[go: up one dir, main page]

JPH06317553A - Reference electrode for concrete burying - Google Patents

Reference electrode for concrete burying

Info

Publication number
JPH06317553A
JPH06317553A JP12775293A JP12775293A JPH06317553A JP H06317553 A JPH06317553 A JP H06317553A JP 12775293 A JP12775293 A JP 12775293A JP 12775293 A JP12775293 A JP 12775293A JP H06317553 A JPH06317553 A JP H06317553A
Authority
JP
Japan
Prior art keywords
electrode
silver
reference electrode
particle
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12775293A
Other languages
Japanese (ja)
Other versions
JP3053043B2 (en
Inventor
Noriyasu Mochizuki
紀保 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAGAWA BOSHOKU KOGYO KK
Nakagawa Corrosion Protecting Co Ltd
Original Assignee
NAKAGAWA BOSHOKU KOGYO KK
Nakagawa Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAGAWA BOSHOKU KOGYO KK, Nakagawa Corrosion Protecting Co Ltd filed Critical NAKAGAWA BOSHOKU KOGYO KK
Priority to JP5127752A priority Critical patent/JP3053043B2/en
Publication of JPH06317553A publication Critical patent/JPH06317553A/en
Application granted granted Critical
Publication of JP3053043B2 publication Critical patent/JP3053043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To obtain a reference electrode which can be manufactured without much labor and which is electrochemically stable for a long time under alkali surroundings by a method wherein a silver particle and a silver oxide particle which are at a specific particle size are mixed in a specific ratio so as to form an electrode for a half-cell reference electrode. CONSTITUTION:A mixed layer in which a silver particle and a silver oxide particle at an average particle size of 1mm or lower are mixed in the ratio of (2:5) to (15:1) in terms of a weight ratio is used as an electrode 3 for a half- cell reference electrode. When the mixture weight ratio of the silver particle and the silver oxide particle is outside this range, a fault that the impedance of the electrode in a low-frequency region is raised or that the stability of a potential is worsened is caused. In addition, even when the average particle size exceeds 1mm, the same phenomenon is caused. Potassium nitrate at 0 to 10wt.% in order to reduce the potential difference between liquids caused in a concrete liquid-junction part and to prevent a drop in the Faraday impedance, acetylene black at 0 to 2wt.% in order to stabilize the water retentivity of an electrode part, and a calcium hydroxide powder at 0 to 10wt.% are mixed with the electrode 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、該当する環境内部に設
置して、金属の電極電位を安定して測定するコンクリー
ト埋設用基準電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reference electrode for burying concrete, which is installed inside a relevant environment and stably measures the electrode potential of metal.

【0002】[0002]

【従来の技術】コンクリート構造物における鉄筋の腐食
は、大きな社会問題となっている。これを未然に防止
し、適切な対策を取るためには、正確な腐食モニタリン
グが必要である。鉄筋の腐食メカニズムは電気化学現象
であることから、モニタリング手法としては最近では専
ら電気化学的手法が多く使われている。
Corrosion of reinforcing bars in concrete structures has become a major social problem. Accurate corrosion monitoring is necessary to prevent this and take appropriate measures. Since the corrosion mechanism of rebar is an electrochemical phenomenon, the electrochemical method has recently been mainly used as a monitoring method.

【0003】ところで、電気化学的測定において、基準
電極の存在は必要欠くべからざるものであり、精度の高
い測定を行なうためには電極電位の安定した基準電極が
必要である。しかしながら、コンクリートのような固相
環境に埋設できる安全で安定した基準電極があるとは、
現時点においては言い難い。
By the way, in the electrochemical measurement, the existence of a reference electrode is indispensable, and a reference electrode having a stable electrode potential is necessary for highly accurate measurement. However, there is a safe and stable reference electrode that can be embedded in a solid phase environment such as concrete,
It's hard to say at this point.

【0004】電気化学的測定における基準電極は、飽和
カロメル電極や塩化銀電極が最も電位安定性の得られる
電極として使用されているが、公害上の観点から、最近
は塩化銀電極の使用が増加している。
As a reference electrode in electrochemical measurement, a saturated calomel electrode or a silver chloride electrode is used as an electrode which can obtain the most potential stability, but recently, from the viewpoint of pollution, the use of a silver chloride electrode is increasing. is doing.

【0005】塩化銀電極の構造および製造方法について
は、特開平3−172751号公報に示されるように、
酸化銀と塩化銀の混合物を圧力成形し、190〜455
℃の温度で酸化銀を熱分解することによって銀を析出さ
せ、銀粉と塩化銀の混合焼結体を作る等の方法が提案さ
れている。
Regarding the structure and manufacturing method of the silver chloride electrode, as disclosed in Japanese Patent Laid-Open No. 172751/1993,
A mixture of silver oxide and silver chloride is pressure-molded, 190-455
A method has been proposed in which silver is precipitated by thermally decomposing silver oxide at a temperature of ° C to prepare a mixed sintered body of silver powder and silver chloride.

