JPH06316500A - Production of cdmnte single crystal - Google Patents
Production of cdmnte single crystalInfo
- Publication number
- JPH06316500A JPH06316500A JP12533193A JP12533193A JPH06316500A JP H06316500 A JPH06316500 A JP H06316500A JP 12533193 A JP12533193 A JP 12533193A JP 12533193 A JP12533193 A JP 12533193A JP H06316500 A JPH06316500 A JP H06316500A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- ampoule
- vapor pressure
- crystal
- saturated vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000003708 ampul Substances 0.000 claims abstract description 40
- 239000010453 quartz Substances 0.000 claims abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 6
- 239000007787 solid Substances 0.000 claims abstract description 4
- QDOSJNSYIUHXQG-UHFFFAOYSA-N [Mn].[Cd] Chemical compound [Mn].[Cd] QDOSJNSYIUHXQG-UHFFFAOYSA-N 0.000 claims abstract 3
- 239000011572 manganese Substances 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 14
- 239000000155 melt Substances 0.000 claims description 7
- 229910052793 cadmium Inorganic materials 0.000 claims description 6
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 2
- VMINMXIEZOMBRH-UHFFFAOYSA-N manganese(ii) telluride Chemical compound [Te]=[Mn] VMINMXIEZOMBRH-UHFFFAOYSA-N 0.000 claims 1
- 229920006395 saturated elastomer Polymers 0.000 abstract description 26
- 238000002844 melting Methods 0.000 abstract description 11
- 230000008018 melting Effects 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 4
- 238000001691 Bridgeman technique Methods 0.000 abstract 2
- 239000012768 molten material Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 10
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 3
- 229910017231 MnTe Inorganic materials 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004031 devitrification Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、約0.6μmから0.
8μmの短波長の光アイソレータ用材料として用いられ
るカドミウム・マンガン・テルル(CdMnTe)単結
晶を製造する方法に関する。BACKGROUND OF THE INVENTION The present invention is about 0.6 .mu.m to 0.
The present invention relates to a method for producing a cadmium-manganese-tellurium (CdMnTe) single crystal used as a material for an optical isolator having a short wavelength of 8 μm.
【0002】[0002]
【従来の技術】従来光学用CdMnTe単結晶の製造
は、純度が99.9999%のカドミウム(Cd)原料
と、純度が99.99%のマンガン(Mn)原料と、純
度が99.9999%のテルル(Te)原料を組成比に
応じて透明石英製アンプルに真空度約1x10-5Tor
rの状態で真空封入して、該アンプルと、前記アンプル
内の固体結晶原料を融液にするための加熱装置とを用
い、該加熱装置及び前記アンプルの相対的位置関係を連
続的に所定の速度で変えることによって、前記アンプル
内の前記結晶原料の融液を下方から凝固させて単結晶を
作製する所謂ブリッジマン法により作製されていた。2. Description of the Related Art Conventional CdMnTe single crystals for optics are manufactured by using a cadmium (Cd) raw material having a purity of 99.9999%, a manganese (Mn) raw material having a purity of 99.99%, and a purity of 99.9999%. Tellurium (Te) raw material is placed in a transparent quartz ampoule according to the composition ratio, and the degree of vacuum is about 1 × 10 -5 Tor.
In a state of r, the ampoule and a heating device for converting the solid crystal raw material in the ampoule into a melt are vacuum-sealed, and the relative positional relationship between the heating device and the ampoule is continuously set to a predetermined value. It was produced by the so-called Bridgman method in which the melt of the crystal raw material in the ampoule is solidified from below by changing the speed to produce a single crystal.
【0003】[0003]
【発明が解決しようとする課題】従来の技術を用いてC
d1-xMnxTe単結晶を製造した場合に、Mn濃度x≧
0.1にした場合に、石英製のアンプルが溶融時に破裂
することがしばしばあった。そのために、結晶製造が不
能になったり、割れには至らないが育成された結晶が実
用特性(挿入損失<1dB、消光比>35dB)を満足
しないという問題があった。本発明の課題は、上述の問
題を解消して、Cd1-xMnxTeの高品質単結晶を高歩
留まりで製造する方法を提供することにある。Using the conventional technique, C
When a d 1 -x Mn x Te single crystal is manufactured, the Mn concentration x ≧
In the case of 0.1, the ampoule made of quartz often bursts when melted. Therefore, there is a problem that the crystal cannot be manufactured or the crystal does not crack, but the grown crystal does not satisfy the practical characteristics (insertion loss <1 dB, extinction ratio> 35 dB). An object of the present invention is to solve the above problems and provide a method for producing a high quality single crystal of Cd 1-x Mn x Te with a high yield.
