[go: up one dir, main page]

JPH06316765A - Vaporizer for liquid material - Google Patents

Vaporizer for liquid material

Info

Publication number
JPH06316765A
JPH06316765A JP23541391A JP23541391A JPH06316765A JP H06316765 A JPH06316765 A JP H06316765A JP 23541391 A JP23541391 A JP 23541391A JP 23541391 A JP23541391 A JP 23541391A JP H06316765 A JPH06316765 A JP H06316765A
Authority
JP
Japan
Prior art keywords
raw material
vaporizer
liquid raw
carrier gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23541391A
Other languages
Japanese (ja)
Other versions
JP3112721B2 (en
Inventor
Hirofumi Ono
弘文 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RINTETSUKU KK
Lintec Corp
Original Assignee
RINTETSUKU KK
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RINTETSUKU KK, Lintec Corp filed Critical RINTETSUKU KK
Priority to JP03235413A priority Critical patent/JP3112721B2/en
Publication of JPH06316765A publication Critical patent/JPH06316765A/en
Application granted granted Critical
Publication of JP3112721B2 publication Critical patent/JP3112721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a vaporizer for a liquid material where the contact area between the liquid material and a carrier gas is always kept constant and also the vaporized quantity of the liquid material is automatically controlled matching with the feed quantity. CONSTITUTION:In a vaporizer A for a liquid material having an inflow port 2 for introducing a carrier gas H into a vaporizer body 1, an outflow port 3 for causing the carrier gas H to flow out together with a vaporized gas material R which has been vaporized in the vaporizer body 1, and a liquid material feeding port 4 for feeding a liquid material L to a bottom part 5 of the vaporizer body 1, the bottom part 5 of the vaporizer body 1 where the liquid material L is stored is formed into the shape of a cone which is upwardly diverged. As a result, the vaporized quantity of the liquid material L is always kept constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造プロセス
における液体原料の高精度供給、特にTEOS (Tetra
Ethyl Ortho Silicate)を始めとする薄膜形成用液体原
料の高精度流量制御や、化学工業分野における液体
(例えば、アルコール類、有機酸類)の高精度移送、特
に次工程が減圧状態にある反応炉などの場合の高精度移
送に最適な液体原料用気化器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to highly accurate supply of liquid raw materials in a semiconductor manufacturing process, and more particularly to TEOS (Tetra).
Ethyl Ortho Silicate) and other high-precision flow rate control of liquid raw materials for thin film formation, and liquids in the chemical industry
The present invention relates to a vaporizer for a liquid material, which is most suitable for high precision transfer of (for example, alcohols and organic acids), particularly for high precision transfer in the case where the next step is a pressure reduction reactor or the like.

【0002】[0002]

【従来の技術】以下、半導体製造のCVDプロセスを例
にとって説明する。半導体ウェハーの層間絶縁膜材料と
して、最近、TEOSが特に注目されつつある。その理
由として、従来の減圧CVDを使用した(SiH4)の堆積
メカニズムと異なり、表面反応律速であり、そのために
ステップカバレッジが良好である事、SiH4は極めて反
応性が高く、爆発事故を発生する可能性が高いが、これ
に対してTEOSは安全性が高く、保存も容易である
事、将来、原料として低コスト化が期待出来るためで
ある。
2. Description of the Related Art A CVD process for semiconductor manufacturing will be described below as an example. As an interlayer insulating film material for semiconductor wafers, TEOS has recently attracted particular attention. The reason for this is that, unlike the deposition mechanism of (SiH 4 ) using conventional low pressure CVD, the surface reaction is rate-determining and therefore the step coverage is good.SiH 4 is extremely reactive and causes an explosion accident. On the other hand, TEOS is highly safe and easy to store, and it can be expected to reduce the cost as a raw material in the future.

【0003】TEOSを用いるCVD法には、減圧CV
D法、常圧CVD法並びにプラズマCVD法などがあ
る。常圧CVDは、特にステップカバレッジ性が良好で
あり、真空排気系を必要としないなどの利点があり、広
く普及している。
A low pressure CV is used for the CVD method using TEOS.
D method, atmospheric pressure CVD method and plasma CVD method. Atmospheric pressure CVD is widely used because it has excellent step coverage and does not require a vacuum exhaust system.

【0004】常圧CVD法においては、減圧CVDより
も流量を多く流す。そのためには温度を高くすることが
考えられるが、沸点以上に温度を上げると突沸を生じ、
安定した流量が得られない。又、突沸すれば、膜生成が
不均一となり、良品は得られない。又、高温ではTEO
S等の有機材料の熱分解や多量体を生じ、良好な膜質を
得る事ができない。
In the atmospheric pressure CVD method, the flow rate is higher than that in the low pressure CVD. For that purpose, it is possible to raise the temperature, but when the temperature is raised above the boiling point, bumping occurs,
Stable flow rate cannot be obtained. If bumping occurs, the film formation becomes non-uniform, and a good product cannot be obtained. Also, at high temperatures, TEO
A good film quality cannot be obtained due to the thermal decomposition of an organic material such as S and the formation of a multimer.

【0005】そこで、突沸を防ぐために沸点以下の温度
で液体原料を気化供給することが要求されたので、必要
な気化流量を確保するために蒸発面積を大きくする事と
し、図6に示すような底部が浅い皿状の気化器(B')を提
案した。しかしながら、この気化器(B')では正確な量の
気化原料(L')の気化供給が行えなかった。
Therefore, in order to prevent bumping, it is required to vaporize and supply the liquid raw material at a temperature equal to or lower than the boiling point. Therefore, it is necessary to increase the evaporation area in order to secure a necessary vaporization flow rate, as shown in FIG. We proposed a dish-shaped vaporizer (B ') with a shallow bottom. However, this vaporizer (B ') could not vaporize and supply an accurate amount of the vaporization raw material (L').