【0006】しかしながら、これらの電極は、内部溶液
として塩化物を使用しており、塩害を問題とするコンク
リート内部に設置する基準電極としては望ましくない。
また、コンクリートがアルカリ環境下にあることから中
性塩を内部溶液とする基準電極では長期安定性に欠ける
ばかりでなく、液絡部に液間電位差を生じ、電極電位の
不安定さの要因ともなっている。液絡部における液間電
位差の問題は、内部溶液をアルカリ性に替えても、なか
なか消去しにくく、アルカリ環境下において電極電位を
安定化させる上での重要な問題となっている。
However, these electrodes use chloride as an internal solution, which is not desirable as a reference electrode installed inside concrete where salt damage is a problem.
In addition, since the concrete electrode is in an alkaline environment, the reference electrode that uses a neutral salt as an internal solution not only lacks long-term stability, but also creates a liquid-potential difference at the liquid junction, which causes instability of the electrode potential. ing. The problem of the liquid-potential difference at the liquid junction is difficult to erase even when the internal solution is changed to alkaline, and is an important problem for stabilizing the electrode potential in an alkaline environment.

【0007】また、工業的電極ということから、米国等
においては炭素電極や亜鉛の直接埋設等の方法が取られ
ているが、電極電位が環境に左右され、安定性がないと
いう問題点がある。
[0007] Further, since it is an industrial electrode, a method of directly burying a carbon electrode or zinc is adopted in the United States and the like, but there is a problem that the electrode potential depends on the environment and is not stable. .

【0008】電気化学の分野においては、アルカリ環境
下における基準電極としては、水銀/酸化水銀電極が最
も信頼性の高い電極として認められているが、実用上の
電極としては公害的見地から避けざるを得ない。
In the field of electrochemistry, a mercury / mercury oxide electrode is recognized as the most reliable electrode as a reference electrode in an alkaline environment, but it is inevitable from a pollution standpoint as a practical electrode. I don't get.

【0009】上述した従来のコンクリート埋設用の照合
電極は、一つには中性環境中で用いられている塩化物水
溶液系の照合電極であり、他の場合は電極電位が一つの
電気化学反応によっては定まらない金属単体の電極であ
る。前者においては、本来水溶液系に用いられるもので
あり、内部溶液の長期にわたる保水性、塩化物の流出、
液絡部における液間電位差の発生等に問題がある。
The above-mentioned conventional reference electrode for burying concrete is a chloride aqueous solution type reference electrode used in a neutral environment, and in other cases, the electrochemical reaction has one electrode potential. It is an electrode of a simple metal that is not determined by. In the former, it is originally used for an aqueous solution system, and it has long-term water retention of internal solution, chloride outflow,
There is a problem in the occurrence of a potential difference between liquids at the liquid junction.

【0010】後者においては、計測される電極電位が腐
食電位であり、環境側の酸化還元特性に影響され電位が
変動するため、電極電位の安定性が得られないという課
題がある。
In the latter case, the measured electrode potential is the corrosion potential, and the potential fluctuates due to the influence of the oxidation-reduction characteristics on the environment side, so that the stability of the electrode potential cannot be obtained.

【0011】なお、後述する本発明の銀/酸化銀系の電
極に関連して、特開平3−172751号公報に、酸化
銀とそれ以外の銀化合物からなる銀・銀化合物電極形成
用組成物が示されているが、ここに示される酸化銀の働
きは、銀と一つの銀化合物(主として塩化銀)からなる
電極を作成する上で、銀粉の供給物質として作用してい
るものであり、最終的にでき上がった電極系においては
酸化銀は存在せず、酸化物そのものは電極電位の決定に
全く関与しない物質である。これは、本発明の電極構成
の中に含まれる酸化銀とは機能の点において全く異なる
ものである。
In connection with the silver / silver oxide electrode of the present invention described below, JP-A-3-172751 discloses a composition for forming a silver / silver compound electrode comprising silver oxide and a silver compound other than silver oxide. However, the function of silver oxide shown here is that which acts as a feed material of silver powder in forming an electrode composed of silver and one silver compound (mainly silver chloride), Silver oxide does not exist in the finally formed electrode system, and the oxide itself is a substance that does not participate in determining the electrode potential at all. This is completely different in function from the silver oxide contained in the electrode structure of the present invention.