【0004】[0004]
【課題を解決するための手段】本発明は、上述した課題
を解決するために、ブリッジマン法により単結晶を育成
する方法において、石英製アンプル内の蒸気圧を下げる
ために、Teを化学量論的組成より過剰にする、即ちC
d1-xMnxTe1+yで示される組成式において、yを
0.01≦y≦0.10で規定される量だけ過剰にして
溶融温度を下げ、その結果蒸気圧を下げることにより、
高品質単結晶を量産する方法を得た。In order to solve the above-mentioned problems, the present invention is a method for growing a single crystal by the Bridgman method. In order to reduce the vapor pressure in a quartz ampoule, Te is used in a stoichiometric amount. Over the theoretical composition, ie C
In the composition formula represented by d 1-x MnxTe 1 + y , y is made excessive by an amount defined by 0.01 ≦ y ≦ 0.10 to lower the melting temperature, and as a result, the vapor pressure is lowered,
A method for mass producing high quality single crystals was obtained.
【0005】即ち本発明は、石英製のアンプルと該アン
プル内に真空封入した固体の単結晶用原料を融液にする
ための加熱装置とを用い、該加熱装置と前記アンプルの
相対的位置関係を連続的に所定の速度で変えることによ
って、前記アンプル内の前記単結晶用原料の融液を下方
から凝固させて単結晶を作製するブリッジマン法による
単結晶の製造方法において、Cd1-xMnxTe1+yで示
される化学式において、0≦x≦0.5、0.01≦y
≦0.10で規定される組成比に配合して、Cd1-xM
nxTe単結晶を育成することを特徴とするCd1-xMn
xTe単結晶の製造方法である。That is, the present invention uses a quartz ampoule and a heating device for making a solid single-crystal raw material vacuum-sealed in the ampoule into a melt, and the relative positional relationship between the heating device and the ampoule. Cd 1-x in the method for producing a single crystal by the Bridgman method in which the melt of the raw material for a single crystal in the ampoule is solidified from below by continuously changing the Cd 1-x In the chemical formula represented by Mn x Te 1 + y , 0 ≦ x ≦ 0.5, 0.01 ≦ y
Cd 1-x M when blended to the composition ratio specified by ≦ 0.10
Cd 1-x Mn characterized by growing n x Te single crystal
a method for producing x Te single crystal.
【0006】[0006]
【作用】CdMnTe単結晶を従来のブリッジマン法を
用いて作製した場合に、育成中に透明石英アンプルが割
れて製造不能になったり、割れないが育成された結晶が
実用特性(挿入損失<1dB、消光比>35dB)を満
足しない問題は、Mn原料の表面酸化およびMnTeの
表面酸化もしくはMnTe2の存在が透明石英製アンプ
ルとの反応を促進すると考えられている。著者は、先に
Mn原料の溶存酸素の除去方法(特願平3−35978
1号)を提案した。When a CdMnTe single crystal is produced by the conventional Bridgman method, the transparent quartz ampoule is cracked during the growth to make it unmanufacturable, or the crystal which is grown without cracking has practical characteristics (insertion loss <1 dB. The problem of not satisfying the extinction ratio> 35 dB) is considered to be that the surface oxidation of the Mn raw material and the surface oxidation of MnTe or the presence of MnTe 2 promotes the reaction with the transparent quartz ampoule. The author previously mentioned that the method for removing dissolved oxygen in the Mn raw material (Japanese Patent Application No. 3-35978).
No. 1) was proposed.