【0006】即ち、この気化器(B')を恒温槽内に入れ、
沸点以下の温度で加熱しながら底部(5')から気化器(B')
内に供給した液体原料(L')を蒸発させた処、底部(5')に
均等に液体原料(L')が流れ広がらず、底部(5')上を不定
形に流れ広がって行くことが確認された。そして、気化
後の気化原料(R')の量を計測用質量流量計(図示せず)で
刻々と測定してみると、液体原料(L')の不定形な接触面
積の拡大又は蒸発による接触面積の縮小に起因する気化
量の変動が認められた。
That is, the vaporizer (B ') is placed in a constant temperature bath,
From bottom (5 ') to vaporizer (B') while heating below boiling point
When the liquid raw material (L ') supplied inside is evaporated, the liquid raw material (L') does not flow evenly to the bottom (5 '), but spreads irregularly on the bottom (5'). Was confirmed. Then, when the amount of the vaporized raw material (R ') after vaporization is measured momentarily by a mass flow meter for measurement (not shown), due to the expansion or evaporation of the amorphous contact area of the liquid raw material (L'). A change in the amount of vaporization due to the reduction of the contact area was observed.

【0007】これは皿状の底部(5')上に不定形に流れ広
がった液体原料(L')に搬送ガス(H')を接触させて気化す
るのであるから、液体原料(L')の流れ広がり方によって
搬送ガス(H')と液体原料(L')との接触面積が変動し、こ
れによって気化量が左右されるものと考えられる。例え
ば、液体原料(L')の流れ広がり方によっては急に蒸発速
度が増して液体原料(L')が底部(5')に形成された液体原
料供給口(4')近辺まで後退する現象や、逆に、蒸発速度
が遅く、その結果、液面が上昇して底部(5')の全面を満
たすような現象が観察された。
This is because the carrier gas (H ') is contacted with the liquid raw material (L') which spreads in an irregular shape on the dish-shaped bottom portion (5 ') to vaporize the liquid raw material (L'). It is considered that the contact area between the carrier gas (H ') and the liquid raw material (L') varies depending on how the flow spreads, and the amount of vaporization depends on this. For example, depending on how the flow of the liquid raw material (L ') spreads, the evaporation rate suddenly increases and the liquid raw material (L') retreats to the vicinity of the liquid raw material supply port (4 ') formed at the bottom (5'). On the contrary, it was observed that the evaporation rate was slow and, as a result, the liquid level rose to fill the entire surface of the bottom (5 ′).

【0008】このような現象が発生する原因としては、
気化器(B')の底部(5')を完全に水平に保ことができず、
液体原料(L')が液体原料供給口(4')を中心にして同心円
状に広がらないことや、液体原料(L')の表面張力のため
に平坦な底部(5')上を液体原料(L')が移動しやすいこと
による。
The cause of such a phenomenon is as follows.
The bottom (5 ') of the vaporizer (B') cannot be kept perfectly horizontal,
The liquid raw material (L ') does not spread concentrically around the liquid raw material supply port (4') and the liquid raw material (L ') has a flat bottom surface (5') due to the surface tension of the liquid raw material (L '). Because (L ') is easy to move.

【0009】更に、液体原料(L')の供給中には、搬送ガ
ス(H')による液体原料(L')の気化量と、液体原料(L')の
供給量がうまくマッチングしていない場合もあり、この
場合は、例えば、液体原料(L')が気化量よりも多い場合
には気化器本体(1')内の液体原料(L')の量が次第に増
え、浅い皿状の底部(5')に不定形に流れ広がって行く。
そしてこの次第に流れ広がって流出面積の増加している
液体原料(L')に搬送ガス(H')を接触させて気化させて行
くと、液体原料(L')の流れ広がり面積の増加に従って気
化量が増加して行くことになる。逆に、液体原料(L')の
供給量が気化量に比べて寡少であった場合には液体原料
(L')が皿状の底部(5')に流れ広がらず、気化量が増加し
ない事になる。
Further, during the supply of the liquid raw material (L '), the vaporization amount of the liquid raw material (L') by the carrier gas (H ') and the supply amount of the liquid raw material (L') do not match well. In this case, in this case, for example, when the liquid raw material (L ') is larger than the vaporized amount, the amount of the liquid raw material (L') in the vaporizer main body (1 ') gradually increases, and a shallow dish shape is formed. Amorphous flow spreads to the bottom (5 ').
When the carrier gas (H ') is vaporized by contacting the liquid raw material (L'), which gradually expands and the outflow area increases, it vaporizes as the flow spreading area of the liquid raw material (L ') increases. The amount will increase. On the contrary, if the supply amount of liquid raw material (L ') is less than the vaporization amount, the liquid raw material
(L ') does not flow into the dish-shaped bottom (5') and spread, and the vaporization amount does not increase.

【0010】[0010]

【発明が解決しようとする課題】液体原料が搬送ガスと
接触する面積を常時ほぼ一定に保つ事ができると同時に
液体原料の供給量に合わせて気化量を自動的にコントロ
ールすることが出来る液体原料用気化器の提案が望まれ
ていた。
A liquid raw material capable of keeping the area where the liquid raw material comes into contact with a carrier gas almost always at the same time and automatically controlling the vaporization amount according to the supply amount of the liquid raw material. A proposal for a vaporizer was desired.