【0012】[0012]

【発明が解決しようとする課題】本発明は、これら従来
技術の課題を解消し、製作に手数がかからず、アルカリ
環境下で、電気化学的に定義できる長期安定性の得られ
るコンクリート埋設用基準電極を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention solves these problems of the prior art, is easy to manufacture, and is used for concrete embedding which has electrochemically definable long-term stability in an alkaline environment. It is intended to provide a reference electrode.

【0013】[0013]

【課題を解決するための手段】この目的を達成させるた
めに、本発明は次のような構成としている。すなわち、
本発明では、半電池基準電極の電極に、平均粒径1mm
φ以下の銀粒子と酸化銀粒子を重量比で2:5〜15:
1の割合で混合した混合層を用いることを特徴とするコ
ンクリート埋設用基準電極にある。
To achieve this object, the present invention has the following configuration. That is,
In the present invention, the average particle diameter of 1 mm is used for the electrode of the half-cell reference electrode.
Silver particles of φ or less and silver oxide particles in a weight ratio of 2: 5 to 15:
A reference electrode for burying concrete is characterized by using a mixed layer mixed at a ratio of 1.

【0014】以下、本発明を図面に基づいて説明する。
図1(a)は本発明の基準電極の一例を示す概略断面図
であり、図1(b)は本発明の基準電極の他の例を示す
概略断面図である。同図において、1は充填剤、2は銀
板または銀線、3は電極、3′は焼石膏で固化された電
極、4は吸水性高分子含有ゲル状水酸化カルシウム飽和
溶液、5は多孔質材をそれぞれ示す。
The present invention will be described below with reference to the drawings.
FIG. 1A is a schematic sectional view showing an example of the reference electrode of the present invention, and FIG. 1B is a schematic sectional view showing another example of the reference electrode of the present invention. In the figure, 1 is a filler, 2 is a silver plate or silver wire, 3 is an electrode, 3'is an electrode solidified with gypsum, 4 is a gelled calcium hydroxide saturated solution containing a water-absorbing polymer, and 5 is porous. Each material is shown.

【0015】図1(a)では、外部取り出し用の銀板ま
たは銀線2の表面に、平均粒径1mmφ以下の銀粒子と
酸化銀粒子を重量比で2:5〜15:1、好ましくは
2:5〜9:1の割合で混合した電極(銀粒子/酸化銀
粒子混合層)3を電極ケース断面全体に広げて設けられ
ている。銀粒子と酸化銀粒子の混合重量比が上記範囲か
ら外れると低周波数域(0.1Hz以下)における電極
のインピーダンスが上昇したり、電位安定性が悪くなる
等の欠点がでてくる。また銀粒子の平均粒径が1mmφ
を超えても同様の現象が生じ好ましくない。
In FIG. 1 (a), silver particles and silver oxide particles having an average particle size of 1 mmφ or less and silver oxide particles are in a weight ratio of 2: 5 to 15: 1, preferably on the surface of a silver plate or silver wire 2 for external extraction. An electrode (silver particle / silver oxide particle mixed layer) 3 mixed at a ratio of 2: 5 to 9: 1 is spread over the entire cross section of the electrode case. If the mixing weight ratio of the silver particles and the silver oxide particles deviates from the above range, the impedance of the electrode in the low frequency range (0.1 Hz or less) increases, and the potential stability deteriorates. Also, the average particle size of silver particles is 1 mmφ
Even if it exceeds, a similar phenomenon occurs, which is not preferable.

【0016】この電極(銀粒子/酸化銀粒子混合層)3
には、硝酸カリウム0〜10重量%、好ましくは2〜1
0重量%、アセチレンブラック0〜2重量%、好ましく
は0.002〜2重量%、水酸化カルシウム粉末0〜1
0重量%、好ましくは2〜10重量%が混合される。無
関係電解質である硝酸カリウムは、コンクリートの液絡
部に生じる液間の電位差の軽減や銀電極のファラデーイ
ンピーダンスを低下を防止するために混合される。ま
た、アセチレンブラックは、電極部の保水性のさせるた
めに混合される。さらに水酸化カルシウム粉末はpHを
安定に保持するために混合される。
This electrode (silver particle / silver oxide particle mixed layer) 3
In addition, 0 to 10% by weight of potassium nitrate, preferably 2-1
0% by weight, acetylene black 0 to 2% by weight, preferably 0.002 to 2% by weight, calcium hydroxide powder 0-1
0% by weight, preferably 2-10% by weight, are mixed. An irrelevant electrolyte, potassium nitrate, is mixed in order to reduce the potential difference between the liquids generated in the liquid junction of concrete and to prevent the Faraday impedance of the silver electrode from decreasing. In addition, acetylene black is mixed to make the electrode part water-retaining. Further, the calcium hydroxide powder is mixed to keep the pH stable.

