は従来、アルカリ金属,アルカリ土類
金属を高真空下で高温で蒸発させ、同じく蒸気とした炭
素クラスターと基板上に凝縮させる化学蒸着法(CV
D)やイオンクラスタービーム法(ICB)によってお
り、得られる物質の形態は微細固体ないし薄膜材料に限
定されていた。また、このものは非常に空気に敏感であ
り、またこの作製法で組成を正確に制御することは著し
く困難であるため、物性制御はきわめて難しい課題であ
った。真空技術ならびに装置技術の改良により該薄膜作
製技術は日々進歩しているとはいえ、高価な真空装置を
用いるため、一般的な工業化には適さず、技術のブレー
クスルーが求められていた。最近はVapour-Transport法
により単結晶のC60が得られるようになったため、アル
カリ金属蒸気をこれにドープすることにより、薄膜材料
以外の超伝導材料がバルクとして得られるようになっ
た。また、アルカリ金属源としてアジド化合物(例えば
NaN3など)を用いる方法が好まれるようになってき
た。しかしながら、組成的に均一なものが得られるため
には、ドープとアニールの操作を繰り返すなど、著しく
煩雑な手順が必要とされ、再現性ある結果を得るには大
きな困難が伴った。2. Description of the Related Art The carbon cluster compound represented by C 60 , whose existence was first revealed in 1985, is 1
Since the discovery of a large-scale synthetic manufacturing method by the arc discharge method in 990, research in the physical and chemical fields has made explosive progress. In particular, those doped with an alkali metal or an alkaline earth metal exhibit conductivity or superconductivity, and are therefore of great interest in terms of physical properties. In the future, electronic materials will be used as new semiconductor materials, conductive materials, or superconducting materials. Applications in fields are also expected. However, this production method has hitherto been a chemical vapor deposition method (CV) in which an alkali metal or an alkaline earth metal is vaporized at a high temperature under a high vacuum, and the vaporized carbon clusters are condensed on a substrate.
D) and the ion cluster beam method (ICB), the morphology of the obtained substance was limited to a fine solid or thin film material. In addition, this substance is extremely sensitive to air, and it is extremely difficult to accurately control the composition by this production method, so that physical property control is an extremely difficult subject. Although the thin film forming technique is advancing day by day due to improvement in vacuum technique and device technique, it is not suitable for general industrialization because an expensive vacuum device is used, and a breakthrough of the technique is required. Recently, single crystal C 60 has been obtained by the Vapour-Transport method, so that superconducting materials other than thin film materials can be obtained as a bulk by doping alkali metal vapor into it. Further, a method using an azide compound (for example, NaN 3 or the like) as an alkali metal source has become popular. However, in order to obtain a compositionally uniform material, a remarkably complicated procedure such as repeating the operations of doping and annealing is required, and it is very difficult to obtain reproducible results.
【0002】[0002]
【発明が解決しようとする問題点】新規半導体や超伝導
体として期待されるアルカリ金属,アルカリ土類金属を
ドープした炭素クラスター化合物は、物性発現のために
結晶構造の微妙な制御のためには厳密な処理が必要とさ
れる。しかしながら現実には、該物質の製造過程は真空
装置の微妙なコントロールや原料の高純度化をはじめと
して多くの問題点を抱えている。また上記のようにドラ
イプロセスによる製造方法では、CVD装置などの製造
装置のコントロールが微妙であるため、薄膜表面に多数
のボイドやクラックなどが生成しやすく、良質の薄膜を
製造するには技術的にかなり難しい要素がある。薄膜の
製造方法としては、このほかスパッタリング法やイオン
クラスタービーム法などがあるが、これらの方法では高
真空・高電圧を発生する特殊な装置が付加的に必要であ
り、また気化しにくい物質は扱いにくいという問題点が
あった。また、単結晶性のC60を使用しても、アルカリ
金属やアルカリ土類金属をドープする過程はドライプロ
セスであるため、該生成物質が高品位の単結晶性物質で
ある保証はなく、試料の不均一性は免れることができな
かった。溶液法による該物質製造の試みとしては、米国
アルゴンヌ研究所のグループによるKxC60[Inorg.Che
m.,30,2838(1991)]、RbxC60[Inorg.Chem.,30,
2962(1991)]の二例が報告されているが、金属カリウム
ないしは金属ルビジウムを使用するために、反応は不均
一系で進行し、未反応の金属カリウムや金属ルビジウム
が生成物質に混入してしまう欠点があり、純粋なものは
得られていない。実際に超伝導相はわずか1〜3%であ
り、しかもこの方法で単結晶を得られる見込みはない。Problems to be Solved by the Invention Alkali metal and alkaline earth metal-doped carbon cluster compounds, which are expected as novel semiconductors and superconductors, are not suitable for delicate control of the crystal structure in order to exhibit physical properties. Strict processing is required. However, in reality, the manufacturing process of the substance has many problems including delicate control of the vacuum apparatus and high purity of the raw material. Further, as described above, in the manufacturing method by the dry process, since the control of the manufacturing apparatus such as the CVD apparatus is delicate, many voids and cracks are easily generated on the surface of the thin film, and it is technically difficult to manufacture a good quality thin film. There are quite difficult factors in. Other thin film manufacturing methods include sputtering and ion cluster beam methods, but these methods require special equipment that generates high vacuum and high voltage, and materials that are difficult to vaporize There was a problem that it was difficult to handle. Further, even if single crystal C 60 is used, the process of doping an alkali metal or an alkaline earth metal is a dry process, so there is no guarantee that the product is a high-quality single crystal substance. The inhomogeneity of the inevitable. An attempt to produce the substance by the solution method has been conducted by K x C 60 [Inorg.
m., 30 , 2838 (1991)], Rb x C 60 [Inorg.Chem., 30 ,
2962 (1991)], but the reaction proceeds in a heterogeneous system due to the use of metal potassium or metal rubidium, and unreacted metal potassium or metal rubidium is mixed in the product. There is a disadvantage that it is not pure. Actually, the superconducting phase is only 1 to 3%, and it is unlikely that a single crystal can be obtained by this method.