【0011】[0011]

【課題を解決するための手段】前記、課題を達成するた
めに、本発明に掛かる液体原料用気化器は、 搬送ガス(H)を気化器本体(1)内に導入するための流
入口(2)と、 気化器本体(1)内にて気化した気化原料ガス(R)と共
に搬送ガス(H)が流出する流出口(3)と、 気化器本体(1)の底部(5)に液体原料(L)を供給する
液体原料供給口(4)とを有する液体原料用気化器(A)にお
いて、 液体原料(L)を貯留する気化器本体(1)の底部(5)の
形状を上広がりの錘状に形成した事を特徴とするもので
ある。 これにより、液体原料(L)が搬送ガス(H)と接触する面積
を常時ほぼ一定に保つ事ができて気化量を常に一定に保
つ事が出来ると同時に液体原料(L)の供給量に合わせて
気化量を自動的にコントロールすることが出来た。
Means for Solving the Problems In order to achieve the above-mentioned object, a vaporizer for a liquid raw material according to the present invention has an inlet () for introducing a carrier gas (H) into a vaporizer main body (1). 2), the outlet (3) through which the carrier gas (H) flows out together with the vaporized raw material gas (R) vaporized in the vaporizer body (1), and the liquid at the bottom (5) of the vaporizer body (1). In the vaporizer (A) for liquid raw material having the liquid raw material supply port (4) for feeding the raw material (L), the shape of the bottom part (5) of the vaporizer main body (1) storing the liquid raw material (L) It is characterized in that it is formed in the shape of a spreading cone. As a result, the area where the liquid raw material (L) comes into contact with the carrier gas (H) can be kept almost constant at all times, and the vaporization amount can be kept constant at the same time. It was possible to automatically control the amount of vaporization.

【0012】[0012]

【実施例】以下、本発明を図示実施例に従って詳述す
る。図1は本発明にかかる気化器(A)を使用した場合の
フローチャートである。
The present invention will be described in detail below with reference to the illustrated embodiments. FIG. 1 is a flow chart when the vaporizer (A) according to the present invention is used.

【0013】まず、本発明にかかる気化器(A)を利用し
た液体原料(L)のフローに付いて説明する。図1から分
かるように本プロセスは、原料タンク(T)、タンク用加
圧ガスの調圧器(TC)、搬送ガス用調圧器(HC)、液体原料
用質量流量計(LMFC)、搬送ガス用質量流量計(HMFC)、気
化器(A)、気化原料測定用質量流量計(RMFC)とで構成さ
れている。
First, the flow of the liquid raw material (L) using the vaporizer (A) according to the present invention will be described. As can be seen from Fig. 1, this process uses a raw material tank (T), a pressurized gas pressure regulator (TC) for the tank, a carrier gas pressure regulator (HC), a liquid raw material mass flow meter (LMFC), and a carrier gas. It is composed of a mass flow meter (HMFC), a vaporizer (A), and a mass flow meter for measuring vaporized raw materials (RMFC).

【0014】搬送ガス用調圧器(HC)は搬送ガス用質量流
量計(HMFC)の入口に接続されており、一定圧に調圧され
た搬送ガス(H)を搬送ガス用質量流量計(HMFC)に供給す
る。搬送ガス用質量流量計(HMFC)は公知の構造のもの
で、一定質量の搬送ガス(H)を気化器(A)に送り出すよう
になっている。原料タンク(T)には液体原料(L)が貯留さ
れており、調圧器(TC)によってタンク(T)内に一定圧の
ガス圧が加えられており、タンク(T)から液体原料(L)が
液体原料用質量流量計(LMFC)に供給されるようになって
いる。液体原料用質量流量計(LMFC)も公知の構造のもの
で、一定量の液体原料(L)が気化器(A)に供給されるよう
になっている。気化器(A)では搬送ガス(H)と接触し、又
は補助的な使用されたヒータ(6)によって加熱されて蒸
発した気化原料(R)が搬送ガス(H)と共に流出し、気化原
料測定用質量流量計(RMFC)によって定量された後、例え
ば、CVDなどの半導体製造装置(C)やその他製造炉に
供給される事になる。
The carrier gas pressure regulator (HC) is connected to the inlet of the carrier gas mass flow meter (HMFC), and the carrier gas (H) regulated to a constant pressure is transferred to the carrier gas mass flow meter (HMFC). ) To. The mass flow meter for carrier gas (HMFC) has a known structure, and is designed to deliver a carrier gas (H) of a constant mass to the vaporizer (A). Liquid raw material (L) is stored in the raw material tank (T), and a constant gas pressure is applied to the liquid raw material (L) from the tank (T) by the pressure regulator (TC). ) Is supplied to the mass flow meter for liquid raw materials (LMFC). The liquid raw material mass flowmeter (LMFC) also has a known structure, and a certain amount of the liquid raw material (L) is supplied to the vaporizer (A). In the vaporizer (A), the vaporized raw material (R) that is in contact with the carrier gas (H) or heated by the auxiliary heater (6) and evaporated evaporates with the carrier gas (H), and the vaporized raw material is measured. After being quantified by a mass flow meter for manufacturing (RMFC), it is supplied to a semiconductor manufacturing apparatus (C) such as CVD and other manufacturing furnaces.

【0015】次に、本発明に掛かる気化器(A)を図2か
ら図5に従って説明する。図2は本発明にかかる気化器
(A)の一実施例の断面図で、気化器本体(1)は中空体で、
液体原料(L)を貯留する気化器本体(1)の底部(5)の形状
を上広がりの錘状に形成されており、底部(5)の中央に
液体原料(L)を供給する液体原料供給口(4)が形成されて
おり、液体原料用質量流量計(LMFC)に繋がっている。更
に、搬送ガス(H)を気化器本体(1)内に導入するための流
入口と、気化器本体(1)内にて気化した気化原料ガス(R)
と共に搬送ガス(H)が流出する流出口とが設けられてお
り、前述のように流入口には搬送ガス用質量流量計が接
続されており、流出口には例えばCVDなどの半導体製
造装置などが接続されている。(6)は底部に設けられた
ヒータで、液体原料(L)を加熱するためのものである。
Next, the vaporizer (A) according to the present invention will be described with reference to FIGS. 2 to 5. FIG. 2 is a vaporizer according to the present invention.
(A) is a sectional view of one embodiment, the carburetor body (1) is a hollow body,
The bottom part (5) of the vaporizer body (1) that stores the liquid source (L) is formed into a cone shape that expands upward, and the liquid source that supplies the liquid source (L) to the center of the bottom part (5). A supply port (4) is formed and connected to a liquid raw material mass flow meter (LMFC). Further, an inlet for introducing the carrier gas (H) into the vaporizer body (1), and a vaporized raw material gas (R) vaporized in the vaporizer body (1)
A carrier gas (H) is also provided with an outflow port, and as described above, a mass flowmeter for a carrier gas is connected to the inflow port, and the outflow port is a semiconductor manufacturing apparatus such as CVD. Are connected. (6) is a heater provided at the bottom for heating the liquid raw material (L).