【0017】この銀粒子/酸化銀粒子混合層3の下部に
吸水性高分子樹脂含有ゲル状水酸化カルシウム溶液4が
充填されている。ここで用いられる吸水性高分子樹脂と
しては、例えばポリエチレンオキサイド変成物(住友化
学製R−30F)等が例示される。ここで高粘度のゲル
状水酸化カルシウム溶液を用いるのは、水酸化カルシウ
ム水溶液がコンクリートとのpH差が小さいためであ
る。吸水性高分子樹脂含有ゲル状水酸化カルシウム溶液
4の下部には、木栓、コルク栓、石膏、モルタル等の多
孔質材で封止されている。
A gel-like calcium hydroxide solution 4 containing a water-absorbing polymer resin is filled in the lower portion of the silver particle / silver oxide particle mixed layer 3. Examples of the water-absorbent polymer resin used here include polyethylene oxide modified product (R-30F manufactured by Sumitomo Chemical Co., Ltd.) and the like. The high viscosity gel calcium hydroxide solution is used here because the calcium hydroxide aqueous solution has a small pH difference from the concrete. The lower portion of the water-absorbent polymer resin-containing gel-like calcium hydroxide solution 4 is sealed with a porous material such as wood stopper, cork stopper, gypsum and mortar.

【0018】図1(b)では、図1(a)の銀粒子/酸
化銀粒子混合層3および吸水性高分子樹脂含有ゲル状水
酸化カルシウム溶液4に代えて、銀粒子/酸化銀粒子を
上記割合で混合し、これを水酸化カルシウム溶液で溶解
した石膏と混合し、固化またはペースト化された電極
3′となし、これを外部取り出し用銀板または銀線2の
ある容器全体に充填した後、上記したような多孔質材5
で封止したものである。
In FIG. 1B, instead of the silver particle / silver oxide particle mixed layer 3 and the water-absorbing polymer resin-containing gel calcium hydroxide solution 4 of FIG. 1A, silver particles / silver oxide particles are used. The above mixture was mixed, and this was mixed with gypsum dissolved in a calcium hydroxide solution to form a solidified or pasted electrode 3 ', which was filled in the entire container having the silver plate for external extraction or the silver wire 2. Then, the porous material 5 as described above
It is sealed with.

【0019】このように本発明は、アルカリ環境下で安
定した酸化還元電位を示す電極系の中から、公害上の影
響の少ない銀/酸化銀電極を選択し、センサー容器を替
えることなく電極の交換電流密度を増大させるために、
粉末粒子を用いその混合物を容器全体に設置することに
より、より大きい電極表面積を確保し、見かけの交換電
流密度を増大させ、電極電位を安定化させた物である。
As described above, according to the present invention, a silver / silver oxide electrode, which has a small influence on pollution, is selected from the electrode system exhibiting a stable redox potential in an alkaline environment, and the electrode container is replaced without changing the sensor container. In order to increase the exchange current density,
By using powder particles and placing the mixture in the entire container, a larger electrode surface area is secured, the apparent exchange current density is increased, and the electrode potential is stabilized.

【0020】[0020]

【作用】銀/酸化銀の酸化還元電位(E)は、次式で示
されるようなpHに依存した電極電位を示す。 E=1.173−0.0591pH (V,SHE)
The redox potential (E) of silver / silver oxide shows a pH-dependent electrode potential as shown by the following equation. E = 1.173-0.0591 pH (V, SHE)

【0021】この電極電位が安定して示されるために
は、pHが一定していることは勿論であるが、電極反応
の交換電流密度を大きくすること、さらに、コンクリー
トのような固相環境での使用においては、電極内部の水
分保持をどのようにして行なうかが重要な課題である。
In order to show this electrode potential stably, it goes without saying that the pH is constant, but the exchange current density of the electrode reaction should be increased, and further, in a solid phase environment such as concrete. In the use of, the important issue is how to retain water inside the electrode.

【0022】本発明においては、pHの安定性を水酸化
カルシウムの飽和溶液を用いることによって維持し、交
換電流密度の増大は、銀粒子と酸化銀粒子を混合した層
を設けることによって対応することができた。すなわ
ち、銀の粒子単体で言えば単位面積当たりの交換電流は
銀板と同じであるが、電極を微細化することによって、
限られたスペースの中で通常の平板電極より大きな電極
面積を確保することが可能となり、見かけの交換電流密
度は大幅に増大させることができた。
In the present invention, the stability of pH is maintained by using a saturated solution of calcium hydroxide, and the increase in exchange current density is dealt with by providing a layer in which silver particles and silver oxide particles are mixed. I was able to. In other words, the exchange current per unit area is the same as that of a silver plate in terms of silver particles alone, but by making the electrodes finer,
It became possible to secure a larger electrode area than a normal plate electrode in a limited space, and the apparent exchange current density could be greatly increased.