【0003】[0003]
【問題点を解決するための手段】本発明者らは上記問題
点を解決すべく鋭意研究を重ねた結果、湿式化学的単結
晶育成法により、金属原子をドープした炭素クラスター
化合物を製造する方法を見出し、本発明を完成するに至
った。即ち、本発明は、金属有機酸塩と炭素クラスター
をそれぞれ可溶性有機溶媒中に溶解し、二液を合せて不
活性ガス気流下で激しく攪拌混合するか、又は超音波照
射により激しく混合することによって当該化合物の微細
単結晶を析出させることを特徴とする、金属原子をドー
プした炭素クラスター化合物の製造方法(以下混合法と
略称する。)の発明である。また、本発明は、金属有機
酸塩と炭素クラスターをそれぞれ可溶性有機溶媒中に溶
解し、二液を接触させた状態で静置拡散させることによ
り、二液界面から当該化合物の単結晶を析出させること
を特徴とする、金属原子をドープした炭素クラスター化
合物の製造方法(以下拡散法と略称する。)の発明であ
る。更に、本発明は、金属有機酸塩と炭素クラスターを
溶解した有機溶媒中で、電解結晶成長法によりカソード
側で当該化合物の単結晶を成長させることを特徴とす
る、金属原子をドープした炭素クラスター化合物の製造
方法(以下電解法と略称する。)の発明である。[Means for Solving the Problems] As a result of intensive studies conducted by the present inventors to solve the above problems, a method for producing a carbon cluster compound doped with metal atoms by a wet chemical single crystal growth method. The present invention has been completed and the present invention has been completed. That is, according to the present invention, the metal organic acid salt and the carbon cluster are respectively dissolved in a soluble organic solvent, and the two liquids are combined and vigorously stirred and mixed under an inert gas stream, or vigorously mixed by ultrasonic irradiation. It is an invention of a method for producing a carbon cluster compound doped with a metal atom (hereinafter abbreviated as a mixing method), which comprises depositing a fine single crystal of the compound. Further, according to the present invention, a metal organic acid salt and a carbon cluster are each dissolved in a soluble organic solvent, and the two liquids are allowed to stand still to diffuse to precipitate a single crystal of the compound from the two liquid interface. This is an invention of a method for producing a carbon cluster compound doped with a metal atom (hereinafter abbreviated as a diffusion method), which is characterized in that Further, the present invention is characterized in that a single crystal of the compound is grown on the cathode side by an electrolytic crystal growth method in an organic solvent in which a metal organic acid salt and a carbon cluster are dissolved, the carbon cluster doped with a metal atom. It is an invention of a method for producing a compound (hereinafter abbreviated as an electrolysis method).
【0004】本発明で用いられる金属有機酸塩として
は、例えば各種金属のギ酸塩や酢酸塩等のカルボン酸
塩、金属アセチルアセトナト塩、金属テトラキス(アセ
トニトリル)塩、金属テトラフェニルホウ酸塩等極性を
もつ有機溶媒に可溶な塩が挙げられるが、なかでも金属
テトラフェニルホウ酸塩が特に好ましく用いられる。金
属テトラフェニルホウ酸塩の内、ナトリウム塩は市販品
があるのでそれをそのまま用いれば良い。また、他の金
属塩の場合は例えば、水を溶媒として、市販のテトラフ
ェニルホウ酸ナトリウム(NaB(C6H5)4)を所望
の金属のハロゲン化物の過剰量とカチオン交換反応によ
り反応させ、生成した目的の金属テトラフェニルホウ酸
塩の結晶を濾取、乾燥する等により容易に得られるの
で、そのようにして得られたものを用いることで足り
る。本発明の方法により炭素クラスターとドープし得る
金属原子としては1A属(アルカリ)金属(Li、N
a、K、Rb、Cs、Fr)、2A属(アルカリ土類)
金属(Be、Mg、Ca、Sr、Ba、Ra)、3B属
遷移金属(Sc、Y)、ランタノイド属(La、Ce、
Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、Yb、Lu)、アクチノイド属(A
c、Th、Pa、U、Np、Pu、Am、Cm、Bk、
Cf、Es、Fm、Md、No、Lr)、4B属遷移金
属(Ti、Zr、Hf)、5B属遷移金属(V、Nb、
Ta)、6B属遷移金属(Cr、Mo、W)、7B属遷
移金属(Mn、Tc、Re)、8B属遷移金属(Fe、
Co、Ni、Ru、Rh、Pd、Os、Ir、Pt)、
1B属遷移金属(Cu、Ag、Au)、2B属遷移金属
(Zn、Cd、Hg)、3A属典型金属(Al、Ga、
In、Tl)、4A属典型金属(Ge、Sn、Pb)、
5A属典型金属(Sb、Bi)、6A属典型金属(P
o)等が挙げられる。また、非金属性の高いB、Si、
P、As、Se、Te等に関しても、本発明の方法によ
れば、ドープ原子とすることが可能である。Examples of the metal organic acid salt used in the present invention include carboxylates such as formates and acetates of various metals, metal acetylacetonato salts, metal tetrakis (acetonitrile) salts, metal tetraphenylborate salts, etc. Examples thereof include salts soluble in polar organic solvents, and among them, metal tetraphenyl borate is particularly preferably used. Among the metal tetraphenyl borate salts, there are commercially available sodium salts, which may be used as they are. In the case of other metal salts, for example, commercially available sodium tetraphenylborate (NaB (C 6 H 5 ) 4 ) is reacted with an excess amount of a desired metal halide by a cation exchange reaction using water as a solvent. The obtained metal tetraphenylborate salt crystals can be easily obtained by filtering, drying, etc., and thus it is sufficient to use the thus obtained crystals. Metal atoms that can be doped with carbon clusters by the method of the present invention include 1A group (alkali) metals (Li, N).