【0016】気化器本体(1)の底部(5)の形状は、前述の
ように上広がりの錘状に形成されている。一般的には、
図3のように平面形状が円であって全体がロート状(上
広がりの円錐状)になるが、勿論これに限られず、三角
錐、四角錐などあってもよい。垂直線に対する底部(5)
のテーパ角度(θ)の範囲は80〜88°程度で、通常は85°
前後が選ばれる。角度(θ)が急であれば底部(5)に溜ま
った液体原料(L)の増減が液体原料(L)の表面の面積の増
減に著しく影響し、逆に、角度(θ)が大き過ぎれば底部
(5)が平坦面の場合と差がなくなるからである。
The shape of the bottom portion (5) of the vaporizer body (1) is formed in the shape of a cone that widens upward as described above. In general,
As shown in FIG. 3, the plane shape is a circle and the whole shape is a funnel shape (a cone shape that spreads upward), but of course, the shape is not limited to this, and may be a triangular pyramid or a quadrangular pyramid. Bottom for vertical (5)
The range of taper angle (θ) is 80 to 88 °, usually 85 °
The front and back are selected. If the angle (θ) is steep, the increase or decrease in the liquid raw material (L) accumulated in the bottom (5) significantly affects the increase or decrease in the surface area of the liquid raw material (L), and conversely, the angle (θ) is too large. Bottom
This is because there is no difference from the case where (5) is a flat surface.

【0017】液体原料用質量流量計(LMFC)からの液体原
料(L)の供給を受けると、気化器(A)の底部(5)に液体原
料(L)が溜まるが、底部(5)が前述のようにロート状とな
っているために安定して液体原料供給口(4)を中心とし
て同心円状に液体原料(L)が溜まって行く。この液体原
料(L)は必要に応じて沸点以下の低温度にヒータ(6)によ
って加熱されて表面から蒸発し、液体原料(L)の上を接
触しながら通過して行く搬送ガス(H)と共に流出して行
く。
When the liquid raw material (L) is supplied from the liquid raw material mass flow meter (LMFC), the liquid raw material (L) accumulates in the bottom portion (5) of the vaporizer (A), but the bottom portion (5) As described above, the funnel shape allows the liquid raw material (L) to be stably accumulated in a concentric manner around the liquid raw material supply port (4). This liquid raw material (L) is heated by a heater (6) to a low temperature below the boiling point if necessary, evaporates from the surface, and a carrier gas (H) that passes over the liquid raw material (L) while contacting it. It goes out with.

【0018】ここで、液体原料(L)の蒸発速度と供給速
度との関係を図4に従って詳述する。 今、Ql=液体原料の供給量 (g/min) G =液体原料の単位面積当たりの蒸発速度 (g/mim・cm
2) S =液面の表面積 (cm2) Qv=気化原料の流量、即ち蒸発量 (g/min) H =流入口 (0点)から液面までの高さ、とすると、 Qv=G・S となる。…………第1式
Here, the relationship between the evaporation rate and the supply rate of the liquid raw material (L) will be described in detail with reference to FIG. Now, Ql = supply amount of liquid raw material (g / min) G = evaporation rate of liquid raw material per unit area (g / mim · cm)
2 ) S = surface area of liquid surface (cm 2 ) Qv = flow rate of vaporized raw material, that is, evaporation amount (g / min) H = height from inlet (0 point) to liquid surface, Qv = G · It becomes S. ………… Type 1

【0019】液体原料(L)の供給開始時点では、液体原
料(L)の供給量(Ql)は気化原料(R)の流量(Qv)より大き
いため (Ql>Qv)、図4のO−A曲線を辿って次第に
液体原料(L)が底部(5)に溜まって行く。
At the start of supplying the liquid raw material (L), since the supply amount (Ql) of the liquid raw material (L) is larger than the flow rate (Qv) of the vaporized raw material (R) (Ql> Qv), O- in FIG. The liquid raw material (L) gradually accumulates at the bottom (5) following the curve A.

【0020】時間が経過して液体原料(L)の供給量(Ql)
と気化原料(R)の流量(Qv)とが等しくなると (Ql=Q
v)、図4のA−B曲線を辿って水平状態が保たれる。
ここで、液体原料(L)の供給量(Ql)と気化原料(R)の流
量(Qv)とのバランスが何らかの原因で崩れ、例えば、
液体原料(L)の供給量(Ql)が気化原料(R)の流量(Qv)を
上回ると液面が上昇して液面の表面積が増加し、液体原
料(L)の蒸発量が増え、その結果液面が下がる。逆に、
液体原料(L)の供給量(Ql)が気化原料平(R)流量(Qv)を
下回ると液面が下降して液面の表面積が減少し、液体原
料(L)の蒸発量が少なくなり、その結果液面が上がる。
このようにして、液体原料(L)の供給量(Ql)と気化原料
(R)の流量(Qv)とのバランスが何らかの原因で崩れたと
しても、自動的に両者の関係を調整してほぼ水平な気化
原料(R)の蒸発量を保つ。
Supply amount (Ql) of liquid raw material (L) over time
And the flow rate (Qv) of the vaporized raw material (R) become equal (Ql = Q
v), the horizontal state is maintained by following the AB curve in FIG.
Here, the balance between the supply amount (Ql) of the liquid raw material (L) and the flow rate (Qv) of the vaporized raw material (R) is broken for some reason.
When the supply amount (Ql) of the liquid raw material (L) exceeds the flow rate (Qv) of the vaporized raw material (R), the liquid surface rises and the surface area of the liquid surface increases, and the evaporation amount of the liquid raw material (L) increases, As a result, the liquid level drops. vice versa,
When the supply amount (Ql) of the liquid raw material (L) is lower than the vaporization raw material normal (R) flow rate (Qv), the liquid surface descends and the surface area of the liquid surface decreases, and the evaporation amount of the liquid raw material (L) decreases. , As a result, the liquid level rises.
In this way, the supply amount (Ql) of the liquid raw material (L) and the vaporized raw material
Even if the balance with the flow rate (Qv) of (R) is broken for some reason, the relationship between the two is automatically adjusted to maintain a substantially horizontal evaporation amount of the vaporized raw material (R).