【0023】また、電極内部の保水性は、銀粒子/酸化
銀粒子混合層にアセチレンブラックを混合することによ
り向上する。さらに無関係電解質の硝酸カリウムの混合
は、電極とコンクリート界面における液間電位差の軽減
ばかりでなく、銀/酸化銀電極の交換電流密度の増大を
もたらす。
The water retention property inside the electrode is improved by mixing acetylene black in the silver particle / silver oxide particle mixed layer. Furthermore, the mixing of the irrelevant electrolyte potassium nitrate results not only in reducing the liquid-potential difference at the electrode-concrete interface, but also in increasing the exchange current density of the silver / silver oxide electrode.

【0024】[0024]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on examples.

【0025】実施例1 飽和水酸化カルシウム水溶液中において、銀粒子と酸化
銀粒子の混合割合の影響を評価した。評価方法は各種混
合比に調整された銀粒子/酸化銀粒子混合層を10mm
φの白金板上にのせ、電極電位の測定と交流インピーダ
ンス法による0.01Hzにおけるインピーダンスの絶
対値(Rp)を求め、相互比較を行なった。結果を表1
に示す。なお、この銀粒子の平均粒径は200mesh
である。
Example 1 The influence of the mixing ratio of silver particles and silver oxide particles in a saturated calcium hydroxide aqueous solution was evaluated. The evaluation method was to prepare a silver particle / silver oxide particle mixed layer adjusted to various mixing ratios to 10 mm.
The sample was placed on a platinum plate of φ, the electrode potential was measured, and the absolute value (R p ) of the impedance at 0.01 Hz was obtained by the AC impedance method, and mutual comparison was performed. The results are shown in Table 1.
Shown in. The average particle size of the silver particles is 200 mesh.
Is.

【0026】[0026]

【表1】 [Table 1]

【0027】表1の結果から明らかなように、電極電位
に対する重量比の影響は認められないものの、0.01
Hzにおけるインピーダンスの絶対値は銀粒子/酸化銀
粒子の重量比が大きくなるにしたがって減少する。これ
は、交換電流密度の増加を示すものであり、実用電極と
しては、銀粒子/酸化銀粒子が2/5以上の混合比が望
ましいと考えられる。
As is clear from the results in Table 1, the effect of the weight ratio on the electrode potential was not recognized, but 0.01
The absolute value of impedance at Hz decreases as the silver particle / silver oxide particle weight ratio increases. This indicates an increase in exchange current density, and it is considered that a mixing ratio of 2/5 or more of silver particles / silver oxide particles is desirable for a practical electrode.

【0028】実施例2 銀粒子/酸化銀粒子電極の電極電位および交換電流密度
に与える銀粒子径の影響を評価するために、種々の大き
さを有する銀粒子を篩い分けし、銀粒子の大きさが異な
る銀粒子/酸化銀粒子混合層(混合割合9:1)を10
mmφの白金板上にのせ、電極電位の測定と交流インピ
ーダンス法による0.01Hzにおけるインピーダンス
の絶対値(Rp)の測定を行なった。結果を表2に示
す。
Example 2 In order to evaluate the influence of the silver particle size on the electrode potential and the exchange current density of the silver particle / silver oxide particle electrode, silver particles having various sizes were sieved and the size of the silver particles was changed. 10 different silver particles / silver oxide particles mixed layers (mixing ratio 9: 1)
It was placed on a platinum plate of mmφ, and the electrode potential was measured and the absolute value of impedance (R p ) at 0.01 Hz was measured by the AC impedance method. The results are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】表2の結果から明らかなように、銀粒子径
が大きくなるにしたがい、インピーダンスは増大するこ
とから、大きい交換電流密度を保持するためには、少な
くとも銀粒子の平均粒子径を1mmφ以下にすることが
重要であることが分った。
As is clear from the results shown in Table 2, the impedance increases as the silver particle diameter increases, so in order to maintain a large exchange current density, at least the average particle diameter of the silver particles is 1 mmφ or less. It turned out to be important.

【0031】実施例3 図2に図1(a)に示される各種銀粒子/酸化銀粒子電
極、図3に図1(b)に示される各種銀粒子/酸化銀粒
子電極のコンクリート中における電極電位安定性試験結
果を保水性を考慮しない基準電極(No.1)との比較
で示した。
Example 3 Various silver particle / silver oxide particle electrodes shown in FIG. 1 (a) in FIG. 2 and various silver particle / silver oxide particle electrode shown in FIG. 1 (b) in concrete. The results of the potential stability test are shown in comparison with the reference electrode (No. 1) that does not consider water retention.