a, K, Rb, Cs, Fr), 2A genus (alkaline earth)
Metals (Be, Mg, Ca, Sr, Ba, Ra), 3B group transition metals (Sc, Y), lanthanoids (La, Ce,
Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H
o, Er, Tm, Yb, Lu), actinoid genus (A
c, Th, Pa, U, Np, Pu, Am, Cm, Bk,
Cf, Es, Fm, Md, No, Lr), Group 4B transition metal (Ti, Zr, Hf), Group 5B transition metal (V, Nb,
Ta), 6B group transition metals (Cr, Mo, W), 7B group transition metals (Mn, Tc, Re), 8B group transition metals (Fe,
Co, Ni, Ru, Rh, Pd, Os, Ir, Pt),
1B group transition metal (Cu, Ag, Au), 2B group transition metal (Zn, Cd, Hg), 3A group typical metal (Al, Ga,
In, Tl), 4A group typical metal (Ge, Sn, Pb),
5A group typical metal (Sb, Bi), 6A group typical metal (P
o) etc. are mentioned. In addition, B, Si, which is highly non-metallic,
According to the method of the present invention, it is possible to use P, As, Se, Te and the like as doped atoms.
【0005】本発明で用いられる炭素クラスターとして
は、C60、C70など一連のフラーレン化合物が挙げられ
る。これらは市販品があるので、それをそのまま使用し
ても良いし必要に応じてカラムクロマトグラフィー等に
より精製して使用しても良い。 金属有機酸塩を溶解さ
せる有機溶媒は、金属有機酸塩の特性により自ら異なる
が、例えばテトラヒドロフラン(THF)等、極性をも
つ有機溶媒の単独又はこれと他の有機溶媒との混合溶媒
等が好ましく用いられる。また、炭素クラスターを溶解
させる有機溶媒は使用する炭素クラスターを溶解し得る
溶媒であれば何れにても良いが、例えば芳香族系の非極
性溶媒、特にクロロベンゼン等が単独で又は他の有機溶
媒との混合溶媒の形で通常好ましく用いられる。尚、金
属有機酸塩を溶解させる有機溶媒と炭素クラスターを溶
解させる有機溶媒は同種であっても異種であっても何れ
にても良い。本発明の混合法に於て用いられる不活性ガ
スとしては、窒素ガス、アルゴンガス等が挙げられる。
攪拌混合時又は超音波照射混合時の温度は通常室温で行
われるが、必要に応じて冷却する等は任意である。反応
時間は反応のスケール等によって自ら異なり一定しない
が、攪拌混合の場合は通常数十分乃至数十時間、また、
超音波照射の場合は通常、数分乃至数時間である。尚、
攪拌混合は不活性ガス気流下、攪拌装置を用いて攪拌す
る方法が一般的であるが、攪拌装置を使用せずに不活性
ガスによるバブリング攪拌でこれに代えることも可であ
る。The carbon cluster used in the present invention includes a series of fullerene compounds such as C 60 and C 70 . Since these are commercially available products, they may be used as they are or, if necessary, purified by column chromatography or the like before use. The organic solvent in which the metal organic acid salt is dissolved varies depending on the characteristics of the metal organic acid salt, but is preferably a polar organic solvent such as tetrahydrofuran (THF) alone or a mixed solvent thereof with another organic solvent. Used. The organic solvent that dissolves the carbon clusters may be any solvent that can dissolve the carbon clusters used. For example, an aromatic nonpolar solvent, particularly chlorobenzene or the like, alone or with other organic solvents. Usually, it is preferably used in the form of a mixed solvent. The organic solvent in which the metal organic acid salt is dissolved and the organic solvent in which the carbon clusters are dissolved may be the same kind or different kinds. Examples of the inert gas used in the mixing method of the present invention include nitrogen gas and argon gas.
The temperature during stirring and mixing or ultrasonic irradiation and mixing is usually room temperature, but cooling or the like is optional if necessary. The reaction time varies depending on the scale of the reaction and the like and is not constant, but in the case of stirring and mixing, it is usually several tens of minutes to several tens hours, and
In the case of ultrasonic irradiation, it is usually several minutes to several hours. still,
The stirring and mixing is generally performed by stirring with a stirrer under an inert gas flow, but bubbling stirring with an inert gas may be used instead of the stirrer.