【0021】時間(t2)で液体原料(L)の供給を停止する
と、底部(5)の残留分が蒸発し、図4の下降曲線B−C
を辿って時間(t3)で0になる。
When the supply of the liquid raw material (L) is stopped at the time (t 2 ), the residue at the bottom (5) evaporates, and the descending curve BC of FIG.
, And becomes 0 at time (t 3 ).

【0022】図5のグラフは、図1のフローチャートに
示すプロセスを用い、内径65mm、底部のテーパ角度(θ)
が85°の気化器(A)を使用して行った実測グラフであ
る。横軸が時間、縦軸が流量である。使用の液体原料
(L)はTEOSで流量は0.59g/min、気化器(A)の温度は1
35℃、搬送ガス(H)は窒素ガスで、その流量は1,1000SCC
M(SCCM=0℃1気圧の標準状態で1分間に流れる流体の体
積「=cc」)である。図5のグラフの下側の矩形曲線は、
気化器(A)の底部の液体原料供給口(4)に供給される液体
原料(L)の供給曲線であり、上側の曲線は液体原料(L)で
あるTEOSの蒸発による流量増減曲線で、基準線から
低いほうの水平線までが窒素ガスの流量である(N2で示
す。)。TEOS供給曲線の水平部分は定常状態を保っ
て推移していることが分かる。図中、横軸1目盛りは10
分である。
The graph of FIG. 5 uses the process shown in the flowchart of FIG. 1 and has an inner diameter of 65 mm and a taper angle (θ) at the bottom.
Is a measured graph obtained by using the vaporizer (A) at 85 °. The horizontal axis represents time and the vertical axis represents the flow rate. Used liquid raw material
(L) is TEOS, flow rate is 0.59g / min, vaporizer (A) temperature is 1
35 ℃, carrier gas (H) is nitrogen gas, its flow rate is 1,1000SCC
M (SCCM = volume of fluid "= cc" flowing in 1 minute under standard conditions of 0 ° C and 1 atm). The rectangular curve on the lower side of the graph in FIG.
It is a supply curve of the liquid raw material (L) supplied to the liquid raw material supply port (4) at the bottom of the vaporizer (A), and the upper curve is a flow rate increase / decrease curve due to evaporation of TEOS which is the liquid raw material (L), The flow rate of nitrogen gas is from the reference line to the lower horizontal line (indicated by N 2 ). It can be seen that the horizontal portion of the TEOS supply curve keeps a steady state. In the figure, the horizontal scale is 10
Minutes.

【0023】本発明にかかる気化器(A)の構造は、上記
のように非常に簡単であるから非常に低コストで製作す
ることができる。また、ヒータ(6)によって液体原料(L)
を加熱する場合でも沸点以下の温度であるから突沸を生
じるようなことがなく、急激な流量変動を発生しないも
のである。更に、液体原料(L)の沸点や蒸気圧のデータ
から気化条件を容易に選定することができ、各種液体原
料(L)への適用範囲が広い。尚、図1に示すようなフロ
ーにおいて、液体原料用質量流量計(LMFC)との組合わせ
により例えば常圧CVDへの液体原料(L)の供給が極め
て容易になった。
Since the structure of the vaporizer (A) according to the present invention is very simple as described above, it can be manufactured at a very low cost. In addition, the liquid raw material (L) is supplied by the heater (6).
Since the temperature is not higher than the boiling point, bumping does not occur even when the is heated, and rapid flow rate fluctuation does not occur. Furthermore, the vaporization conditions can be easily selected from the data of the boiling point and vapor pressure of the liquid raw material (L), and the range of application to various liquid raw materials (L) is wide. Incidentally, in the flow as shown in FIG. 1, the combination with the mass flowmeter for liquid raw material (LMFC) makes it extremely easy to supply the liquid raw material (L) to atmospheric pressure CVD, for example.

【0024】[0024]

【効果】本発明の液体原料用気化器は、液体原料を貯留
する気化器本体の底部の形状を上広がりの錘状に形成し
てあるので、液体原料が流入口を中心とする底部に溜ま
り、搬送ガスと接触する面積を常時ほぼ一定に保つ事が
できて気化量を常に一定に保つ事が出来、且つ、液体原
料の供給量に合わせて気化量を自動的にコントロールす
ることが出来るという利点がある。
[Effect] In the vaporizer for liquid raw material of the present invention, since the shape of the bottom portion of the vaporizer main body for storing the liquid raw material is formed in the shape of a cone that spreads upward, the liquid raw material is collected at the bottom portion centered on the inflow port It is said that the area in contact with the carrier gas can be kept almost constant at all times, the vaporization amount can be kept constant at all times, and the vaporization amount can be automatically controlled according to the supply amount of the liquid raw material. There are advantages.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の気化器を用いた場合のフローチャートFIG. 1 is a flowchart when the vaporizer of the present invention is used.

【図2】本発明の気化器の一実施例の正断面図FIG. 2 is a front sectional view of an embodiment of the vaporizer of the present invention.