【0032】この図2〜3において、各No.は下記の
構成を示す。 No.1:(銀粒子/酸化銀粒子電極)/多孔質材 No.2:(銀粒子/酸化銀粒子電極)/吸水性高分子
含有ゲル状水酸化カルシウム飽和溶液/多孔質材 No.3:(銀粒子/酸化銀粒子電極)+硝酸カリウム
/吸水性高分子含有ゲル状水酸化カルシウム飽和溶液/
多孔質材 No.4:(銀粒子/酸化銀粒子電極)+アセチレンブ
ラック+硝酸カリウム/吸水性高分子含有ゲル状水酸化
カルシウム飽和溶液/多孔質材 No.5:(銀粒子/酸化銀粒子電極)+石膏/多孔質
材 No.6:(銀粒子/酸化銀粒子電極)+硝酸カリウム
+石膏/多孔質材 No.7:(銀粒子/酸化銀粒子電極)+アセチレンブ
ラック+硝酸カリウム+石膏/多孔質材
2 to 3, each No. Indicates the following configuration. No. 1: (silver particle / silver oxide particle electrode) / porous material No. 2: (silver particle / silver oxide particle electrode) / water-absorbing polymer-containing gelled calcium hydroxide saturated solution / porous material No. 3: (silver particles / silver oxide particles electrode) + potassium nitrate / gelled calcium hydroxide saturated solution containing water-absorbing polymer /
Porous material No. 4: (silver particle / silver oxide particle electrode) + acetylene black + potassium nitrate / gelled calcium hydroxide saturated solution containing water-absorbing polymer / porous material No. 5: (silver particle / silver oxide particle electrode) + gypsum / porous material No. 6: (silver particle / silver oxide particle electrode) + potassium nitrate + gypsum / porous material No. 7: (silver particle / silver oxide particle electrode) + acetylene black + potassium nitrate + gypsum / porous material

【0033】図2〜3の結果から、保水性を考慮しない
基準電極(No.1)は、日数の経過と共に水分の不安
定さから生ずると思われる電位の振動が認められ、電位
の長期安定性に問題があることが分った。
From the results shown in FIGS. 2 and 3, the reference electrode (No. 1), which does not take water retention into consideration, has a potential oscillation which is considered to be caused by instability of water with the passage of days, and the potential is stabilized for a long period of time. I found that there was a problem with sex.

【0034】一方、No.2〜7の基準電極において
は、電極間に電極電位の多少のばらつきはあるものの、
実用上、何等問題のない程度の安定した電位を示した。
中でも、アセチレンブラックや硝酸カリウムを添加した
基準電極(No.3〜4、6〜7)は、より安定性の高
い電極性能を示した。
On the other hand, No. In the reference electrodes 2 to 7, although there are some variations in the electrode potential between the electrodes,
In practice, it showed a stable potential with no problem.
Among them, the reference electrodes (No. 3 to 4, 6 to 7) to which acetylene black or potassium nitrate was added showed more stable electrode performance.

【0035】実施例4 銀粒子/酸化銀粒子電極の交流インピーダンスの周波数
特性に対する硝酸カリウムの添加効果を図4に示す。同
図において、Aは(Ag+Ag2O)電極であり、A
g:Ag2Oは9:1(重量比)である。また、Bは
(Ag+Ag2O)+硝酸カリウム電極であり、Ag:
Ag2Oは9:1(重量比)である。
Example 4 The effect of adding potassium nitrate on the frequency characteristics of the AC impedance of the silver particle / silver oxide particle electrode is shown in FIG. In the figure, A is an (Ag + Ag 2 O) electrode, and A
g: Ag 2 O is 9: 1 (weight ratio). Further, B is (Ag + Ag 2 O) + potassium nitrate electrode, and Ag:
Ag 2 O is 9: 1 (weight ratio).

【0036】図4から硝酸カリウムの混合により、低周
波域におけるインピーダンスが低下したことから、銀粒
子/酸化銀粒子電極の交換電流密度の増大に硝酸カリウ
ムの混合が有効であることが分る。
It can be seen from FIG. 4 that the mixing of potassium nitrate lowers the impedance in the low frequency region, and thus the mixing of potassium nitrate is effective for increasing the exchange current density of the silver particle / silver oxide particle electrode.