【0007】この発明により、石英アンプルと結晶融液
が反応して石英アンプルが劣化する現象は解決できるよ
うになった。しかしながら、しばしば、溶融が始まると
同時に石英アンプルが破裂することがあった。この原因
としては、溶存酸素の除去が不十分である等が考えられ
る。According to the present invention, it has become possible to solve the phenomenon that the quartz ampoule reacts with the crystal melt to deteriorate the quartz ampoule. However, often the quartz ampoule ruptured as soon as the melting started. The cause of this is considered to be insufficient removal of dissolved oxygen.
【0008】しかしながら、いったん形成された酸化マ
ンガン(MnO)の除去には、温度2,000℃のもと
で、150atmの圧力をかけた水素(H2)還元処理
が必要という報告がある(E.Newberry an
d J.N.Pring,Proc.(London)
A92(1910)276)。このように実験技術的に
いったんできた酸化マンガン(MnO)のO2の解離は
困難である。この溶存酸素の除去の不完全さは、TeO
2の発生を促進し、実際に化合物をつくるTeが不足し
た形になり、結果として未反応の融点が低く、蒸気圧が
高い構成成分であるカドミウム(Cd)が単独に存在
し、融点付近での圧力が〜20atmに上昇して、石英
アンプルがもたなくなったと解釈される。However, it has been reported that the removal of manganese oxide (MnO) once formed requires a hydrogen (H 2 ) reduction treatment at a temperature of 2,000 ° C. and a pressure of 150 atm (E). . Newbury an
d J. N. Pring, Proc. (London)
A92 (1910) 276). Thus, it is difficult to dissociate O 2 from manganese oxide (MnO) once formed experimentally. This incomplete removal of dissolved oxygen depends on TeO.
In the form of insufficient Te, which actually promotes the generation of 2 and forms a compound, as a result, the unreacted melting point is low, and cadmium (Cd), which is a constituent with a high vapor pressure, exists independently, and in the vicinity of the melting point It was interpreted that the pressure of the above rose to -20 atm and the quartz ampoule became dead.
【0009】この点を改善するためには、石英アンプル
の肉厚を≧3.5mm以上にすれば問題はない。しかし
ながら、アンプル肉厚を≧3.5mm以上にすると石英
アンプルが温度ショックに弱いので、真空封入工程での
扱いにおいて細心の注意を払う必要があると同時に、ア
ンプル肉厚が厚いと結晶育成の際に容器からの歪が加わ
るために、育成した結晶にクラックが入りやすい問題が
あった。又、結晶を製造する場合に、石英アンプルの肉
厚の増加は、コスト(アンプル費用)高と結晶歩留まり
の低下をもたらす欠点がある。In order to improve this point, there is no problem if the thickness of the quartz ampoule is ≧ 3.5 mm. However, if the ampoule thickness is ≥3.5 mm or more, the quartz ampoule is vulnerable to temperature shock, so it is necessary to pay close attention to the handling in the vacuum encapsulation process. There was a problem that the grown crystal was easily cracked due to the strain from the container. Further, in the case of producing crystals, an increase in the thickness of the quartz ampoule has a drawback that the cost (ampoule cost) increases and the crystal yield decreases.
【0010】そこで、結晶育成時の平衡状態における飽
和蒸気圧を下げる方策を施すことにより、肉厚を2mm
程度の石英アンプルを使用して良質の結晶の育成を可能
にした。Therefore, by taking measures to reduce the saturated vapor pressure in the equilibrium state during crystal growth, the wall thickness becomes 2 mm.
It was possible to grow a good quality crystal using a quartz ampoule of a certain degree.
【0011】飽和蒸気圧を下げるためには、育成温度を
下げることが有効である。Cd1-xMnxTeの融点付近
の飽和蒸気圧は5〜8atm程度と推定される。しかし
ながら、結晶育成の工程において、何らかの形でカドミ
ウムが過剰になり、未反応のカドミウム蒸気が存在した
場合には、〜20atmの飽和蒸気圧がかかる。一方C
d1-xMnxTeをTeの溶媒に溶解させると融点と飽和
蒸気圧が低下する。これは、カドミウムの飽和蒸気圧と
テルルの飽和蒸気圧の絶対値が100倍異なることによ
り、Teの溶媒を増加させるとともに、Cd1-xMnxT
eの飽和蒸気圧曲線は、テルルの飽和蒸気圧曲線側にシ
フトしてくることによる。In order to reduce the saturated vapor pressure, it is effective to lower the growth temperature. The saturated vapor pressure near the melting point of Cd 1-x Mn x Te is estimated to be about 5 to 8 atm. However, when cadmium becomes excessive in some way and unreacted cadmium vapor exists in the crystal growth step, a saturated vapor pressure of -20 atm is applied. On the other hand, C
When d 1-x Mn x Te is dissolved in a Te solvent, the melting point and the saturated vapor pressure decrease. This is because the absolute values of the saturated vapor pressure of cadmium and the saturated vapor pressure of tellurium are 100 times different, so that the solvent of Te is increased and at the same time, Cd 1-x Mn x T
The saturated vapor pressure curve of e shifts toward the saturated vapor pressure curve of tellurium.