【0006】本発明の拡散法に於て、単結晶を析出させ
るに要する静置時間は、化合物により若干異なるが、通
常1〜数十日を要する。本発明の電解法は定電流電解、
定電圧電解の何れにてもその目的を達成し得る。電解反
応時の好ましい電流密度等は使用する金属有機酸塩の種
類及び組み合せる炭素クラスターの種類等により自ら異
なるので目的化合物に合せて適宜選択すれば良い。電極
はカソード側、アノード側共に通常、白金電極、或は白
金,酸化ルテニウム等の貴金属やその酸化物をチタン上
にメッキし、或はコーティングした所謂金属電極等が好
ましく用いられる。In the diffusion method of the present invention, the standing time required for depositing a single crystal varies depending on the compound, but it usually takes 1 to several tens of days. The electrolysis method of the present invention is a constant current electrolysis,
Any of the constant voltage electrolysis can achieve its purpose. The preferred current density during the electrolysis reaction varies depending on the kind of the metal organic acid salt to be used and the kind of the carbon cluster to be combined, and therefore may be appropriately selected according to the target compound. Usually, a platinum electrode or a so-called metal electrode in which a noble metal such as platinum or ruthenium oxide or its oxide is plated or coated on titanium is preferably used on both the cathode side and the anode side.
【0007】[0007]
【作用】本発明の基本的反応は、有機溶媒可溶の種々の
金属有機酸塩を金属イオン供給源として用い、これらの
金属イオン生成に伴う酸化反応によって、電子親和力の
強い炭素クラスターを化学的に還元することにより、均
質で高品位な金属イオンをドープした炭素クラスター化
合物の単結晶を湿式化学的に育成するものである。生成
する金属ドープされた炭素クラスター化合物の単結晶の
大きさは混合法< 拡散法 < 電解法の順である。液相
均一系中、三次元的な反応場で分子同士の酸化還元反応
が極めて速やかに起こるため、生成物質の均質性は著し
く高い。The basic reaction of the present invention is to use various metal organic acid salts soluble in an organic solvent as a metal ion source and to chemically react carbon clusters having a strong electron affinity by the oxidation reaction accompanying the formation of these metal ions. The single crystal of a carbon cluster compound doped with a homogeneous and high-quality metal ion is wet-chemically grown by reducing it to. The size of the single crystal of the metal-doped carbon cluster compound produced is in the order of mixing method <diffusion method <electrolysis method. In the liquid phase homogeneous system, the redox reaction between the molecules occurs very rapidly in the three-dimensional reaction field, so that the homogeneity of the product is extremely high.
【実施例】以下に実施例を示すが、本発明はこれら実施
例により何ら限定されるものではない。EXAMPLES Examples will be shown below, but the present invention is not limited to these examples.
【0008】実施例1 窒素ガス雰囲気下、H型ガラス製拡散セルを用い、市販
のテトラフェニルホウ酸ナトリウム 50mgをTHF
13mlに溶解し、これにC60 10mgのクロロベン
ゼン溶液(26ml)を静かに滴下した。数日後二液の
混合界面から黒色の針状単結晶が成長し始め、1カ月ほ
どで溶液の紫色は完全に消失し、黄色溶液に変った。こ
のことから、反応はほぼ定量的に進行していることが判
った。成長した針状結晶を濾取し、n-ヘキサンで洗浄後
乾燥した。この物質は顕微鏡で微細な単結晶であること
が認められた。(収率 88%)。元素分析の結果を以
下に示す。 元素分析値(NaxC60) 実測値(%) C:85.81 H:0.97 N:0 計算値(%) x=1 C:96.91 x=3 C:91.26 x=6 C:83.93 NaxC60ではxが1,3,6のものが知られている。
実測値のC%からするとx=6の方が近そうであるが、
Cは、フラーレンでは必ず低い値が出るので(ススは燃
えない)、x=3であろうと考えられたが、1H,13C
の固体NMRの測定結果から、THFが結晶溶媒として
存在していることが明らかとなり、組成はNaxC
60(THF)y(0<x≦0.5,0<y≦3)の形に表
されることが判った。ESRスペクトル(装置:JEO
L−FE1X、条件:マイクロ波パワー 50mW,モ
ジュレーション 2G)を図1に、SEM写真を図2
に、またIRチャートを図3に夫々示す。ESRスペク
トルのシグナルのg値は g=1.999、線巾は約35
Gであった。このことはC60アニオンラジカルの存在を
示唆している。[J.Am.Chem.Soc.,113,2780(1991)及
びJ.Am.Chem.Soc.,115,1185(1993)の値と一致]ま
た、伝導度(直流4端子法による)の測定を単結晶試料
について行った結果、室温から100K近傍まで金属な
いし半導体であり、170K近傍に金属−金属転移があ
り、伝導度がさらに1桁以上向上することが判った。 (図4)本実施例に於けるNaxC60(THF)yの結
晶成長の写真を図5に示す。Example 1 Using a diffusion cell made of H-type glass under a nitrogen gas atmosphere, 50 mg of commercially available sodium tetraphenylborate was added to THF.
It was dissolved in 13 ml, and a chlorobenzene solution (26 ml) containing 10 mg of C 60 was gently added dropwise. A few days later, a black needle-shaped single crystal started to grow from the mixed interface of the two liquids, and in about one month, the purple color of the solution completely disappeared and turned into a yellow solution. From this, it was found that the reaction proceeded almost quantitatively. The grown needle crystals were collected by filtration, washed with n-hexane and dried. The material was microscopically observed to be a fine single crystal. (Yield 88%). The results of elemental analysis are shown below. Elemental analysis value (Na x C 60 ) Actual value (%) C: 85.81 H: 0.97 N: 0 Calculated value (%) x = 1 C: 96.91 x = 3 C: 91.26 x = It is known that 6 C: 83.93 Na x C 60 has x of 1,3,6.