【0037】実施例5 図1(a)に示される銀粒子/酸化銀粒子電極を用い、
電極構成に硝酸カリウムが含まれる場合と含まれない場
合についてモルタル液絡部を介して測定される電極電位
の違いを評価した。なお、Ag:Ag2Oは9:1(重
量比)である。
Example 5 Using the silver particle / silver oxide particle electrode shown in FIG. 1 (a),
The difference in the electrode potential measured through the mortar junction was evaluated for the case where the electrode configuration contained potassium nitrate and the case where it did not. Note that Ag: Ag 2 O is 9: 1 (weight ratio).

【0038】[0038]

【表3】 [Table 3]

【0039】表3に示されるように、硝酸カリウムの混
合によって液絡部両端に生ずる液間電位差が緩和される
ことが分かった。
As shown in Table 3, it was found that the mixture of potassium nitrate alleviates the potential difference between the liquids generated at both ends of the liquid junction.

【0040】[0040]

【発明の効果】以上説明したように、本発明は、従来の
照合電極がもつアルカリ固相環境下における電極電位の
不安定さを、銀粒子/酸化銀粒子の粉末電極と保水性技
術の向上によりより安定した電位を長期間得られるよう
になった。これにより、コンクリート環境下における精
度の高い電気化学的測定が行なうことができるようにな
り、鉄筋の腐食防食のモニタリングが容易で、かつ精度
よく行なえるという効果をもたらした。
As described above, according to the present invention, the instability of the electrode potential under the alkaline solid-phase environment of the conventional reference electrode is improved by the powder electrode of silver particles / silver oxide particles and the water retention technique. As a result, a more stable potential can be obtained for a long time. As a result, it becomes possible to perform highly accurate electrochemical measurement in a concrete environment, and it is possible to easily and accurately monitor the corrosion protection of reinforcing bars.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のコンクリート埋設用基準電極の一例
を示す概略断面図。
FIG. 1 is a schematic sectional view showing an example of a reference electrode for embedding concrete in the present invention.

【図2】 基準電極の電極電位と経過日数の関係を示す
グラフ。
FIG. 2 is a graph showing the relationship between the electrode potential of a reference electrode and the elapsed days.

【図3】 基準電極の電極電位と経過日数の関係を示す
グラフ。
FIG. 3 is a graph showing the relationship between the electrode potential of a reference electrode and the elapsed days.

【図4】 基準電極のインピーダンスと周波数の関係を
示すグラフ。
FIG. 4 is a graph showing the relationship between the impedance of the reference electrode and the frequency.

【符号の説明】[Explanation of symbols]

1:充填剤、2:銀板または銀線、3:電極、3′:石
膏で固化またはペースト化された電極、4:吸水性高分
子含有ゲル状水酸化カルシウム飽和溶液、5:多孔質
材。
1: Filler, 2: Silver plate or silver wire, 3: Electrode, 3 ': Electrode solidified or pasted with gypsum, 4: Saturated gel calcium hydroxide solution containing water-absorbing polymer, 5: Porous material .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半電池基準電極の電極に、平均粒径1m
mφ以下の銀粒子と酸化銀粒子を重量比で2:5〜1
5:1の割合で混合した混合層を用いることを特徴とす
るコンクリート埋設用基準電極。
1. An average particle diameter of 1 m is applied to the electrode of the half-cell reference electrode.
Silver particles of mφ or less and silver oxide particles in a weight ratio of 2: 5 to 1
A reference electrode for burying concrete, comprising a mixed layer mixed in a ratio of 5: 1.
【請求項2】 前記混合層を、銀板または銀線の周囲に
容器断面全体に広げて設け、さらにその下部に吸水性高
分子含有ゲル状水酸化カルシウム飽和溶液を充填した請
求項1に記載のコンクリート埋設用基準電極。
2. The mixed layer is provided around the silver plate or the silver wire so as to be spread over the entire cross section of the container, and the lower part thereof is filled with a gelled calcium hydroxide saturated solution containing a water-absorbing polymer. Reference electrode for burying concrete.
【請求項3】 銀板または銀線の周囲に、前記混合層を
水酸化カルシウム飽和溶液で溶解した石膏によって固化
またはペースト化し、銀板または銀線の周囲に容器断面
全体に広げて設けた請求項1に記載のコンクリート埋設
用基準電極。
3. A silver plate or a silver wire, wherein the mixed layer is solidified or pasted with gypsum dissolved in a saturated solution of calcium hydroxide, and is spread around the silver plate or the silver wire over the entire cross section of the container. Item 1. A concrete burying reference electrode according to item 1.
【請求項4】 前記混合層に、硝酸カリウム0〜10重
量%、アセチレンブラック0〜2重量%、水酸化カルシ
ウム粉末0〜10重量%を混合した請求項1、2または
3に記載のコンクリート埋設用基準電極。
4. The concrete burying method according to claim 1, 2 or 3, wherein 0 to 10% by weight of potassium nitrate, 0 to 2% by weight of acetylene black, and 0 to 10% by weight of calcium hydroxide powder are mixed in the mixed layer. Reference electrode.
JP5127752A 1993-05-06 1993-05-06 Reference electrode for concrete burial Expired - Fee Related JP3053043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5127752A JP3053043B2 (en) 1993-05-06 1993-05-06 Reference electrode for concrete burial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5127752A JP3053043B2 (en) 1993-05-06 1993-05-06 Reference electrode for concrete burial

