JPH06315200A - Distance sensation control method for sound image localization processing - Google Patents
Distance sensation control method for sound image localization processingInfo
- Publication number
- JPH06315200A JPH06315200A JP12515593A JP12515593A JPH06315200A JP H06315200 A JPH06315200 A JP H06315200A JP 12515593 A JP12515593 A JP 12515593A JP 12515593 A JP12515593 A JP 12515593A JP H06315200 A JPH06315200 A JP H06315200A
- Authority
- JP
- Japan
- Prior art keywords
- sound
- sound image
- distance
- image localization
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004807 localization Effects 0.000 title claims abstract description 76
- 238000012545 processing Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000035807 sensation Effects 0.000 title abstract 4
- 230000002238 attenuated effect Effects 0.000 claims abstract description 6
- 230000000694 effects Effects 0.000 claims description 9
- 238000010521 absorption reaction Methods 0.000 claims description 6
- 210000005069 ears Anatomy 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Landscapes
- Stereophonic System (AREA)
- Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、実際のトランスジュー
サ(スピーカ)とは異なる所望の任意の位置に音像が定
位しているように感じさせる音像定位処理方法に係り、
特に、所望の音像定位位置と聴取者との距離感を忠実に
再現して、奥行きと拡がりを有する立体音像を再生可能
な音像定位処理における距離感制御方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound image localization processing method for making a user feel that a sound image is localized at a desired arbitrary position different from an actual transducer (speaker),
In particular, the present invention relates to a distance feeling control method in sound image localization processing capable of faithfully reproducing a desired sound image localization position and a sense of distance between a listener and reproducing a stereoscopic sound image having depth and breadth.
【0002】[0002]
(音像定位処理)従来より、両耳における信号のレベル
差と位相差(時間差)によって特定位置(特定方向)に
音像を感じさせる音像定位方法がある。この音像定位方
法を、デジタル回路により実現したものとして、例え
ば、特開平2-298200号公報記載の「音像形成方法及びそ
の装置」がある。このデジタル回路を用いた音像定位の
方法は、音源からの信号をFFT(FastFourier Transf
orm)変換して周波数軸上で処理し、左右の両チャンネ
ル信号に周波数に依存したレベル差と位相差とを与え
て、音像の定位をデジタル的に制御するものである。こ
の装置の各音像定位位置における、周波数に依存したレ
ベル差と位相差とは、実際の聴取者を利用した実験的な
データ(心理的なデータ)として収集されたものであ
る。(Sound image localization processing) Conventionally, there is a sound image localization method in which a sound image is felt at a specific position (specific direction) by a level difference and a phase difference (time difference) of signals in both ears. As a method for realizing this sound image localization method by a digital circuit, there is, for example, “Sound image forming method and its device” described in Japanese Patent Laid-Open No. 2-298200. The sound image localization method using this digital circuit uses a signal from a sound source for FFT (FastFourier Transf
or m) conversion and processing on the frequency axis to give a level difference and a phase difference depending on the frequency to the left and right channel signals to digitally control the localization of the sound image. The frequency-dependent level difference and phase difference at each sound image localization position of this device are collected as experimental data (psychological data) using an actual listener.
【0003】さらに、本出願人は、上記音像定位方法に
代わるものとして、新たな音像定位方法を発明し、「音
像定位制御の方法」(出願日:平成4年11月30日)
「音像定位制御装置」(出願日:平成4年12月18
日)などを出願している。この音像定位方法は、一対の
コンボルバにより音源からの信号を時間軸上で処理して
音像を定位させるようにすると共に、音像定位用の伝達
特性(コンボルバの係数)を最終的に時間軸上のIR
(インパルス応答)のデータとしたものである。Furthermore, the present applicant invented a new sound image localization method as an alternative to the above-mentioned sound image localization method, and made a "method of sound image localization control" (filing date: November 30, 1992).
"Sound image localization control device" (filing date: December 18, 1992)
(Sun) etc. In this sound image localization method, a signal from a sound source is processed on a time axis by a pair of convolvers to localize a sound image, and a transfer characteristic (convolver coefficient) for sound image localization is finally obtained on the time axis. IR
(Impulse response) data.