From the measured C%, it seems that x = 6 is closer,
C is always low in fullerenes (soot does not burn), so it was thought that x = 3, but 1 H, 13 C
From the solid-state NMR measurement result, it was revealed that THF was present as a crystal solvent, and the composition was Na x C.
It was found to be expressed in the form of 60 (THF) y (0 <x ≦ 0.5, 0 <y ≦ 3). ESR spectrum (apparatus: JEO
L-FE1X, conditions: microwave power 50 mW, modulation 2G) in FIG. 1 and SEM photograph in FIG.
And an IR chart are shown in FIG. 3, respectively. The g value of the ESR spectrum signal is g = 1.999, and the line width is about 35.
It was G. This suggests the presence of C 60 anion radicals. [Matched with the values of J.Am.Chem.Soc., 113 , 2780 (1991) and J.Am.Chem.Soc., 115 , 1185 (1993)] Also, measurement of conductivity (by DC 4-terminal method) As a result of performing a single crystal sample, it was found that it was a metal or a semiconductor from room temperature to around 100 K, and had a metal-metal transition near 170 K, and the conductivity was further improved by one digit or more. (FIG. 4) A photograph of crystal growth of Na x C 60 (THF) y in this example is shown in FIG.
【0009】実施例2 窒素ガス雰囲気下、市販のテトラフェニルホウ酸ナトリ
ウム30mgをTHF5mlに溶解し、C60 5mgの
クロロベンゼン溶液(10ml)と混合して、窒素ガス
を約20分間バブリングしたところ紫色溶液中に黒色懸
濁物の生成が認められた。これを濾取し、n-ヘキサンで
洗浄後乾燥した。この物質は顕微鏡で微細な単結晶であ
ることが認められ、元素分析、ESR、SEM及びIR
の結果からNaxC60(THF)yであることが確認さ
れた。(収率 80%)Example 2 Under a nitrogen gas atmosphere, 30 mg of commercially available sodium tetraphenylborate was dissolved in 5 ml of THF, mixed with 5 mg of C 60 in chlorobenzene (10 ml) and bubbled with nitrogen gas for about 20 minutes. Formation of a black suspension was observed inside. This was collected by filtration, washed with n-hexane and dried. This material was observed to be a fine single crystal under a microscope, and elemental analysis, ESR, SEM and IR
From the results, it was confirmed to be Na x C 60 (THF) y. (Yield 80%)
【0010】実施例3 窒素ガス雰囲気下、市販のテトラフェニルホウ酸ナトリ
ウム 30mgをTHF 5mlに溶解し、C60 5mg
のクロロベンゼン溶液(10ml)と混合して、この容
器に超音波を5分間照射すると紫色溶液中に黒色懸濁物
の生成が認められた。これを濾取し、n-ヘキサンで洗浄
後乾燥した。この物質は顕微鏡で微細な単結晶であるこ
とが認められ、元素分析、ESR、SEM及びIRの結
果からNaxC60(THF)yであることが確認され
た。(収率 85%)Example 3 Under a nitrogen gas atmosphere, 30 mg of commercially available sodium tetraphenylborate was dissolved in 5 ml of THF to obtain 5 mg of C 60.
When this container was irradiated with ultrasonic waves for 5 minutes, the formation of a black suspension was observed in the purple solution. This was collected by filtration, washed with n-hexane and dried. It was confirmed by a microscope that this substance was a fine single crystal, and it was confirmed from the results of elemental analysis, ESR, SEM and IR that it was Na x C 60 (THF) y. (Yield 85%)
【0011】実施例4 窒素ガス雰囲気下、H型ガラス製電解セルを用い、市販
のテトラフェニルホウ酸ナトリウム 30mgおよびC
60 5mgをクロロベンゼン/THF=2:1混合溶媒
15mlに攪拌溶解し、30分以上超音波によって攪拌
後、直流定電流(0.7μA)電解を行った。数時間後
に白金カソード上に黒色単結晶が成長し始めたが、さら
に1週間電解を続けた。成長した針状結晶を濾取し、n-
ヘキサンで洗浄後乾燥した。この物質は顕微鏡で微細な
単結晶であることが認められ、元素分析、ESRの結果
と合せてNaxC60(THF)yであることが確認され
た。(収率 52%)。以上の実施例のうち、電解法で
得られた単結晶がいちばん結晶性に優れており、X線結
晶構造解析に適した針状ないし柱状晶を得ることも可能
である。結晶は光沢をもつ黒色で大きなものは約0.3
x 0.3 x 1.0mm程度の大きさをもつ。X線四軸
自動回折計で得た格子定数はa=15.310、 c=
9.914オングストロームで六方晶系に属することを
示唆している。格子定数から約9.5オングストローム
のC60の玉をつめ込んだ構造が推定される。結晶は短時
間ならば空気中で操作できるほど安定である。直流四端
子法により電気伝導度を測定すると室温付近ではほぼ金
属的(σRT=50Scm-1)な伝導度を示すが、前述し
たように170K近傍に金属−金属転移があり、100
K付近では1000Scm-1にのぼる伝導性を有するよ
うになる。さらに低温でのふるまいにはサンプル依存性
がある。また、ESRスペクトルの測定から、何れもC
60アニオンラジカルの存在が確認された。Example 4 Commercially available sodium tetraphenylborate (30 mg) and C using an H-type glass electrolytic cell in a nitrogen gas atmosphere.