【0012】このように、Te過剰に配合した融液から
結晶成長をおこなえば、上記問題は解決する。しかしな
がら、Te過剰の量により結晶育成速度が大幅に遅くな
り工業的応用を考えた場合には、問題がある。すなわ
ち、工業的生産を考えた場合の結晶育成速度〜1mm/
hrを下限にして、Te化学量論的組成からの過剰分を
限定し所期の狙い(融点低下と、それにともなう飽和蒸
気圧の低下)を実現することにより、高品質のCdMn
Te単結晶が歩留よく作製される。As described above, the above problem can be solved by crystal growth from a melt containing Te in excess. However, there is a problem in view of industrial application because the crystal growth rate is significantly slowed by the amount of Te excess. That is, the crystal growth rate in consideration of industrial production ~ 1 mm /
By setting the lower limit of hr and limiting the excess from the Te stoichiometric composition to achieve the intended purpose (lowering of melting point and accompanying reduction of saturated vapor pressure), high-quality CdMn is obtained.
A Te single crystal is produced with good yield.
【0013】[0013]
【実施例】以下本発明を実施例により説明する。図1は
従来の製造方法及び本発明の製造方法による飽和蒸気圧
−温度曲線を比較して示したものである。EXAMPLES The present invention will be described below with reference to examples. FIG. 1 shows a comparison of saturated vapor pressure-temperature curves obtained by the conventional manufacturing method and the manufacturing method of the present invention.
【0014】図1を用いて、従来の製造方法でCd0.5
Mn0.5Te単結晶を製造する場合を説明する。育成温
度1100℃で石英アンプル内の飽和蒸気圧は、〜8a
tmであると推定される。たとえば、何らかの形で融液
から、Cdが蒸発した場合には、〜20atmの飽和蒸
気圧がかかることになる。これまで、育成した場合に
は、結晶原料を溶融して0.5〜2時間以内にアンプル
が破裂することがしばしばあった。この要因は、前述の
とおりと考えられるので、Cdが絶対に過剰にならない
ようにすることと、育成温度を低くすることを実現すれ
ばよい。そのためには、Te過剰融液から結晶を育成す
ることで、育成温度および石英アンプル内の飽和蒸気圧
を下げればよい。図1を用いて、本発明の製造方法で、
Cd0.5Mn0 .5Te単結晶を製造する場合を説明する。
仕込み組成Cd0.5Mn0.5Te1+0.05の場合に、育成温
度1050℃でアンプルの内圧は〜4atmに抑えら
れ、育成速度が〜1.5mm/hrにできる。また、T
e過剰になっているので、飽和蒸気圧の高いCdが過剰
になることはない。仕込み組成Cd0.5Mn0.5Te
1+0.1の場合に、育成温度1000℃でアンプルの内圧
は〜2atmに抑えられ、育成速度が〜1.0mm/h
rにできる。また、Te過剰になっているので、飽和蒸
気圧の高いCdが過剰になることはない。Teの過剰量
を下限で仕込み組成Cd0. 5Mn0.5Te1+0.01に限定し
たのは、Te1+0.001以上過剰であれば飽和蒸気圧の高
いCdが過剰になることがないからである。上限を仕込
み組成Cd0.5Mn0.5Te1+0.1に限定したのは育成
速度1mm/hr以上で結晶が育成できたということで
規定した。表1に従来法及び本発明の製造方法を用い
て、結晶を製造した場合に使用した石英製アンプルの破
裂率、失透率と結晶の歩留を比較して示す。With reference to FIG. 1, Cd is manufactured by the conventional manufacturing method.0.5
Mn0.5A case of producing a Te single crystal will be described. Raising temperature
The saturated vapor pressure in the quartz ampoule at 1100 ° C is ~ 8a.
estimated to be tm. For example, some form of melt
Therefore, when Cd evaporates, saturated steam of ~ 20 atm
Pressure will be applied. Until now, if you train
Is an ampoule within 0.5 to 2 hours after melting the crystal raw material.
Often burst. This factor is
It is thought that it is as follows, so Cd will never become excessive
And lower the growth temperature.
Good. To do so, grow crystals from the Te-rich melt.
The growth temperature and the saturated vapor pressure in the quartz ampoule.
Should be lowered. In the manufacturing method of the present invention, referring to FIG.
Cd0.5Mn0 .FiveA case of producing a Te single crystal will be described.
Preparation composition Cd0.5Mn0.5Te1 + 0.05In case of
At 1050 ° C, the internal pressure of the ampoule can be suppressed to ~ 4 atm
As a result, the growth rate can be set to ~ 1.5 mm / hr. Also, T
eSince it is in excess, Cd with high saturated vapor pressure is in excess.
Never be. Preparation composition Cd0.5Mn0.5Te
1 + 0.1In the case of, the internal temperature of the ampoule at a growth temperature of 1000 °
Is suppressed to ~ 2 atm, and the growth rate is ~ 1.0 mm / h.
It can be r. Also, since Te is in excess, saturated steam
Cd having high atmospheric pressure is not excessive. Excess Te
The lower limit is the composition Cd0. FiveMn0.5Te1 + 0.01Limited to
You are Te1 + 0.001If it is over the above range, the saturated vapor pressure is high.
This is because there is no excess Cd. Set the upper limit
Only composition Cd0.5Mn0.5Te1 + 0.1Only limited to training
It means that crystals could be grown at a speed of 1 mm / hr or more.
Stipulated. In Table 1, the conventional method and the manufacturing method of the present invention are used.
The quartz ampoule used to manufacture the crystal.
The crack rate, devitrification rate and crystal yield are shown in comparison.
【0015】[0015]
【表1】 [Table 1]
【0016】表1中の石英アンプルの失透率の低減は、
育成温度の低下によるものであり、石英アンプルの破裂
率は低減は、飽和蒸気圧の低下による。The reduction of the devitrification rate of the quartz ampoule in Table 1 is
This is due to the lowering of the growth temperature, and the lowering of the rupture rate of the quartz ampoule is due to the lowering of the saturated vapor pressure.
【0017】[0017]
【発明の効果】以上説明したように、ブリッジマン法に
よりCd1-xMnxTe単結晶を育成する方法において、
石英アンプル内の蒸気圧を下げるために、原料配合組成
のTeを化学量論的組成より過剰にして溶融温度および
飽和蒸気圧を下げることにより上記目的を達成した。As described above, in the method for growing a Cd 1-x Mn x Te single crystal by the Bridgman method,
In order to lower the vapor pressure in the quartz ampoule, Te in the raw material blending composition is set to be in excess of the stoichiometric composition to lower the melting temperature and the saturated vapor pressure to achieve the above object.
【図1】Cd1-xMnxTe1+y系化合物、CdおよびT
eの飽和蒸気圧−温度曲線を示したものである。FIG. 1 Cd 1-x Mn x Te 1 + y- based compound, Cd and T
3 shows a saturated vapor pressure-temperature curve of e.