【図3】図2に示す本発明の気化器の平断面図FIG. 3 is a plan sectional view of the vaporizer of the present invention shown in FIG.

【図4】本発明の気化器を使用した場合の時間−液体原
料蒸発量の関係グラフ
FIG. 4 is a graph showing the relationship between time and the amount of liquid source evaporation when the vaporizer of the present invention is used.

【図5】本発明の気化器を使用した場合の実測時間−液
体原料蒸発量の関係グラフ
FIG. 5 is a graph showing the relationship between the actual measurement time and the liquid raw material evaporation amount when the vaporizer of the present invention is used.

【図6】従来例の正断面図FIG. 6 is a front sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

(A)…気化器 (L)…液体原料 (H)…搬送ガス (T)…原料タンク (LMFC)…液体原料用質量流量計 (HMFC)…搬送ガス用質量流量計 (RMFC)…気化原料測定用質量流量計 (1)…気化器本体 (2)…流入口 (3)…流出口 (4)…液体原料供給口 (5)…底部 (6)…ヒータ (A) ... Vaporizer (L) ... Liquid raw material (H) ... Carrier gas (T) ... Raw material tank (LMFC) ... Liquid raw material mass flow meter (HMFC) ... Carrier gas mass flow meter (RMFC) ... Vaporized raw material Mass flowmeter for measurement (1) ... Vaporizer body (2) ... Inlet (3) ... Outlet (4) ... Liquid material supply port (5) ... Bottom (6) ... Heater

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年10月29日[Submission date] October 29, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】 まず、本発明にかかる気化器(A)を利
用した液体原料(L)のフローに付いて説明する。図1
から分かるように本プロセスは、原料タンク(T)、タ
ンク用加圧ガスの調圧器(TC)、搬送ガス用調圧器
(HC)、液体原料供給器(LMFC)、搬送ガス供給
(HMFC)、気化器(A)、気化原料測定用質量流
量計(MFM)とで構成されている。
First, the flow of the liquid raw material (L) using the vaporizer (A) according to the present invention will be described. Figure 1
As can be seen from this process, this process is performed by the raw material tank (T), the tank pressure gas regulator (TC), the carrier gas pressure regulator (HC), the liquid material supplier (LMFC), and the carrier gas supply.
It is composed of a vessel (HMFC), a vaporizer (A), and a mass flow meter ( MFM ) for measuring a vaporized raw material.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】 搬送ガス用調圧器(HC)は搬送ガス
給器(HMFC)の入口に接続されており、一定圧に調
圧された搬送ガス(H)を搬送ガス供給器(HMFC)
に供給する。搬送ガス供給器(HMFC)は公知の構造
のもので、一定質量の搬送ガス(H)を気化器(A)に
送り出すようになっている。原料タンク(T)には液体
原料(L)が貯留されており、調圧器(TC)によって
タンク(T)内に一定圧のガス圧が加えられており、タ
ンク(T)から液体原料(L)が液体原料供給器(LM
FC)に供給されるようになっている。液体原料供給器
(LMFC)も公知の構造のもので、一定量の液体原料
(L)が気化器(A)に供給されるようになっている。
気化器(A)では搬送ガス(H)と接触し、又は補助的
な使用されたヒータ(6)によって加熱されて蒸発した
気化原料(R)が搬送ガス(H)と共に流出し、気化原
料測定用質量流量計(MFM)によって定量された後、
例えば、CVDなどの半導体製造装置(C)やその他製
造炉に供給される事になる。
The carrier gas pressure regulator (HC) is a carrier gas supply unit.
The carrier gas (HFC) is connected to the inlet of the feeder (HMFC) and the carrier gas (H) whose pressure is adjusted to a constant pressure is fed.
Supply to. The carrier gas supply unit (HMFC) has a known structure, and is designed to deliver a carrier gas (H) of a constant mass to the vaporizer (A). The liquid raw material (L) is stored in the raw material tank (T), and a constant pressure gas pressure is applied to the liquid raw material (L) from the tank (T) by the pressure regulator (TC). ) Is a liquid raw material feeder (LM
FC). The liquid raw material feeder (LMFC) also has a known structure, and a certain amount of the liquid raw material (L) is fed to the vaporizer (A).
In the vaporizer (A), the vaporized raw material (R) which is in contact with the carrier gas (H) or is heated by the auxiliary heater (6) and evaporated, flows out together with the carrier gas (H), and the vaporized raw material is measured. After being quantified by a mass flow meter ( MFM ) for
For example, it is supplied to a semiconductor manufacturing apparatus (C) such as CVD and other manufacturing furnaces.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】 次に、本発明に掛かる気化器(A)を図
2から図5に従って説明する。図2は本発明にかかる気
化器(A)の一実施例の断面図で、気化器本体(1)は
中空体で、液体原料(L)を貯留する気化器本体(1)
の底部(5)の形状を上広がりの錘状に形成されてお
り、底部(5)の中央に液体原料(L)を供給する液体
原料供給口(4)が形成されており、液体原料供給器
(LMFC)に繋がっている。更に、搬送ガス(H)を
気化器本体(1)内に導入するための流入口と、気化器
本体(1)内にて気化した気化原料ガス(R)と共に搬
送ガス(H)が流出する流出口とが設けられており、前
述のように流入口には搬送ガス供給器(HMFC)が接
続されており、流出口には例えばCVDなどの半導体製
造装置などが接続されている。(6)は底部に設けられ
たヒータで、液体原料(L)を加熱するためのものであ
る。
Next, a vaporizer (A) according to the present invention is shown in FIG.
2 to 5 will be described. Figure 2
1 is a cross-sectional view of one embodiment of the vaporizer (A), in which the vaporizer body (1) is
Vaporizer body (1) that is a hollow body and stores the liquid raw material (L)
The bottom part (5) of the
Liquid that supplies the liquid raw material (L) to the center of the bottom (5)
The liquid material is provided with the raw material supply port (4).Feeder
(LMFC). Furthermore, the carrier gas (H)
Inlet for introducing into the vaporizer body (1), and vaporizer
Carry with vaporized raw material gas (R) vaporized in the main body (1)
An outlet for sending out gas (H) is provided,
As described above, carrier gas is introduced at the inlet.Feeder (HMFC)Contact
The outlet is made of semiconductor such as CVD.
Manufacturing equipment is connected. (6) is provided on the bottom
For heating the liquid raw material (L) with a heater
It