Publications (2)

Publication Number Publication Date
JPH06317553A true JPH06317553A (en) 1994-11-15
JP3053043B2 JP3053043B2 (en) 2000-06-19

Family

ID=14967814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5127752A Expired - Fee Related JP3053043B2 (en) 1993-05-06 1993-05-06 Reference electrode for concrete burial

Country Status (1)

Country Link
JP (1) JP3053043B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004614A1 (en) * 1999-07-13 2001-01-18 Wakunaga Pharmaceutical Co., Ltd. Electrochemical biosensor using silver silver chloride electrode and chromatography matrix
WO2008090403A1 (en) * 2007-01-22 2008-07-31 Commissariat A L'energie Atomique Reference electrode, manufacturing method and battery comprising same
JP2015040707A (en) * 2013-08-20 2015-03-02 株式会社ナカボーテック Reference electrode
JP2018004283A (en) * 2016-06-27 2018-01-11 株式会社ナカボーテック Reference electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424214C (en) * 2006-05-19 2008-10-08 江苏共昌轧辊有限公司 High-chromium cast steel milling ball, and its preparing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004614A1 (en) * 1999-07-13 2001-01-18 Wakunaga Pharmaceutical Co., Ltd. Electrochemical biosensor using silver silver chloride electrode and chromatography matrix
JP4695316B2 (en) * 1999-07-13 2011-06-08 湧永製薬株式会社 Silver / silver chloride electrode and electrochemical biosensor using the same
WO2008090403A1 (en) * 2007-01-22 2008-07-31 Commissariat A L'energie Atomique Reference electrode, manufacturing method and battery comprising same
JP2010517032A (en) * 2007-01-22 2010-05-20 コミサリア、ア、レネルジ、アトミク−セーエーアー Reference electrode, manufacturing method, and battery including reference electrode
US8268148B2 (en) 2007-01-22 2012-09-18 Commissariat A L'energie Atomique Reference electrode, manufacturing method and battery comprising same
JP2015040707A (en) * 2013-08-20 2015-03-02 株式会社ナカボーテック Reference electrode
JP2018004283A (en) * 2016-06-27 2018-01-11 株式会社ナカボーテック Reference electrode

Also Published As

Publication number Publication date
JP3053043B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
EP2219024A1 (en) Electrochemical oxygen sensor
JP2003536230A5 (en)
JP5941022B2 (en) Reference electrode
US4235688A (en) Salt bridge reference electrode
CN202939152U (en) Long-service-life embedded reference electrode for monitoring/detecting corrosion of reinforced concrete
JPH06317553A (en) Reference electrode for concrete burying
JP6239992B2 (en) Backfill for cathodic protection
JP6681500B1 (en) Backfill for cathodic protection
JP5085918B2 (en) Backfill for cathodic protection of concrete structures and anode unit for cathodic protection
US20050258039A1 (en) Reference electrode
Davis et al. Chronopotentiometry of the Bromide-Bromine Couple at Platinum and Carbon Paste Electrodes.
Drogowska et al. Dissolution of tin in the presence of Cl− ions at pH 4
Chlistunoff et al. Electrode reactions at extremely negative potentials: Part I. The kinetids of the Eu (II)/Eu (Hg) electrode reaction in DMF and DMF+ water mixtures
Dobson et al. The sodium responsive tungsten bronze electrode: an electrode for sodium ion analysis of DNA solutions
US3761317A (en) Corrosion inhibitor for magnesium cells
JP2018004283A (en) Reference electrode
US3040114A (en) Primary battery cell
JPH02267856A (en) Alkaline battery
JPH0239740B2 (en)
JPH05126783A (en) Standard electrode for potential measurement and portable sensor using it for corrosion probing
JPH02500313A (en) Batteries with aqueous alkaline electrolyte
JPH02268266A (en) Reference electrode
JP2002134159A (en) Sealed lead-acid battery
Chviruk et al. Galvanic-type electrochemical sensor for determining the content of hydrohalogens in the air
Malservisi et al. Studies of electrochemical and mass transport properties of a thiolate/disulfide redox couple in polymer electrolytes

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080407

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090407

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090407

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110407

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120407

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120407

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees