[go: up one dir, main page]

JPH06316484A - Melt level controller in cz process - Google Patents

Melt level controller in cz process

Info

Publication number
JPH06316484A
JPH06316484A JP12527493A JP12527493A JPH06316484A JP H06316484 A JPH06316484 A JP H06316484A JP 12527493 A JP12527493 A JP 12527493A JP 12527493 A JP12527493 A JP 12527493A JP H06316484 A JPH06316484 A JP H06316484A
Authority
JP
Japan
Prior art keywords
melt surface
melt
gravity
spot light
surface position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12527493A
Other languages
Japanese (ja)
Other versions
JP3129571B2 (en
Inventor
Kazuo Ota
一男 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP05125274A priority Critical patent/JP3129571B2/en
Publication of JPH06316484A publication Critical patent/JPH06316484A/en
Application granted granted Critical
Publication of JP3129571B2 publication Critical patent/JP3129571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To keep the surface of a melt at 9L desired position in the production of a single crystal by the CZ process by detecting the melt surface position without being affected by the fluctuation of the melt surface. CONSTITUTION:The surface 2 of a melt is irradiated with a laser beam as the expanded parallel rays 3 from the upper part of a chamber 1. The melt surface 2 is caught by a CCD camera 4 from the oblique upper part, and the position of the center of gravity of the laser spotlight is outputted as a present value Vf. The command value Vc outputted from a command part 11 as a melt surface position and the present value Vf are compared by a controller, a driving speed command signal is outputted to the power amplifier of a servomotor for lifting a crucible shaft up and down, when the difference exceeds an allowable value, and the driving of the crucible shaft is adjusted. Since the spotlight diameter on the melt surface is large, the position of the center of gravity of the spotlight is detected by the CCD camera 4, the melt surface position is controlled with high precision regardless of the fluctuation of the melt surface 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CZ法による単結晶製
造装置に使用する融液レベル制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a melt level control device used in a CZ single crystal production apparatus.

【0002】[0002]

【従来の技術】半導体素子の基板となる単結晶をCZ法
によって製造する場合、単結晶の成長に伴ってるつぼ内
の融液レベルが下降するが、良質の単結晶を得るためる
つぼ軸を駆動してるつぼを上昇させ、ヒータに対して融
液面が常に一定の位置に維持されるように制御する必要
がある。前記融液レベルの制御に当たり、まず融液面位
置を測定しなければならないが、その手段としてたとえ
ば下記のものが知られている。 (1)実開平3−18171に示されるように、融液面
に向けて斜め上方から検出光を投射し、融液面からの反
射光を受光素子で検出して融液面位置を演算する。 (2)特開平2−102187に示されるように、単結
晶成長部に生じるフュージョンリングの位置をCCDカ
メラにより計測して融液面位置を制御する。 (3)実開平3−96356に示されるように、融液面
の上方に設けた部材の反射像をチャンバ外部に設けた望
遠鏡等で覗くことにより、融液面位置を計測する。
2. Description of the Related Art When a single crystal serving as a substrate of a semiconductor device is manufactured by the CZ method, the melt level in the crucible drops as the single crystal grows, but the crucible shaft is driven to obtain a good quality single crystal. It is necessary to raise the crucible and control the heater so that the melt surface is always maintained at a constant position. In controlling the melt level, first, the melt surface position must be measured, and the following means are known as such means. (1) As shown in Japanese Utility Model Laid-Open No. 3-18171, the detection light is projected obliquely from above toward the melt surface, and the reflected light from the melt surface is detected by the light receiving element to calculate the melt surface position. . (2) As shown in JP-A-2-102187, the position of the fusion ring generated in the single crystal growth portion is measured by a CCD camera to control the melt surface position. (3) As shown in Japanese Utility Model Laid-Open No. 3-96356, the melt surface position is measured by looking through the reflection image of the member provided above the melt surface with a telescope or the like provided outside the chamber.

【0003】[0003]

【発明が解決しようとする課題】上記従来の融液レベル
測定装置には、それぞれ下記の問題点がある。 (1)実開平3−18171は、融液面のゆらぎによっ
て融液面に投射した光の反射光が各方向に散乱するため
検出精度が低くなり、前記ゆらぎが大きい場合は融液レ
ベルを検出することができない。従って、融液レベルを
正確に制御することが困難である。 (2)特開平2−102187は、引き上げ中の単結晶
が振れると測定精度が低下する。 (3)実開平3−96356は、融液面のゆらぎにより
融液面上方に設けた部材の反射像が安定して見えないた
め融液レベル制御が不正確になるとともに、前記部材に
付着したアモルファスシリコンが落下することにより融
液が汚染されて単結晶化率を低下させる。 そこで本発明はこのような従来の問題点に着目し、融液
面のゆらぎに影響されることなく融液面位置を常に高精
度で検出し、所望の位置に制御することができるような
CZ法における融液レベル制御装置を提供することを目
的としている。
The above-mentioned conventional melt level measuring devices have the following problems, respectively. (1) Since the reflected light of the light projected on the melt surface is scattered in each direction due to the fluctuation of the melt surface, the detection accuracy becomes low, and the melt level is detected when the fluctuation is large. Can not do it. Therefore, it is difficult to accurately control the melt level. (2) In Japanese Patent Application Laid-Open No. 2-102187, the measurement accuracy deteriorates when the single crystal during pulling shakes. (3) In Kaikaihei 3-96356, since the reflection image of the member provided above the melt surface cannot be seen stably due to the fluctuation of the melt surface, the melt level control becomes inaccurate and the member adheres to the member. When the amorphous silicon falls, the melt is contaminated and the single crystallization rate is lowered. Therefore, the present invention pays attention to such a conventional problem, and a CZ that can always detect the melt surface position with high accuracy and control it to a desired position without being affected by the fluctuation of the melt surface. It aims at providing the melt level control device in the method.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るCZ法における融液レベル制御装置
は、CZ法による単結晶製造装置において、レーザ光を
拡大スポット光として融液面に照射する光学系と、前記
拡大スポット光の融液面における照射位置およびその周
辺をCCDカメラにより捕捉し、制御部に入力する検出
系と、所定の融液面位置指令信号を前記制御部に出力す
る指令部と、前記検出系が検出したスポット位置と所定
の融液面位置指令信号に基づく融液面位置の目標値とを
比較し、その結果に基づいてるつぼ昇降モータ駆動用パ
ワーアンプに駆動速度指令信号を出力する制御部とから
なる制御系を備える構成とし、このような構成におい
て、融液面に照射される拡大スポット光の重心の実測座
標と、所定の融液面位置におけるスポット光の重心に相
当する基準座標とを比較し、前記実測座標が基準座標に
一致するようにるつぼを上下動させることにより融液面
位置を制御するものとした。
In order to achieve the above object, a melt level control apparatus in the CZ method according to the present invention is a single crystal manufacturing apparatus by the CZ method, in which laser light is applied as an expanded spot light to the melt surface. An optical system for irradiation, a detection system for capturing the irradiation position of the expanded spot light on the melt surface and its periphery with a CCD camera, and inputting it to a control unit, and outputting a predetermined melt surface position command signal to the control unit Command unit, and the spot position detected by the detection system and the target value of the melt surface position based on a predetermined melt surface position command signal are compared, and based on the result, the power amplifier for driving the crucible lifting motor is driven. A control system including a control unit that outputs a speed command signal is provided, and in such a configuration, the measured coordinates of the center of gravity of the expanded spot light with which the melt surface is irradiated and the predetermined melt surface position Compares the reference coordinates corresponding to the center of gravity of the definitive spot light was assumed to control the melt surface position by vertically moving the crucible so that the measured coordinate matches the reference coordinates.

【0005】[0005]

【作用】上記構成によれば、レーザ光を拡大スポット光
として融液面に照射することにしたので、融液面上にお
けるスポット径が大きくなり、融液面のゆらぎにかかわ
らずその映像をCCDカメラで捕らえることができる。
CCDカメラは捕捉したスポット光の重心位置を検出し
て制御部に入力するので、融液面のゆらぎによってスポ
ット光映像が絶えず変動していても、融液面位置を常に
一定条件のもとで検出することができる。そして、前記
重心位置と、あらかじめ設定した重心位置とを比較し、
両者が一致するようにるつぼ昇降モータの駆動を調節す
ることにより、融液面を所定の位置に維持することがで
きる。
According to the above construction, since the laser light is applied to the melt surface as an enlarged spot light, the spot diameter on the melt surface becomes large, and the image is CCD regardless of the fluctuation of the melt surface. It can be captured by a camera.
Since the CCD camera detects the position of the center of gravity of the captured spot light and inputs it to the control unit, even if the spot light image fluctuates constantly due to fluctuations in the melt surface, the melt surface position is always kept under constant conditions. Can be detected. Then, the barycentric position is compared with a preset barycentric position,
By adjusting the driving of the crucible raising / lowering motor so that they match each other, the melt surface can be maintained at a predetermined position.

【0006】[0006]

【実施例】以下に本発明に係るCZ法における融液レベ
ル制御装置の実施例について、図面を参照して説明す
る。図1は融液レベル制御装置の概略構成を示す説明図
で、チャンバ1の上方には図示しない、たとえばHe−
Neレーザ等の発振器と、ビームエキスパンダとが設け
られている。前記レーザ光発振器から融液面2に向けて
垂直に発振されるレーザ光は、ビームエキスパンダによ
って任意のスポット径に拡大された平行光線3となり、
融液面2に照射される。また、CCDカメラ4はチャン
バ1の斜め上方に設置され、光透過窓1aを介して前記
融液面2を観察している。5はるつぼ、6はるつぼ軸、
7はるつぼ昇降モータ、8は回転→直動変換部、10は
制御装置本体である。この制御装置本体10は、所定の
融液面高さにおけるスポット位置の値Vc を設定・出力
する指令部11、前記指令値VcとCCDカメラ4が出
力するスポット位置の現在値Vf とを比較してその偏差
ΔVを出力する比較部12、前記ΔVの大きさに基づい
て指令信号Vout を出力する制御部13、モータ駆動用
パワーアンプ14からなっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a melt level control device in the CZ method according to the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing a schematic configuration of a melt level control device, which is not shown above the chamber 1, for example, He-
An oscillator such as a Ne laser and a beam expander are provided. The laser light oscillated vertically from the laser light oscillator toward the melt surface 2 becomes a parallel light beam 3 expanded to an arbitrary spot diameter by a beam expander,
The melt surface 2 is irradiated. A CCD camera 4 is installed diagonally above the chamber 1 and observes the melt surface 2 through the light transmission window 1a. 5 crucibles, 6 crucible shafts,
Reference numeral 7 is a crucible lifting motor, 8 is a rotation → linear motion conversion unit, and 10 is a control device body. The control device body 10 sets and outputs a value Vc of the spot position at a predetermined melt surface height, and compares the command value Vc with the current value Vf of the spot position output by the CCD camera 4. The comparison unit 12 outputs the deviation ΔV, the control unit 13 outputs the command signal Vout based on the magnitude of the ΔV, and the motor driving power amplifier 14.

【0007】CCDカメラ4は、融液面2に垂直上方か
ら照射される拡大スポット光を含む融液面の状況を斜め
上方から捕捉する。そして、前記スポット光の映像の重
心位置を算出して出力する。スポット径が大きいことと
スポットの重心位置を算出することにより、融液面のゆ
らぎの影響をほぼ皆無にすることができる。
The CCD camera 4 captures the condition of the melt surface including the expanded spot light irradiated onto the melt surface 2 from vertically above from an obliquely upper position. Then, the barycentric position of the image of the spot light is calculated and output. By having a large spot diameter and calculating the position of the center of gravity of the spot, it is possible to almost eliminate the influence of fluctuations in the melt surface.

【0008】図2は融液レベルの制御を実行するフロー
チャートで、各ステップの左上に記載した数字はステッ
プ番号を示す。ステップ1で、あらかじめ設定・入力し
ておいた融液面高さすなわち融液面上のスポット位置に
関する指令値Vc が読み込まれ、ステップ2で現在の融
液面高さすなわちCCDカメラが検出したスポット重心
の現在値Vf が読み込まれる。次にステップ3で前記指
令値と現在値との偏差ΔV=Vc −Vf の演算が行わ
れ、ステップ4で|ΔV|とあらかじめ設定・記憶させ
ておいた偏差の許容値Ve との比較が行われる。そして
|ΔV|≦Ve であれば、現在の融液面高さが所定の範
囲内にあるものと判定し、ステップ2に戻る。また、|
ΔV|>Ve であればステップ5に進む。ステップ5で
は操作出力信号Vout =k1 ・ΔV(ただしk1 はゲイ
ン定数)をモータ駆動用パワーアンプに出力する。前記
操作出力信号Vout を受けたモータ駆動用パワーアンプ
は、ステップ6でVd =k2 ・Vout (ただしk2 はゲ
イン定数)をるつぼ昇降モータに出力し、ステップ7で
回転→直動変換部が作動してるつぼ軸が上下動すること
によって、融液面高さを所定の位置に調節する。その後
ステップ2に戻る。
FIG. 2 is a flow chart for executing the melt level control, and the numbers in the upper left of each step indicate the step number. In step 1, the preset melt level surface, that is, the command value Vc relating to the spot position on the melt surface, is read, and in step 2, the current melt surface height, that is, the spot detected by the CCD camera. The current value Vf of the center of gravity is read. Next, in step 3, the deviation ΔV = Vc-Vf between the command value and the current value is calculated, and in step 4, | ΔV | is compared with the preset allowable deviation value Ve. Be seen. If | ΔV | ≦ Ve, it is determined that the current melt surface height is within the predetermined range, and the process returns to step 2. Also, |
If ΔV |> Ve, proceed to step 5. In step 5, the operation output signal Vout = k1ΔV (where k1 is a gain constant) is output to the motor driving power amplifier. Upon receiving the operation output signal Vout, the motor driving power amplifier outputs Vd = k2.Vout (where k2 is a gain constant) to the crucible lifting motor in step 6, and in step 7, the rotation-to-linear motion conversion section operates. By vertically moving the crucible shaft, the melt surface height is adjusted to a predetermined position. Then return to step 2.

【0009】図3はCCDカメラの画像出力例を示す説
明図で、(a)は融液面位置の現在値が融液面高さ指令
値に一致した状態を示し、融液面におけるスポット光の
重心位置は座標(0,0)に一致している。(b)は融
液面位置の現在値が融液面高さ指令値より20mm上方
にある場合を示し、融液面におけるスポット光の重心位
置は座標(20,0)の位置にある。また、(c)は融
液面高さの現在値が融液面高さ指令値より20mm下方
にある場合を示し、融液面におけるスポット光の重心位
置は座標(−20,0)の位置にある。本実施例では融
液面高さの変動幅が±20mmまで対応可能であり、制
御精度は±1mm以下とすることができる。
FIG. 3 is an explanatory view showing an example of image output from a CCD camera. FIG. 3A shows a state in which the current value of the melt surface position matches the melt surface height command value, and spot light on the melt surface is shown. The barycentric position of is coincident with the coordinate (0,0). (B) shows the case where the current value of the melt surface position is 20 mm above the melt surface height command value, and the center of gravity of the spot light on the melt surface is at the position of coordinates (20, 0). Further, (c) shows the case where the current value of the melt surface height is 20 mm below the melt surface height command value, and the center of gravity of the spot light on the melt surface is the position of coordinates (−20, 0). It is in. In this embodiment, the fluctuation range of the melt surface height can be up to ± 20 mm, and the control accuracy can be ± 1 mm or less.

【0010】[0010]

【発明の効果】以上説明したように本発明によれば、レ
ーザ光を拡大スポット光として融液面に照射し、斜め上
方に設置したCCDカメラにより前記拡大スポット光の
重心位置を求めることにしたので、融液面のゆらぎに影
響されることなく融液面位置を常に高精度で検出するこ
とができる。そして、算出した実際の拡大スポット光重
心位置とあらかじめ設定した重心位置とを比較し、両者
が一致するようにるつぼ軸昇降用サーボモータの駆動を
調節することにより、融液面を容易に所定の位置に維持
することが可能となる。
As described above, according to the present invention, a laser beam is irradiated as a magnified spot light on the melt surface, and the center of gravity of the magnified spot light is determined by a CCD camera installed obliquely above. Therefore, the melt surface position can always be detected with high accuracy without being affected by the fluctuation of the melt surface. Then, the calculated actual magnified spot light barycentric position is compared with a preset barycentric position, and by adjusting the driving of the crucible shaft lifting servomotor so that they coincide with each other, the melt surface can be easily adjusted to a predetermined value. It is possible to maintain the position.

【図面の簡単な説明】[Brief description of drawings]

【図1】融液レベル制御装置の概略構成を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing a schematic configuration of a melt level control device.

【図2】融液レベル制御を実行するフローチャートであ
る。
FIG. 2 is a flowchart for executing melt level control.

【図3】CCDカメラの画像出力例を示す説明図で、
(a)は融液面高さの現在値が融液面高さ指令値に一致
した状態、(b)は前記現在値が前記指令値より高い状
態、(c)は前記現在値が前記指令値より低い状態をそ
れぞれ示す。
FIG. 3 is an explanatory diagram showing an image output example of a CCD camera,
(A) is a state in which the current value of the melt surface height matches the melt surface height command value, (b) is a state in which the current value is higher than the command value, (c) is the current value in the command Each value is lower than the value.

【符号の説明】[Explanation of symbols]

2 融液面 4 CCDカメラ 7 るつぼ昇降モータ 11 指令部 12 比較部 13 制御部 14 るつぼ昇降モータ駆動用パワーアンプ 2 Melt surface 4 CCD camera 7 Crucible lifting motor 11 Command unit 12 Comparison unit 13 Control unit 14 Crucible lifting motor driving power amplifier

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CZ法による単結晶製造装置において、
レーザ光を拡大スポット光として融液面に照射する光学
系と、 前記拡大スポット光の融液面における照射位置およびそ
の周辺をCCDカメラにより捕捉し、制御部に入力する
検出系と、 所定の融液面位置指令信号を前記制御部に出力する指令
部と、前記検出系が検出したスポット位置と所定の融液
面位置指令信号に基づく融液面位置の目標値とを比較
し、その結果に基づいてるつぼ昇降モータ駆動用パワー
アンプに駆動速度指令信号を出力する制御部とからなる
制御系を備えていることを特徴とするCZ法における融
液レベル制御装置。
1. A single crystal production apparatus using the CZ method,
An optical system that irradiates the melt surface with laser light as expanded spot light, a detection system that captures the irradiation position of the expanded spot light on the melt surface and its periphery with a CCD camera, and inputs it to the control unit, A command unit that outputs a liquid surface position command signal to the control unit, compares the spot position detected by the detection system and a target value of the melt surface position based on a predetermined melt surface position command signal, and 2. A melt level control device in the CZ method, comprising a control system including a control unit for outputting a drive speed command signal to a power amplifier for driving a crucible raising / lowering motor.
【請求項2】 融液面に照射される拡大スポット光の重
心の実測座標と、所定の融液面位置におけるスポット光
の重心に相当する基準座標とを比較し、前記実測座標が
基準座標に一致するようにるつぼを上下動させることに
より融液面位置を制御することを特徴とする請求項1の
融液レベル制御装置。
2. The measured coordinates of the center of gravity of the expanded spot light irradiated on the melt surface are compared with the reference coordinates corresponding to the center of gravity of the spot light at a predetermined melt surface position, and the measured coordinates are set to the reference coordinates. 2. The melt level control device according to claim 1, wherein the melt surface position is controlled by moving the crucible up and down so as to coincide with each other.
JP05125274A 1993-04-28 1993-04-28 Melt level controller in CZ method Expired - Lifetime JP3129571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05125274A JP3129571B2 (en) 1993-04-28 1993-04-28 Melt level controller in CZ method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05125274A JP3129571B2 (en) 1993-04-28 1993-04-28 Melt level controller in CZ method

Publications (2)

Publication Number Publication Date
JPH06316484A true JPH06316484A (en) 1994-11-15
JP3129571B2 JP3129571B2 (en) 2001-01-31

Family

ID=14906022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05125274A Expired - Lifetime JP3129571B2 (en) 1993-04-28 1993-04-28 Melt level controller in CZ method

Country Status (1)

Country Link
JP (1) JP3129571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6994748B2 (en) 2000-05-01 2006-02-07 Komatsu Denshi Kinzoku Kabushiki Kaisha Method and apparatus for measuring melt level

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734139B2 (en) 2006-02-27 2011-07-27 Sumco Techxiv株式会社 Position measurement method
JP6075756B2 (en) * 2012-12-07 2017-02-08 株式会社Pfu Illumination device and imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6994748B2 (en) 2000-05-01 2006-02-07 Komatsu Denshi Kinzoku Kabushiki Kaisha Method and apparatus for measuring melt level

Also Published As

Publication number Publication date
JP3129571B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
EP0265805B1 (en) Apparatus for measuring crystal diameter
KR101028684B1 (en) Silicon single crystal pulling method
US6565650B2 (en) Single crystal pulling apparatus and pulling method
US5656078A (en) Non-distorting video camera for use with a system for controlling growth of a silicon crystal
JPH08333197A (en) Method and system for controlling growth of silicone crystal
TWI770661B (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP3129571B2 (en) Melt level controller in CZ method
JP2627696B2 (en) Melt level control device and control method in CZ method
US6030451A (en) Two camera diameter control system with diameter tracking for silicon ingot growth
JP2823035B2 (en) Semiconductor single crystal pulling apparatus and pulling method
JP2627695B2 (en) Melt level control device and control method in CZ method
JPH05294785A (en) Device for measuring and controlling molten material surface position of semiconductor single crystal producing device
US7361921B2 (en) Device and method for plane-parallel orientation of a the surface of an object to be examined in relation to a focus plane of a lens
JPH07277879A (en) Apparatus for producing single crystal by cz method and melt level control method
GB1570590A (en) Zone refining
JP4109843B2 (en) Single crystal pulling apparatus and pulling method
EP0171694A1 (en) A process for controlling the growth of a crystal
JP2844032B2 (en) Melt level controller in CZ method
US5853479A (en) Apparatus for drawing single crystals by the czochralski method
JPH04300283A (en) Method for measuring liquid surface level in cz method
JP2518144Y2 (en) Single crystal column diameter measuring device
JPS6027686A (en) Apparatus for manufacturing single crystal
JPS63229419A (en) Lens distortion correcting device
JPS63238430A (en) Method for measuring position of liquid level in cz furnace
JPS62215815A (en) Method and apparatus for measuring distance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 13

EXPY Cancellation because of completion of term