A Cd0.5Mn0.5Teの飽和蒸気圧−温度曲線 B Cd0.5Mn0.5Te1+0.05の飽和蒸気圧−温度曲
線 C Cd0.5Mn0.5Te1+0.1の飽和蒸気圧−温度曲
線 D Cdの飽和蒸気圧−温度曲線 E Teの飽和蒸気圧−温度曲線 T 絶対温度A Cd 0.5 Mn 0.5 Te saturated vapor pressure-temperature curve B Cd 0.5 Mn 0.5 Te 1 + 0.05 saturated vapor pressure-temperature curve C Cd 0.5 Mn 0.5 Te 1 + 0.1 saturated vapor pressure-temperature curve D Cd saturated vapor Pressure-Temperature Curve E Te Saturated Vapor Pressure-Temperature Curve T Absolute Temperature
Claims (1)
封入した固体の単結晶用原料を融液にするための加熱装
置とを用い、該加熱装置と前記アンプルの相対的位置関
係を連続的に所定の速度で変えることによって、前記ア
ンプル内の前記単結晶用原料の融液を下方から凝固させ
て単結晶を作製するブリッジマン法によるカドミウム・
マンガン・テルル単結晶の製造方法において、前記カド
ミウムマンガンテルル単結晶の原料配合組成を化学式C
d1-xMnxTe1+yで表され、0.1≦x≦0.5、
0.01≦y≦0.10の範囲とすることを特徴とする
カドミウム・マンガン・テルル単結晶の製造方法。1. A quartz ampoule and a heating device for converting a solid single-crystal raw material vacuum-sealed in the ampoule into a melt are used, and the relative positional relationship between the heating device and the ampoule is continuous. Cadmium by the Bridgman method for producing a single crystal by solidifying the melt of the single crystal raw material in the ampoule from below by changing at a predetermined speed to
In the method for producing a manganese-tellurium single crystal, the raw material composition of the cadmium manganese tellurium single crystal is represented by the chemical formula C
d 1-x Mn x Te 1 + y , 0.1 ≦ x ≦ 0.5,
A method for producing a cadmium-manganese-tellurium single crystal, characterized in that the range is 0.01 ≦ y ≦ 0.10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12533193A JPH06316500A (en) | 1993-04-28 | 1993-04-28 | Production of cdmnte single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12533193A JPH06316500A (en) | 1993-04-28 | 1993-04-28 | Production of cdmnte single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06316500A true JPH06316500A (en) | 1994-11-15 |
Family
ID=14907467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12533193A Pending JPH06316500A (en) | 1993-04-28 | 1993-04-28 | Production of cdmnte single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06316500A (en) |
-
1993
- 1993-04-28 JP JP12533193A patent/JPH06316500A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4534821A (en) | Single crystal growing of rare earth-gallium garnet | |
US3959442A (en) | Preparing single crystals of Li(Ho,Y,Er,Tm,Dy)F4 in HF atmosphere | |
KR20000076212A (en) | Lanthanum gallium silicate disc and its preparation method | |
JPS60251191A (en) | Process for growing single crystal of compound having high dissociation pressure | |
JP3659377B2 (en) | Method for producing fluoride crystals | |
JPH06316500A (en) | Production of cdmnte single crystal | |
CN1093182C (en) | Decarbonization colour-removing annealing method for sapphire crystal | |
JPH10259100A (en) | Method for producing GaAs single crystal | |
JPH07206597A (en) | Method for producing znse bulk single crystal | |
CN87105811A (en) | Gas Phase Nitrogen Doping Method for Czochralski Silicon Single Crystal | |
JP6102687B2 (en) | Method for producing complex oxide single crystal | |
JP2739546B2 (en) | Method for producing lithium borate single crystal | |
JPS63274694A (en) | Production of titanium sapphire single crystal having high quality | |
JP2733899B2 (en) | Method for growing rare earth gallium perovskite single crystal | |
JP2692613B2 (en) | Method for producing rare earth vanadate single crystal | |
JPS6355195A (en) | Method for growing inorganic compound single crystal | |
JPS6128639B2 (en) | ||
JPH07101800A (en) | Method for producing 1-llll-VI2 group compound single crystal | |
JP2813437B2 (en) | Manufacturing method of semiconductor crystal | |
WO1999061686A1 (en) | Method for producing monocrystals of lanthanum and gallium silicate | |
JPH0380194A (en) | Rare earth-gallium-perovskite single crystal and production thereof | |
JP3021937B2 (en) | Method for producing cadmium manganese tellurium single crystal | |
JPH06256091A (en) | Twin-free (Nd, La) GaO3 single crystal and method for producing the same | |
JP2507997B2 (en) | Single crystal growth method | |
JPH08758B2 (en) | Method for producing chromium-doped semi-insulating gallium arsenide single crystal |