60 5 mg of chlorobenzene / THF = 2: 1 mixed solvent
The solution was dissolved in 15 ml with stirring, and after stirring with ultrasonic waves for 30 minutes or more, electrolysis was performed with a constant direct current (0.7 μA). After a few hours, a black single crystal started to grow on the platinum cathode, but electrolysis was continued for another week. The grown needle-like crystals were collected by filtration and n-
It was washed with hexane and dried. It was confirmed by a microscope that this substance was a fine single crystal, and it was confirmed that it was Na x C 60 (THF) y in combination with the results of elemental analysis and ESR. (Yield 52%). Among the above examples, the single crystal obtained by the electrolysis method has the highest crystallinity, and it is possible to obtain needle-like or columnar crystals suitable for X-ray crystal structure analysis. The crystal is glossy black and the large one is about 0.3.
It has a size of about x 0.3 x 1.0 mm. The lattice constant obtained by an X-ray four-axis automatic diffractometer is a = 15.310, c =
At 9.914 angstroms, it is suggested to belong to the hexagonal system. From the lattice constant, a structure in which a C 60 ball of about 9.5 Å is packed is estimated. The crystals are stable enough to operate in air for a short time. When the electrical conductivity is measured by the DC four-terminal method, it shows almost metallic conductivity (σ RT = 50 Scm −1 ) near room temperature, but as described above, there is a metal-metal transition near 170 K, and
It has a conductivity of up to 1000 Scm -1 near K. Furthermore, the behavior at low temperature is sample-dependent. Moreover, from the measurement of the ESR spectrum, C
The presence of 60 anion radicals was confirmed.
【0012】実施例5 窒素ガス雰囲気下、H型ガラス製拡散セルを用い、テト
ラフェニルホウ酸カリウム(市販のテトラフェニルホウ
酸ナトリウムと塩化カリウムから常法により合成) 5
0mgをTHF 13mlに溶解し(一部懸濁)、これ
にC60 10mgのクロロベンゼン溶液(26ml)を
静かに滴下した。数日後二液の混合界面から黒色の針状
単結晶が成長し始めた。成長した針状結晶を濾取し、n-
ヘキサンで洗浄後乾燥した。この物質は顕微鏡で微細な
単結晶であることが認められ、X線構造回析、ESRの
結果からKxC60(THF)yであることが確認され
た。(収率 65%)。得られた化合物(KxC60(TH
F)y)の結晶成長の写真を図6に示す。Example 5 Potassium tetraphenylborate (synthesized by a conventional method from commercially available sodium tetraphenylborate and potassium chloride) using an H type glass diffusion cell in a nitrogen gas atmosphere.
0 mg was dissolved in 13 ml of THF (partially suspended), and a chlorobenzene solution (26 ml) of 10 mg of C 60 was gently added dropwise. A few days later, a black needle-like single crystal started to grow from the mixed interface of the two liquids. The grown needle-like crystals were collected by filtration and n-
It was washed with hexane and dried. It was confirmed with a microscope that this substance was a fine single crystal, and it was confirmed from the results of X-ray structural diffraction and ESR that it was K x C 60 (THF) y. (Yield 65%). The obtained compound (K x C 60 (TH
A photograph of the crystal growth of F) y) is shown in FIG.
【0013】実施例6 窒素ガス雰囲気下、H型ガラス製拡散セルを用い、テト
ラフェニルホウ酸バリウム(市販のテトラフェニルホウ
酸ナトリウムと塩化バリウムから常法により合成) 5
0mgをTHF 13mlに溶解し(一部懸濁)、これ
にC60 10mgのクロロベンゼン溶液(26ml)を
静かに滴下した。数日後二液の混合界面から黒色の針状
単結晶が成長し始めた。成長した針状結晶を濾取し、n-
ヘキサンで洗浄後乾燥した。この物質は顕微鏡で微細な
単結晶であることが認められ、ESRの結果からC60ア
ニオンラジカルの存在が確認された。(収率 30
%)。得られた化合物(BaxC60(THF)y)の結
晶成長の写真を図7に示す。Example 6 Barium tetraphenylborate (synthesized by a conventional method from commercially available sodium tetraphenylborate and barium chloride) using an H-type glass diffusion cell under a nitrogen gas atmosphere 5
0 mg was dissolved in 13 ml of THF (partially suspended), and a chlorobenzene solution (26 ml) of 10 mg of C 60 was gently added dropwise. A few days later, a black needle-like single crystal started to grow from the mixed interface of the two liquids. The grown needle-like crystals were collected by filtration and n-
It was washed with hexane and dried. It was confirmed by a microscope that this substance was a fine single crystal, and the presence of C 60 anion radical was confirmed from the result of ESR. (Yield 30
%). A photograph of crystal growth of the obtained compound (Ba x C 60 (THF) y) is shown in FIG. 7.
【0014】実施例7 窒素ガス雰囲気下、H型ガラス製拡散セルを用い、テト
ラフェニルホウ酸リチウム(市販のテトラフェニルホウ
酸ナトリウムと塩化リチウムから常法により合成) 5
0mgをTHF 13mlに溶解し(一部懸濁)、これ
にC60 10mgのクロロベンゼン溶液(26ml)を
静かに滴下した。数日後二液の混合界面から黒色の針状
単結晶が成長し始めた。成長した針状結晶を濾取し、n-
ヘキサンで洗浄後乾燥した。この物質は顕微鏡で微細な
単結晶であることが認められ、ESRの結果からC60ア
ニオンラジカルの存在が確認された。(収率 70
%)。得られた化合物(LixC60(THF)y)の結
晶成長の写真を図8に示す。Example 7 Lithium tetraphenylborate (synthesized by a conventional method from commercially available sodium tetraphenylborate and lithium chloride) using a H-type glass diffusion cell under a nitrogen gas atmosphere.