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】 液体原料供給器(LMFC)からの液体
原料(L)の供給を受けると、気化器(A)の底部
(5)に液体原料(L)が溜まるが、底部(5)が前述
のようにロート状となっているために安定して液体原料
供給口(4)を中心として同心円状に液体原料(L)が
溜って行く。この液体原料(L)は必要に応じて沸点以
下の低温度にヒータ(6)によって加熱されて表面から
蒸発し、液体原料(L)の上を接触しながら通過して行
く搬送ガス(H)と共に流出して行く。
When the liquid raw material (L) is supplied from the liquid raw material feeder (LMFC), the liquid raw material (L) accumulates in the bottom portion (5) of the vaporizer (A), but the bottom portion (5) is the same as described above. Since it has a funnel shape, the liquid raw material (L) is stably accumulated in a concentric manner around the liquid raw material supply port (4). This liquid raw material (L) is heated by a heater (6) to a low temperature equal to or lower than a boiling point as necessary, evaporates from the surface, and a carrier gas (H) passing over the liquid raw material (L) while making contact with it. It goes out with.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】 図5のグラフは、図1のフローチャート
に示すプロセスを用い、内径65mm、底部のテーパ角
度(θ)が85°の気化器(A)を使用して行った実測
グラフである。横軸が時間、縦軸が流量である。使用の
液体原料(L)はTEOSで流量は0.59g/mi
n、気化器(A)の温度は135℃、搬送ガス(H)は
窒素ガスで、その流量は1,100SCCM(SCCM
=0℃1気圧の標準状態で1分間に流れる流体の体積
「=cc」)である。図5のグラフの下側の矩形曲線
は、気化器(A)の底部の液体原料供給口(4)に供給
される液体原料(L)の供給曲線であり、上側の曲線は
液体原料(L)であるTEOSの蒸発による流量増減曲
線で、基準線から低いほうの水平線までが窒素ガスの流
量である(Nで示す。)。TEOS供給曲線の水平部
分は定常状態を保って推移していることが分かる。図
中、横軸1目盛りは10分である。
The graph of FIG. 5 is an actually measured graph obtained by using the process shown in the flowchart of FIG. 1 and using a vaporizer (A) having an inner diameter of 65 mm and a taper angle (θ) of the bottom of 85 °. The horizontal axis represents time and the vertical axis represents the flow rate. The liquid raw material (L) used is TEOS and the flow rate is 0.59 g / mi.
n, vaporizer (A) temperature is 135 ° C., carrier gas (H) is nitrogen gas, and its flow rate is 1,100 SCCM (SCCM
= 0 is the volume of the fluid flowing in 1 minute under the standard condition of 0 ° C. and 1 atm “= cc”). The lower rectangular curve of the graph of FIG. 5 is the supply curve of the liquid raw material (L) supplied to the liquid raw material supply port (4) at the bottom of the vaporizer (A), and the upper curve is the liquid raw material (L). ) Is a flow rate increase / decrease curve due to evaporation of TEOS, the flow rate of nitrogen gas is from the reference line to the lower horizontal line (indicated by N 2 ). It can be seen that the horizontal portion of the TEOS supply curve keeps a steady state. In the figure, one scale on the horizontal axis is 10 minutes.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】 本発明にかかる気化器(A)の構造は、
上記のように非常に簡単であるから非常に低コストで製
作することができる。また、ヒータ(6)によって液体
原料(L)を加熱する場合でも沸点以下の温度であるか
ら突沸を生じるようなことがなく、急激な流量変動を発
生しないものである。更に、液体原料(L)の沸点や蒸
気圧のデータから気化条件を容易に選定することがで
き、各種液体原料(L)への適用範囲が広い。尚、図1
に示すようなフローにおいて、液体原料供給器(LMF
C)との組合わせにより例えば常圧CVDへの液体原料
(L)の供給が極めて容易になった。
The structure of the vaporizer (A) according to the present invention is
Since it is very simple as described above, it can be manufactured at a very low cost. Further, even when the liquid raw material (L) is heated by the heater (6), since the temperature is not higher than the boiling point, bumping does not occur and rapid flow rate fluctuation does not occur. Furthermore, the vaporization condition can be easily selected from the data of the boiling point and vapor pressure of the liquid raw material (L), and the range of application to various liquid raw materials (L) is wide. Incidentally, FIG.
In the flow shown in, the liquid raw material supply unit (LMF
The combination with C) made it extremely easy to supply the liquid raw material (L) to atmospheric pressure CVD, for example.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の気化器を用いた場合のフローチャートFIG. 1 is a flowchart when the vaporizer of the present invention is used.

【図2】本発明の気化器の一実施例の正断面図FIG. 2 is a front sectional view of an embodiment of the vaporizer of the present invention.

【図3】図2に示す本発明の気化器の平断面図FIG. 3 is a plan sectional view of the vaporizer of the present invention shown in FIG.

【図4】本発明の気化器を使用した場合の時間−液体原
料蒸発量の関係グラフ
FIG. 4 is a graph showing the relationship between time and the amount of liquid source evaporation when the vaporizer of the present invention is used.

【図5】本発明の気化器を使用した場合の実測時間−液
体原料蒸発量の関係グラフ
FIG. 5 is a graph showing the relationship between the actual measurement time and the liquid raw material evaporation amount when the vaporizer of the present invention is used.