【0004】(音像定位処理における距離感制御方法)
そして、上記した従来の音像定位方法(音像定位装置)
においては、特定位置(特定方向)に定位させるための
コンボルバ係数(フィルタ係数)で音像定位処理すると
共に、所望の音像定位位置と聴取者との距離感をだすた
めに、距離に応じて信号の音量(の大きさ)を制御して
いた。すなわち、距離と反比例するように、遠い音では
音量を小さくし、近い音では音量を大きくしていた。(Method of controlling distance perception in sound image localization processing)
And the above-mentioned conventional sound image localization method (sound image localization device)
In order to perform a sound image localization process with a convolver coefficient (filter coefficient) for localization at a specific position (specific direction), and to generate a sense of distance between the desired sound image localization position and the listener, the The volume was controlled. That is, the volume is reduced for far sounds and increased for near sounds so as to be inversely proportional to the distance.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の距離感制御方法では、所望の音像定位位置と
聴取者との距離感が忠実に再現されない。特に、距離が
遠方になったと場合に、単に音が小さくなるだけで、音
像が遠方にいったように聞えずに、同じ音像位置で音が
小さくなったように聞えてしまう。また、音像を近くに
定位させたい場合も同様で、単に音が大きくなるだけで
近くに来たようには聞えない。そこで、本発明は所望の
音像定位位置と聴取者との距離感を忠実に再現して、奥
行きと拡がりを有する立体音像を再生可能とした、音像
定位処理における距離感制御方法を提供するものであ
る。However, in such a conventional sense of distance control method, the sense of distance between the desired sound image localization position and the listener cannot be faithfully reproduced. In particular, when the distance becomes distant, the sound only becomes small, and it does not seem as if the sound image went far, but it seems that the sound becomes small at the same sound image position. The same applies to the case where the sound image is localized close to the sound image, and the sound is simply increased, and it cannot be heard that the sound image comes near. Therefore, the present invention provides a distance feeling control method in sound image localization processing that faithfully reproduces the sense of distance between the desired sound image localization position and the listener, and is capable of reproducing a stereoscopic sound image having depth and breadth. is there.
【0006】[0006]
【課題を解決するための手段】本発明は上記課題を解決
するために、図1に示すように、離間して配設された複
数のトランスジューサ(スピーカsp1,sp2)か
ら、(音像定位処理回路5で)音像定位処理された信号
を再生して、聴取者(M)に前記複数のトランスジュー
サとは異なる任意の位置xに音像が定位しているように
感じさせる音像定位処理における距離感制御方法であっ
て、所望の音像定位位置xと聴取者Mとの距離dに応じ
て、信号の振幅及び周波数特性を制御する(例えば、振
幅調整回路2で距離減衰させ、周波数特性調整回路4で
距離に応じて信号の高域成分を減衰させる)、また、反
射音付加回路3で距離に応じて信号の直接音と間接音と
のレベル比及び時間間隔を可変する、さらに、ピッチシ
フト(周波数制御)回路1で音像と聴取者との相対速度
に応じて信号の周波数を可変するようにしたことを特徴
とする音像定位処理における距離感制御方法を提供する
ものである。In order to solve the above-mentioned problems, the present invention provides, as shown in FIG. 1, a plurality of transducers (speakers sp1 and sp2) which are spaced apart from each other to provide a (sound image localization processing circuit). (5) A method of controlling a sense of distance in a sound image localization process in which a signal subjected to the sound image localization process is reproduced to make a listener (M) feel that a sound image is localized at an arbitrary position x different from the plurality of transducers. The amplitude and frequency characteristics of the signal are controlled according to the desired sound image localization position x and the distance d between the listener M (for example, the amplitude adjustment circuit 2 attenuates the distance, and the frequency characteristic adjustment circuit 4 reduces the distance). The high frequency component of the signal is attenuated according to the above), and the level ratio and time interval between the direct sound and the indirect sound of the signal are varied according to the distance in the reflected sound adding circuit 3, and the pitch shift (frequency control) is performed. ) In road 1 there is provided a sense of distance control method by the sound image localization process being characterized in that so as to vary the frequency of the signal according to the relative speed between the sound image and the listener.
【0007】[0007]
【作用】上記のような音像定位処理における距離感制御
方法によれば、距離に応じて信号の振幅が増減されて、
複数のトランスジューサから再生される音量の大小が制
御される。さらに、距離に応じて信号の高域成分が減衰
されて、大気による音の吸収が再現される。また、距離
に応じて信号の直接音と間接音とのレベル比及び時間間
隔が可変されて、現実の音像空間に相当する反射音と残
響音が再現される。さらに、音像と聴取者との相対速度
に応じて信号の周波数が可変されて、ドップラー効果が
再現される。According to the distance control method in the sound image localization processing as described above, the amplitude of the signal is increased or decreased according to the distance,
The volume of the sound reproduced from the plurality of transducers is controlled. Further, the high frequency component of the signal is attenuated according to the distance, and the absorption of sound by the atmosphere is reproduced. Further, the level ratio between the direct sound and the indirect sound of the signal and the time interval are varied according to the distance, and the reflected sound and the reverberant sound corresponding to the actual sound image space are reproduced. Furthermore, the frequency of the signal is varied according to the relative speed between the sound image and the listener, and the Doppler effect is reproduced.