0 mg was dissolved in 13 ml of THF (partially suspended), and a chlorobenzene solution (26 ml) of 10 mg of C 60 was gently added dropwise. A few days later, a black needle-like single crystal started to grow from the mixed interface of the two liquids. The grown needle-like crystals were collected by filtration and n-
It was washed with hexane and dried. It was confirmed by a microscope that this substance was a fine single crystal, and the presence of C 60 anion radical was confirmed from the result of ESR. (Yield 70
%). A photograph of crystal growth of the obtained compound (Li x C 60 (THF) y) is shown in FIG.
【0015】[0015]
【発明の効果】これまで金属ドープ炭素クラスター化合
物が単結晶として得られた例はなく、本発明による湿式
化学的単結晶育成法は金属ドープ炭素クラスター化合物
に関する物性研究に多大のブレークスルーをもたらすも
のと考えられる。また、本方法はスケールアップが可能
であり、半導体材料や伝導材料ないしは超伝導材料とし
て期待される金属ドープ炭素クラスター化合物の大量製
造にも適した画期的製造方法といえる。従来法では不均
質な材料しか得られていない点をみても、高品位で均質
な金属ドープ炭素クラスター化合物が得られる本製造方
法はきわめて優れた方法であり、また生産性の向上やプ
ロセスのコストダウンが可能となるため、工業的かつ実
用的価値の大なるものである。The metal-doped carbon cluster compound has never been obtained as a single crystal so far, and the wet chemical single-crystal growth method according to the present invention brings a great breakthrough to the physical property research on the metal-doped carbon cluster compound. it is conceivable that. Further, this method can be scaled up, and can be said to be an epoch-making production method suitable for mass production of metal-doped carbon cluster compounds expected as a semiconductor material, a conductive material, or a superconducting material. Even though the conventional method yields only inhomogeneous materials, this manufacturing method, which can obtain high-quality and homogeneous metal-doped carbon cluster compounds, is an extremely excellent method, and also improves productivity and process cost. Since it can be downed, it has great industrial and practical value.
【0016】[0016]
【図1】図1は実施例1で得られたNaxC60(TH
F)yのESRスペクトルを示す。FIG. 1 is a schematic diagram of Na x C 60 (TH obtained in Example 1).
F) shows the ESR spectrum of y.
【図2】図2は実施例1で得られたNaxC60(TH
F)yのSEM写真を示す。FIG. 2 is a graph of Na x C 60 (TH obtained in Example 1).
F) y shows a SEM photograph.
【図3】図3は実施例1で得られたNaxC60(TH
F)yのIRチャートを示す。FIG. 3 is a graph of Na x C 60 (TH obtained in Example 1).
F) An IR chart of y is shown.
【図4】図4は実施例1で得られたNaxC60(TH
F)yの抵抗値の温度変化を示す。FIG. 4 is a graph showing the results of Na x C 60 (TH) obtained in Example 1.
F) shows the temperature change of the resistance value of y.
【図5】図5は実施例1に於けるNaxC60(THF)
yの結晶成長の写真である。FIG. 5 is a graph of Na x C 60 (THF) in Example 1.
It is a photograph of crystal growth of y.
【図6】図6は実施例5に於けるKxC60(THF)y
の結晶成長の写真である。6 is a graph of K x C 60 (THF) y in Example 5. FIG.
3 is a photograph of the crystal growth of.
【図7】図7は実施例6に於けるBaxC60(THF)
yの結晶成長の写真である。FIG. 7 shows Ba x C 60 (THF) in Example 6.
It is a photograph of crystal growth of y.
【図8】図8は実施例7に於けるLixC60(THF)
yの結晶成長の写真である。FIG. 8 is a graph of Li x C 60 (THF) in Example 7.
It is a photograph of crystal growth of y.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年5月17日[Submission date] May 17, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図2[Name of item to be corrected] Figure 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図2】 図2は実施例1で得られたNaXC
60(THF)yの結晶構造を示すSEM写真(走査型
電子顕微鏡写真)である。FIG. 2 shows Na X C obtained in Example 1.
It is a SEM photograph (scanning electron microscope photograph) which shows the crystal structure of 60 (THF) y.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図5[Name of item to be corrected] Figure 5
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図5】 [Figure 5]
【手続補正3】[Procedure 3]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図6[Name of item to be corrected] Figure 6
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図6】 [Figure 6]
【手続補正4】[Procedure amendment 4]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図7[Name of item to be corrected] Figure 7
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図7】 [Figure 7]
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図8[Correction target item name] Figure 8
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図8】 [Figure 8]
Claims (3)
可溶性有機溶媒中に溶解し、二液を合せて不活性ガス気
流下で激しく攪拌混合するか、又は超音波照射により激
しく混合することによって当該化合物の微細単結晶を析
出させることを特徴とする、金属原子をドープした炭素
クラスター化合物の製造方法。1. A metal organic acid salt and a carbon cluster are each dissolved in a soluble organic solvent, and the two liquids are combined and vigorously stirred and mixed under an inert gas stream, or vigorously mixed by ultrasonic irradiation. A method for producing a carbon cluster compound doped with a metal atom, which comprises depositing a fine single crystal of a compound.
可溶性有機溶媒中に溶解し、二液を接触させた状態で静
置拡散させることにより、二液界面から当該化合物の単
結晶を析出させることを特徴とする、金属原子をドープ
した炭素クラスター化合物の製造方法。2. A metal organic acid salt and a carbon cluster are each dissolved in a soluble organic solvent, and a single crystal of the compound is deposited from the interface between the two liquids by allowing the two liquids to stand and diffuse while being in contact with each other. A method for producing a carbon cluster compound doped with a metal atom, comprising:
有機溶媒中で、電解結晶成長法によりカソード側で当該
化合物の単結晶を成長させることを特徴とする、金属原
子をドープした炭素クラスター化合物の製造方法。3. A carbon cluster compound doped with a metal atom, which comprises growing a single crystal of the compound on the cathode side by electrolytic crystal growth in an organic solvent in which a metal organic acid salt and a carbon cluster are dissolved. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6030961A JPH06321686A (en) | 1993-03-15 | 1994-02-02 | New production of carbon cluster compound doped with metal atom |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-80057 | 1993-03-15 | ||
JP8005793 | 1993-03-15 | ||
JP6030961A JPH06321686A (en) | 1993-03-15 | 1994-02-02 | New production of carbon cluster compound doped with metal atom |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06321686A true JPH06321686A (en) | 1994-11-22 |
Family
ID=26369404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6030961A Withdrawn JPH06321686A (en) | 1993-03-15 | 1994-02-02 | New production of carbon cluster compound doped with metal atom |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06321686A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08109475A (en) * | 1994-10-12 | 1996-04-30 | Matsufumi Takatani | Formation of diamond coating |
WO2003076332A1 (en) | 2002-03-08 | 2003-09-18 | Communications Research Laboratory, Independent Administrative Institution | Production device and production method for conductive nano-wire |
JP4878552B2 (en) * | 2004-04-20 | 2012-02-15 | 独立行政法人理化学研究所 | Device, thin film transistor and sensor using the same, and device manufacturing method |
-
1994
- 1994-02-02 JP JP6030961A patent/JPH06321686A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08109475A (en) * | 1994-10-12 | 1996-04-30 | Matsufumi Takatani | Formation of diamond coating |
WO2003076332A1 (en) | 2002-03-08 | 2003-09-18 | Communications Research Laboratory, Independent Administrative Institution | Production device and production method for conductive nano-wire |
JP4878552B2 (en) * | 2004-04-20 | 2012-02-15 | 独立行政法人理化学研究所 | Device, thin film transistor and sensor using the same, and device manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4279455B2 (en) | Solution synthesis of mixed metal chalcogenide nanoparticles and spray deposition of precursor films | |
US9761904B2 (en) | Electrodes and electrochemical cells employing metal nanoparticles synthesized via a novel reagent | |
Hu et al. | Agent-assisted VSSe ternary alloy single crystals as an efficient stable electrocatalyst for the hydrogen evolution reaction | |
TW201134758A (en) | Process for producing graphene solutions, graphene alkali metal salts and graphene composite materials | |
CN108046338A (en) | A kind of cobalt doped molybdenum disulfide original position electrode and preparation method thereof | |
US9947962B2 (en) | Cathodes and electrolytes for rechargeable magnesium batteries and methods of manufacture | |
CN111847514A (en) | Metal phase molybdenum disulfide, self-supporting electrode, preparation method and application | |
Islam et al. | Electrodeposition and characterization of silicon films obtained through electrochemical reduction of SiO2 nanoparticles | |
Vijayalakshmi et al. | Novel two-step process for the fabrication of MnO2 nanostructures on tantalum for enhanced electrochemical H2O2 detection | |
Zilevu et al. | Solution-phase synthesis of group 3–5 transition metal chalcogenide inorganic nanomaterials | |
Karmakar et al. | Molecular precursor mediated selective synthesis of phase pure cubic InSe and hexagonal In 2 Se 3 nanostructures: new anode materials for Li-ion batteries | |
Gan et al. | Highly efficient synthesis of silicon nanowires from molten salt electrolysis cell with a ceramic diaphragm | |
JPH06321686A (en) | New production of carbon cluster compound doped with metal atom | |
Xie et al. | Solvothermal route to CoTe2 nanorods | |
RU2692759C1 (en) | Lead-carbon metal composite material for electrodes of lead-acid batteries and a method for synthesis thereof | |
US20230163346A1 (en) | Cathodes and electrolytes for rechargeable magnesium batteries and methods of manufacture | |
Pöttgen et al. | Intermetallic lithium compounds with two‐and three‐dimensional polyanions—synthesis, structure, and lithium mobility | |
CN108480623A (en) | A kind of magnanimity preparation method of ultra-thin carbon-coated metallic nano-particles | |
JP2000109310A (en) | Production of functional carbon material | |
WO2000066813A1 (en) | Process for producing a superconductive layered material and product obtainable therefrom | |
US5256260A (en) | Method and apparatus for the electrodeposition of bismuth based materials and superconductors | |
JP7062529B2 (en) | Manufacturing method of iron nitride material | |
Bartlett et al. | Haloplumbate salts as reagents for the non-aqueous electrodeposition of lead | |
JPH05327037A (en) | Organic superconductor and manufacture thereof | |
CN103864820B (en) | Metallic molecular magnet of organic inorganic hybridization room temperature and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010403 |