【図6】従来例の正断面図FIG. 6 is a front sectional view of a conventional example.

【符号の説明】 (A)…気化器 (L)…液体原料 (H)…搬送ガス (T)…原料タンク (LMFC)…液体原料供給器 (HMFC)…搬送ガス供給器MFM)…気化原料測定用質量流量計 (1)…気化器本体 (2)…流入口 (3)…流出口 (4)…液体原料供
給口 (5)…底部 (6)…ヒータ
[Description of symbols] (A) ... vaporizer (L) ... liquid material (H) ... carrier gas (T) ... material tank (LMFC) ... liquid material supplier (HMFC) ... carrier gas supply (MFM) ... vaporizing Mass flowmeter for raw material measurement (1) ... Vaporizer body (2) ... Inflow port (3) ... Outflow port (4) ... Liquid raw material supply port (5) ... Bottom part (6) ... Heater

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 搬送ガスを気化器本体内に導入す
るための流入口と、気化器本体内にて気化した気化原料
ガスと共に搬送ガスが流出する流出口と、気化器本体の
底部に液体原料を供給する液体原料供給口とを有する液
体原料用気化器において、 液体原料を貯留する気化器本体の底部の形状を上広がり
の錘状に形成してなる事を特徴とする液体原料用気化
器。
1. An inlet for introducing a carrier gas into the vaporizer body, an outlet through which the carrier gas flows out together with the vaporized raw material gas vaporized in the vaporizer body, and a liquid raw material at the bottom of the vaporizer body. A vaporizer for a liquid raw material having a liquid raw material supply port for supplying liquid, characterized in that the bottom portion of the vaporizer main body for storing the liquid raw material is formed in a cone shape with an upward spread. .
JP03235413A 1991-08-21 1991-08-21 Vaporizer for liquid raw materials Expired - Lifetime JP3112721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03235413A JP3112721B2 (en) 1991-08-21 1991-08-21 Vaporizer for liquid raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03235413A JP3112721B2 (en) 1991-08-21 1991-08-21 Vaporizer for liquid raw materials

Publications (2)

Publication Number Publication Date
JPH06316765A true JPH06316765A (en) 1994-11-15
JP3112721B2 JP3112721B2 (en) 2000-11-27

Family

ID=16985731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03235413A Expired - Lifetime JP3112721B2 (en) 1991-08-21 1991-08-21 Vaporizer for liquid raw materials

Country Status (1)

Country Link
JP (1) JP3112721B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286054A (en) * 2004-03-29 2005-10-13 Tadahiro Omi Liquid material feeding device and method for controlling same
US7462245B2 (en) 2002-07-15 2008-12-09 Asm Japan K.K. Single-wafer-processing type CVD apparatus
US9950317B2 (en) * 2014-06-03 2018-04-24 Korea Institute Of Energy Research Large-scale composite synthesis system, reactor and composite synthesis method using the same
WO2023062849A1 (en) * 2021-10-11 2023-04-20 株式会社リンテック Vaporizer
WO2025009125A1 (en) * 2023-07-05 2025-01-09 株式会社Kokusai Electric Vaporizer, processing device and processing method, and method for manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334158B1 (en) * 2009-04-02 2013-11-28 주식회사 테라세미콘 Apparatus and Method for Supplying Source Gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462245B2 (en) 2002-07-15 2008-12-09 Asm Japan K.K. Single-wafer-processing type CVD apparatus
JP2005286054A (en) * 2004-03-29 2005-10-13 Tadahiro Omi Liquid material feeding device and method for controlling same
US9950317B2 (en) * 2014-06-03 2018-04-24 Korea Institute Of Energy Research Large-scale composite synthesis system, reactor and composite synthesis method using the same
WO2023062849A1 (en) * 2021-10-11 2023-04-20 株式会社リンテック Vaporizer
JP2023057341A (en) * 2021-10-11 2023-04-21 株式会社リンテック vaporizer
WO2025009125A1 (en) * 2023-07-05 2025-01-09 株式会社Kokusai Electric Vaporizer, processing device and processing method, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3112721B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
JP5726831B2 (en) Apparatus and method for chemical vapor deposition
US6123767A (en) Method and apparatus for feeding a gas for epitaxial growth
US6548112B1 (en) Apparatus and method for delivery of precursor vapor from low vapor pressure liquid sources to a CVD chamber
JP5816349B2 (en) Method for depositing a film on a substrate and apparatus for delivering a vaporized precursor compound
US6132515A (en) Liquid precursor delivery system
CA1228268A (en) Vacuum deposition system with improved mass flow control
US8348248B2 (en) Bubbling supply system for stable precursor supply
US20040016404A1 (en) Vaporizer delivery ampoule
US10480071B2 (en) Continuous distillation trichlorosilane vaporization supply apparatus
US20050249873A1 (en) Apparatuses and methods for producing chemically reactive vapors used in manufacturing microelectronic devices
JPH0795527B2 (en) Vaporizer for liquid raw materials
JPH06316765A (en) Vaporizer for liquid material
JPH06240456A (en) Method and device for forming aluminum circuit of semiconductor device
JP2767284B2 (en) Liquid semiconductor forming material vaporizer
JPH03126872A (en) Gasifying and supplying device for liquid semiconductor forming material
JP2003332327A (en) Gasification supply method
JPH05283340A (en) Liquid raw material gasification supply device
JPH062142A (en) Feeder for liquid vapor raw materials
JPH04143278A (en) Atmospheric pressure cvd device
TWI388688B (en) Apparatus and methods for chemical vapor deposition
JPH0574758A (en) Chemical vapor deposition apparatus
JPH04318174A (en) Supplying device for gaseous teos
JPH0372078A (en) Method and device for forming thin film
JPH06349743A (en) Chemical vapor deposition device
JPS62104022A (en) Raw liquid vaporizer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080922

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

EXPY Cancellation because of completion of term