【0008】[0008]
【実施例】本発明になる音像定位処理における距離感制
御方法の一実施例について、以下図面と共に説明する。
最初に、音像定位処理の基本原理について説明する。こ
れは、離間して配設された一対のトランスジューサ(以
下、スピーカを例として説明する)を使用し、空間の任
意の位置に音像を定位させる技術である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method of controlling a sense of distance in sound image localization processing according to the present invention will be described below with reference to the drawings.
First, the basic principle of sound image localization processing will be described. This is a technique for localizing a sound image at an arbitrary position in space by using a pair of transducers (which will be described below by taking a speaker as an example) arranged apart from each other.
【0009】図3は音像定位処理の原理図である。sp
1,sp2は聴取者の前方左右に配置されるスピーカで
あり、スピーカsp1から聴取者左耳までの頭部伝達特
性(インパルス応答)をh1L、右耳までの頭部伝達特
性をh1R、スピーカsp2から左右耳までの頭部伝達
特性をh2L,h2Rとする。また、目的とする定位位
置xに実際のスピーカを配置したときの聴取者左右耳ま
での頭部伝達特性をpLx,pRxとする。ここでの各
伝達特性は、音響空間内のスピーカとダミーヘッド(ま
たは人頭)の両耳位置に配置されたマイクとにより実際
に測定し、適切な波形処理などを施したものである。FIG. 3 is a principle diagram of the sound image localization processing. sp
Reference numerals 1 and sp2 denote speakers arranged on the left and right in front of the listener. The head-related transfer characteristics (impulse response) from the speaker sp1 to the listener's left ear are h1L, the head-related transfer characteristics to the right ear are h1R, and speaker sp2. To the left and right ears are defined as h2L and h2R. Further, the head-related transfer characteristics to the left and right ears of the listener when an actual speaker is placed at the intended localization position x are pLx and pRx. Each transfer characteristic here is actually measured by a speaker in the acoustic space and a microphone arranged at the binaural position of the dummy head (or human head), and subjected to appropriate waveform processing.
【0010】次に、定位させたい音源(ソース)Xを信
号変換装置cfLx,cfRx(コンボルバなどによる
伝達特性)に通して得られる信号を、それぞれスピーカ
sp1,sp2で再生することを考える。このとき聴取
者左右耳に得られる信号をeL,eRとすると、 eL=h1L・cfLx・X+h2L・cfRx・X (式1) eR=h1R・cfLx・X+h2R・cfRx・X (〃 ) 一方、音源Xを目的の定位位置から再生したときに聴取
者左右耳に得られる信号をdL,dRとすると、 dL=pLx・X (式2) dR=pRx・X (〃 )Next, consider that the signals obtained by passing the sound source (source) X to be localized through the signal converters cfLx and cfRx (transfer characteristics by a convolver or the like) are reproduced by the speakers sp1 and sp2, respectively. At this time, if the signals obtained in the left and right ears of the listener are eL and eR, then eL = h1L · cfLx · X + h2L · cfRx · X (Equation 1) eR = h1R · cfLx · X + h2R · cfRx · X (〃) Meanwhile, the sound source X Let dL and dR be the signals obtained in the left and right ears of the listener when is reproduced from the target localization position: dL = pLx · X (Equation 2) dR = pRx · X (〃)
【0011】ここで、スピーカsp1,sp2の再生に
より聴取者左右耳に得られる信号が、目的位置から音源
を再生したときの信号に一致すれば、聴取者はあたかも
目的位置にスピーカが存在するように音像を認識するこ
ととなる。この条件eL=dL,eR=dRと(式
1),(式2)より、Xを消去して h1L・cfLx+h2L・cfRx=pLx (式3) h1R・cfLx+h2R・cfRx=pRx (〃 ) (式3)からcfLx,cfRxを求めると cfLx=(h2R・pLx−h2L・pRx)/H (式4a) cfRx=(−h1R・pLx+h1L・pRx)/H (〃 ) ただし、 H=h1L・h2R−h2L・h1R (式4b) Here, if the signals obtained in the left and right ears of the listener by reproduction of the speakers sp1 and sp2 match the signals obtained when the sound source is reproduced from the target position, it is as if the listener has the speaker at the target position. The sound image will be recognized. From these conditions eL = dL, eR = dR and (Equation 1) and (Equation 2), X is deleted and h1L · cfLx + h2L · cfRx = pLx (Equation 3) h1R · cfLx + h2R · cfRx = pRx (Equation 3) CfLx, cfRx is calculated from cfLx = (h2R · pLx−h2L · pRx) / H (Equation 4a) cfRx = (− h1R · pLx + h1L · pRx) / H (〃) where H = h1L · h2R-h2L · h1R (Formula 4b)
【0012】したがって、(式4a),(式4b)によ
り算出した伝達特性cfLx,cfRxを用いてコンボ
ルバ(畳み込み演算処理回路)等により定位させたい信
号を処理すれば、目的の位置xに音像を定位させること
ができる。具体的な信号変換装置の実現方法は様々考え
られるが、非対称なFIR(Finite Impulse Response
)型デジタルフィルタ(コンボルバ)として、DSP
(Digital Signal Processor)を用いて実現すれば良
い。つまり、必要な定位位置xにおける伝達特性cfL
x,cfRxとして、(式4a),(式4b)で求めた
ものを、1回のFIRフィルタ処理により実現するため
の係数として、cfLx,cfRxの係数をあらかじめ
作成し、ROMのデータとして準備しておく。ROMか
ら必要な音像定位位置の係数をFIRデジタルフィルタ
に転送し、音源からの信号を畳み込み演算処理して一対
のスピーカから再生すれば、所望の任意の位置に音像が
定位されることになる。Therefore, if a signal to be localized is processed by a convolver (convolution operation processing circuit) or the like using the transfer characteristics cfLx and cfRx calculated by (Equation 4a) and (Equation 4b), a sound image is obtained at a target position x. Can be localized. There are various concrete methods for realizing the signal conversion device, but an asymmetric FIR (Finite Impulse Response)
) Type digital filter (convolver), DSP
It may be realized by using (Digital Signal Processor). That is, the transfer characteristic cfL at the required localization position x
As x and cfRx, the coefficients of cfLx and cfRx are created in advance as the coefficients for realizing the ones obtained by (Expression 4a) and (Expression 4b) by one FIR filter processing, and prepared as ROM data. Keep it. If the coefficient of the required sound image localization position is transferred from the ROM to the FIR digital filter and the signal from the sound source is subjected to the convolutional arithmetic processing and reproduced from the pair of speakers, the sound image is localized at any desired position.
【0013】次に、本発明の要部である距離感制御方法
について説明する。図1は、音像定位処理における距離
感制御方法を実施する装置の基本的な構成を示すもので
ある。図2は、所望の音像定位位置xと聴取者Mとの距
離dを説明する図であり、所定の時間(または速度)で
聴取者Mの側方を通り抜けていく自動車音(音源)の移
動を示す例である。Next, a distance feeling control method which is an essential part of the present invention will be described. FIG. 1 shows a basic configuration of an apparatus that implements a sense of distance control method in sound image localization processing. FIG. 2 is a diagram for explaining the distance d between the desired sound image localization position x and the listener M, and the movement of the vehicle sound (sound source) passing through the side of the listener M at a predetermined time (or speed). Is an example showing.
【0014】音源回路からのモノラル信号(例えば、図
示しないシンセサイザで作られたビデオゲーム機用の自
動車音)は、ピッチシフト(周波数制御)回路1,振幅
調整回路2,反射音付加回路3,周波数特性調整回路
4,音像定位処理回路5で順次信号処理される。6はこ
れらの信号処理回路1〜5を制御するコントローラであ
る。コントローラ6はビデオゲーム機のメインCPUか
らの命令(例えば図2に示すように、所定の時間(また
は速度)で聴取者Mの右側を通り抜けていく自動車の移
動音を処理せよとの命令)により、音像の移動処理を実
現するものである。なお、コントローラ6は、例えば聴
取者Mの真横の通過時刻を基準として、方向定位θを聴
取者の真横を基準とする反時計回りで表し、時間に応じ
た方向定位θとして、音像の位置を制御している。ま
た、7は反射音付加回路3用の反射音係数群が記憶され
たROM、8は周波数特性調整回路4用のフィルタ係数
群が記憶されたROM、9は音像定位処理回路5用の音
像定位係数テーブル(コンボルバの係数)が記憶された
ROMである。これらの反射音係数,フィルタ係数,コ
ンボルバの係数は、コントローラ6によって各回路に制
御供給されて、各処理がなされる。A monaural signal from a sound source circuit (for example, an automobile sound for a video game machine made by a synthesizer not shown) is a pitch shift (frequency control) circuit 1, an amplitude adjusting circuit 2, a reflected sound adding circuit 3, a frequency. The characteristic adjustment circuit 4 and the sound image localization processing circuit 5 sequentially perform signal processing. A controller 6 controls these signal processing circuits 1 to 5. The controller 6 receives a command from the main CPU of the video game machine (for example, a command to process the moving sound of the car passing through the right side of the listener M at a predetermined time (or speed) as shown in FIG. 2). , Which realizes the movement processing of the sound image. It should be noted that the controller 6 expresses the direction localization θ in the counterclockwise direction with respect to the side just next to the listener with reference to the passage time right next to the listener M, and the position of the sound image as the direction localization θ according to time. Have control. Further, 7 is a ROM in which a reflected sound coefficient group for the reflected sound adding circuit 3 is stored, 8 is a ROM in which a filter coefficient group for the frequency characteristic adjusting circuit 4 is stored, and 9 is a sound image localization for the sound image localization processing circuit 5. The ROM stores a coefficient table (convolver coefficients). The reflected sound coefficient, the filter coefficient, and the convolver coefficient are controlled and supplied to each circuit by the controller 6, and each processing is performed.
【0015】(ピッチシフト(周波数制御)処理)シン
セサイザ(図示せず)で作られたビデオゲーム機用の自
動車音は、ピッチ(周波数)制御回路1でドップラー効
果を考慮したピッチ制御、すなわち周波数制御がなされ
る。自動車音(音源)がゲーム操作者Mに近づく時で
は、ドップラー効果を考慮してその相対速度に応じて音
の周波数を高くし、ゲーム操作者Mから遠ざかる時では
低くなるように、ピッチ処理される。(Pitch Shift (Frequency Control) Processing) A car sound for a video game machine made by a synthesizer (not shown) is pitch controlled by the pitch (frequency) control circuit 1 in consideration of the Doppler effect, that is, frequency control. Is done. When the vehicle sound (sound source) approaches the game operator M, the pitch of the sound is increased so that the frequency of the sound is increased according to the relative speed of the Doppler effect in consideration of the Doppler effect. It
【0016】上記した聴取者Mの側方(距離D)を等速
(速度v)で音像(自動車音)が通過していく場合で
は、次のように処理する。方向定位の変化に対しては聴
取者Mの真横に近づくほどその変化が速くなる。真横の
通過時刻をt=0とし、方向定位θを聴取者の真横を基
準とする反時計回りで表せば、方向定位と時刻tとには 、 θ=−arctan(vt/D) の関係が成り立つ。また、音程(ピッチ)の変化に対し
ては、ドップラー効果の影響を受け、実際にでている音
の周波数をf、耳に聞える周波数をFとすれば、F=f
c/(c−vsinθ)となる。ただし、cは音速であ
る。すなわち、音程(ピッチ)比Nとしたとき、 N=F/f=c/(c−vsinθ) となるように、自動車音用の音源信号を、音像とゲーム
操作者Mの相対速度に応じてピッチシフト(周波数制
御)処理する。When a sound image (vehicle sound) passes through the side of the listener M (distance D) at a constant speed (velocity v), the following processing is performed. With respect to the change in direction localization, the change becomes faster as it approaches the side of the listener M. If the passage time right next to the listener is t = 0 and the direction localization θ is represented counterclockwise with respect to the listener's right side, the direction localization and the time t have a relation of θ = −arctan (vt / D). It holds. Further, when the pitch (pitch) changes, it is affected by the Doppler effect, and if the frequency of the sound actually being emitted is f and the frequency heard by the ear is F, then F = f
It becomes c / (c-vsin θ). However, c is the speed of sound. That is, when the pitch (pitch) ratio is set to N, the sound source signal for vehicle sound is set according to the relative speed between the sound image and the game operator M such that N = F / f = c / (c-vsin θ). Pitch shift (frequency control) processing is performed.
【0017】(振幅調整処理)ピッチ処理された音源信
号は、振幅調整処理回路2で振幅調整処理される。ゲー
ム操作者Mと音像との距離dを考慮した音量制御処理、
例えば距離dに反比例するように、遠い音像位置では小
さな音、近い音像位置では大きな音となるように、振幅
が制御処理される。(Amplitude Adjustment Processing) The pitch-processed sound source signal is subjected to amplitude adjustment processing by the amplitude adjustment processing circuit 2. Volume control processing considering the distance d between the game operator M and the sound image,
For example, the amplitude is controlled so as to be inversely proportional to the distance d, so that a distant sound image position produces a small sound and a near sound image position produces a large sound.
【0018】すなわち、真横通過時の音量をGとすれ
ば、真横通過時に音像はゲーム操作者Mに最も近付き最
も音が大きくなるといえる。そこで、この真横通過時の
音量Gを基準とすれば、耳に聞える音量gは、 g=G・cosθ といえる。したがって、振幅調整処理回路2は、ピッチ
処理された音源信号の振幅の大きさを、上記の関係を満
たすように振幅処理して、ゲーム操作者Mの真横通過時
に最も音が大きくなる制御する。振幅調整処理回路2の
インパルス応答の及び周波数特性の一例を図4に示す。
同図に示すように、振幅調整処理回路2は、距離に応じ
た音の減衰を再現するものであるから、その周波数特性
はフラットである。That is, if the sound volume at the time of right side passage is G, it can be said that the sound image comes closest to the game operator M at the time of right side passage and the sound becomes loudest. Therefore, with reference to the sound volume G at the time of passing right next to it, it can be said that the sound volume g heard by the ear is g = G · cos θ. Therefore, the amplitude adjustment processing circuit 2 performs amplitude processing on the magnitude of the amplitude of the pitch-processed sound source signal so as to satisfy the above relationship, and controls to maximize the sound when the game operator M passes right beside. An example of the impulse response and frequency characteristics of the amplitude adjustment processing circuit 2 is shown in FIG.
As shown in the figure, the amplitude adjustment processing circuit 2 reproduces the attenuation of the sound according to the distance, so that its frequency characteristic is flat.
【0019】また、この振幅調整処理に際して、単に距
離dに反比例させるのではなく、遠い位置の小さな音ほ
どそのレベルを下げても良い。例えば、距離dの1乗で
はなく距離の4/3 乗(d4/3 )に反比例させると良い。
これは、実際の音響空間は、無響の状態ではなく目的の
音(音源)以外のノイズが存在し、この結果、ヒヤリン
グ可能なスレッショルドが高くなり、スレッショルドに
近い音圧の音ほどより小さく聞こえるためである。Further, in the amplitude adjusting process, the level may be lowered for a small sound at a farther position, rather than being simply inversely proportional to the distance d. For example, the distance d may be inversely proportional to the fourth power of the distance (d 4/3 ) instead of the first power.
This is because the actual acoustic space is not anechoic and there is noise other than the target sound (source). As a result, the threshold at which hearing is possible becomes higher, and sounds with a sound pressure closer to the threshold sound smaller. This is because.
【0020】(反射音付加処理)振幅調整処理された音
源信号は、反射音付加回路3で反射音付加処理される。
反射音付加回路3は、距離に応じてインパルス応答が変
化する可変回路である。反射音付加回路3のインパルス
応答の及び周波数特性の一例を図5に示す。基本的に
は、音像が遠い位置では反射音(間接音)Roのレベルを
相対的に大きく、近い位置では直接音Doのレベルが相対
的に大きくなるように構成されている。 また、間接音
の位置も変化させており、音像が遠い位置にあるときで
は、直接音と反射音(間接音)の相対位置(例えば、図
5中、m,nで示す時間間隔)を近くし(短くし)、音
像が近い位置にあるときでは、直接音と反射音(間接
音)の相対位置(時間間隔)を遠く(長く)している。(Reflected Sound Addition Processing) The sound source signal whose amplitude has been adjusted is subjected to reflected sound addition processing in the reflected sound addition circuit 3.
The reflected sound addition circuit 3 is a variable circuit whose impulse response changes according to the distance. FIG. 5 shows an example of the impulse response and frequency characteristics of the reflected sound adding circuit 3. Basically, the level of the reflected sound (indirect sound) Ro is relatively large at a position where the sound image is distant, and the level of the direct sound Do is relatively large at a position near. Further, the position of the indirect sound is also changed, and when the sound image is at a distant position, the relative position of the direct sound and the reflected sound (indirect sound) (for example, the time interval indicated by m and n in FIG. 5) is close. However, when the sound images are close to each other, the relative position (time interval) between the direct sound and the reflected sound (indirect sound) is set far (long).
【0021】(周波数特性調整処理)反射音付加処理さ
れた音源信号は、周波数特性調整回路4で周波数特性が
調整される。これは、距離に応じた空気よる音の吸収に
相当する処理であり、距離が大きくなるほど高域が吸収
されて減衰する状態を再現するものである。周波数特性
調整回路4は、距離が大きくなるほど高域の周波数の減
衰量が大きく、距離が小さいときではほぼフラットな周
波数特性を有する可変ローパスフィルタである。周波数
特性調整回路4の周波数特性の一例を図6に示す。同図
(A)は距離が小さいときの特性で、同図(B)は距離
が大きいときの特性である。(Frequency Characteristic Adjustment Processing) The frequency characteristics of the sound source signal subjected to the reflected sound addition processing are adjusted by the frequency characteristics adjustment circuit 4. This is a process corresponding to the absorption of sound by air according to the distance, and reproduces a state in which the higher range is absorbed and attenuated as the distance increases. The frequency characteristic adjusting circuit 4 is a variable low-pass filter that has a larger amount of attenuation of high frequency as the distance increases, and has a substantially flat frequency characteristic when the distance is small. FIG. 6 shows an example of frequency characteristics of the frequency characteristic adjusting circuit 4. The figure (A) shows the characteristics when the distance is small, and the figure (B) shows the characteristics when the distance is large.
【0022】(音像定位処理)これらの距離感制御がな
された後に、前述した基本原理に基づいた音像定位処理
がなされる。音像定位処理回路5は、左右一対のスピー
カで立体音像を再生するために、距離感制御されたモノ
ラル音源信号を畳み込み演算処理する、例えば一対のコ
ンボルバ(図示せず)からなる畳み込み演算処理回路で
ある。なお、図7は、一対のコンボルバに供給されて処
理されるる左右のインパルス応答(コンボルバの係数c
fLx,cfRx)の一例である。そして、音像位置
(方向定位θ)に応じた一対のコンボルバの係数cfL
x,cfRxが設定されて、畳み込み演算処理される。(Sound Image Localization Processing) After these senses of distance control are performed, the sound image localization processing based on the above-mentioned basic principle is performed. The sound image localization processing circuit 5 is, for example, a convolution operation processing circuit including a pair of convolvers (not shown) that performs convolution operation processing on a monaural sound source signal whose distance is controlled in order to reproduce a stereoscopic sound image with a pair of left and right speakers. is there. Note that FIG. 7 shows left and right impulse responses (convolver coefficients c that are supplied to and processed by a pair of convolvers.
fLx, cfRx). Then, a pair of convolver coefficients cfL corresponding to the sound image position (direction localization θ)
x and cfRx are set, and the convolution operation processing is performed.
【0023】このようにして、例えば、自動車音が図2
に示す音像経路に沿って移動するように音像処理する場
合では、最初に、音像位置(ゲーム操作者Mと音像との
距離d)に応じてモノラル音源信号に距離感制御の信号
処理がなされる。コントローラ6により、ピッチシフト
(周波数制御)回路1,振幅調整回路2に対して、ピッ
チシフト及び振幅調整のため制御信号が送られ、さら
に、反射音付加回路3,周波数特性調整回路4に対し
て、反射音係数及びフィルタ係数が送られる。次に、音
像位置(方向定位θ)に応じた畳み込み演算処理がなさ
れる。コントローラ6により、音像定位処理回路5(一
対のコンボルバ)に、一対のコンボルバの係数cfL
x,cfRxが供給される。コントローラ6は、音像の
移動にあわせて、ピッチシフト及び振幅調整のため制御
信号,反射音係数,フィルタ係数,コンボルバの係数を
順次に切換え、距離感制御及び畳み込み演算される。そ
して、距離感制御及び畳み込み演算処理されたステレオ
信号を、離間して配設された一対のスピーカsp1,s
p2で(通常のステレオ)再生すると、ゲーム操作者M
には、音像経路に沿って音像移動する自動車音として聞
かれることになる。In this way, for example, a vehicle sound is generated as shown in FIG.
In the case of performing the sound image processing so as to move along the sound image path shown in, the signal processing of distance control is first performed on the monaural sound source signal according to the sound image position (distance d between the game operator M and the sound image). . The controller 6 sends a control signal for pitch shift and amplitude adjustment to the pitch shift (frequency control) circuit 1 and the amplitude adjustment circuit 2, and further to the reflected sound addition circuit 3 and the frequency characteristic adjustment circuit 4. , The reflected sound coefficient and the filter coefficient are sent. Next, convolution calculation processing is performed according to the sound image position (direction localization θ). The controller 6 causes the sound image localization processing circuit 5 (a pair of convolvers) to have a pair of convolver coefficients cfL.
x, cfRx are supplied. The controller 6 sequentially switches the control signal, the reflected sound coefficient, the filter coefficient, and the convolver coefficient for pitch shift and amplitude adjustment in accordance with the movement of the sound image, and performs distance feeling control and convolution calculation. Then, the stereo signals that have been subjected to the sense of distance control and the convolution calculation processing are paired with a pair of speakers sp1 and sp1 that are arranged apart from each other.
When playing (normal stereo) with p2, the game operator M
Will be heard as a vehicle sound moving along the sound image path.
【0024】以上詳述したように、本距離感制御方法で
は、音像の移動に伴う音像と聴取者(ゲーム操作者M)
との距離の変化に応じて、単にその振幅を制御するだけ
でなく、周波数特性,直接音と間接音とのレベル比及び
時間間隔,周波数(ピッチ)などの物理的な諸特性を制
御して、大気による音の吸収,現実の音像空間に相当す
る反射音と残響音,ドップラー効果などを再現するよう
にしたので、所望の音像定位位置と聴取者との距離感を
忠実に再現して、奥行きと拡がりを有する立体音像の再
生が可能である。したがって、本距離感制御方法と共に
音像定位処理することにより、所望の音像を所望の任意
の位置に、定位させることができ、正面に映像再生装置
(例えば、ディスプレイを扇状に並べた映像再生装置)
などを設置してゲーム画面と共に音響再生すれば、ケー
ム操作者Mの操作に応じて画面と音像が変化して、極め
て臨場感が高いアミューズメントゲーム機を構成でき
る。As described above in detail, in the present distance feeling control method, the sound image accompanying the movement of the sound image and the listener (game operator M)
According to the change of the distance between and, not only the amplitude is controlled, but also the physical characteristics such as frequency characteristics, level ratio between direct sound and indirect sound, time interval, frequency (pitch), etc. are controlled. , The sound absorption by the atmosphere, the reflected sound and the reverberant sound equivalent to the actual sound image space, the Doppler effect, etc. are reproduced, so the desired sound image localization position and the sense of distance between the listener are faithfully reproduced. It is possible to reproduce a stereoscopic sound image having depth and breadth. Therefore, a desired sound image can be localized at a desired arbitrary position by performing sound image localization processing together with the present sense of distance control method, and a video reproducing device (for example, a video reproducing device in which displays are arranged in a fan shape) is provided in front.
If the sound is reproduced along with the game screen by installing such a device, the screen and the sound image are changed according to the operation of the game operator M, so that an amusement game machine having an extremely high sense of presence can be configured.
【0025】また、大気による音の吸収,現実の音像空
間に相当する反射音と残響音,ドップラー効果などの距
離感の再現は、ピッチシフト(周波数制御)回路1,振
幅調整回路2,反射音付加回路3,周波数特性調整回路
4などによる周波数特性,直接音と間接音とのレベル比
及び時間間隔,周波数などの電気的な処理で実現してい
るので、音像の移動(距離の変化)に合わせて、リアル
タイムで処理することができ、バーチャルリアリティを
実現する装置などに幅広く利用することができる。Further, the pitch shift (frequency control) circuit 1, the amplitude adjustment circuit 2, the reflected sound is used to reproduce the sense of distance such as absorption of sound by the atmosphere, reflected sound and reverberation sound equivalent to the actual sound image space, and Doppler effect. Since it is realized by electrical processing such as frequency characteristics by the additional circuit 3 and the frequency characteristic adjusting circuit 4, the level ratio between direct sound and indirect sound, time interval, frequency, etc., it can be used to move the sound image (change in distance). In addition, it can be processed in real time and can be widely used for devices that realize virtual reality.
【0026】[0026]
【発明の効果】本発明になる距離感制御方法によれば、
音像の移動に伴う音像と聴取者(例えは、ゲーム操作
者)との距離の変化に応じて、大気による音の吸収,現
実の音像空間に相当する反射音と残響音,ドップラー効
果の変化などを再現するようにしたので、音像定位処理
に際して使用することにより、所望の音像定位位置と聴
取者との距離感が忠実に再現されて、奥行きと拡がりを
有する立体音像の再生が可能となる。According to the distance control method of the present invention,
Depending on the change in the distance between the sound image and the listener (for example, the game operator) due to movement of the sound image, absorption of sound by the atmosphere, reflected sound and reverberation sound equivalent to the actual sound image space, changes in Doppler effect, etc. Since it is reproduced, by using it in the sound image localization processing, the sense of distance between the desired sound image localization position and the listener is faithfully reproduced, and the stereoscopic sound image having depth and breadth can be reproduced.
【図1】本発明になる音像定位処理における距離感制御
方法の一実施例を説明する図で、音像定位処理における
距離感制御方法を実施する装置の基本的な構成を示すも
のである。FIG. 1 is a diagram for explaining an embodiment of a sense of distance control method in sound image localization processing according to the present invention, and shows a basic configuration of an apparatus for implementing the sense of distance control method in sound image localization processing.
【図2】所望の音像定位位置と聴取者との距離を説明す
る図であり、所定の時間(または速度)で聴取者の側方
を通り抜けていく自動車音(音源)の移動を示す例であ
る。FIG. 2 is a diagram illustrating a distance between a desired sound image localization position and a listener, showing an example of movement of an automobile sound (sound source) passing through a side of the listener at a predetermined time (or speed). is there.
【図3】音像定位処理の原理図である。FIG. 3 is a principle diagram of sound image localization processing.
【図4】振幅調整処理回路のインパルス応答及び周波数
特性の一例である。FIG. 4 is an example of an impulse response and a frequency characteristic of an amplitude adjustment processing circuit.
【図5】反射音付加回路のインパルス応答及び周波数特
性の一例である。FIG. 5 is an example of an impulse response and a frequency characteristic of a reflected sound adding circuit.
【図6】周波数特性調整回路の周波数特性の一例であ
る。FIG. 6 is an example of frequency characteristics of a frequency characteristic adjusting circuit.
【図7】一対のコンボルバに供給されて処理されるイン
パルス応答の一例である。FIG. 7 is an example of an impulse response supplied to and processed by a pair of convolvers.
1 ピッチシフト(周波数制御)回路 2 振幅調整回路 3 反射音付加回路 4 周波数特性調整回路 5 音像定位処理回路 6 コントローラ M 聴取者(ゲーム操作者) d 音像と聴取者(ゲーム操作者)との距離 x 音像定位位置 sp1,sp2 トランスジューサ(スピーカ) 1 Pitch shift (frequency control) circuit 2 Amplitude adjustment circuit 3 Reflected sound addition circuit 4 Frequency characteristic adjustment circuit 5 Sound image localization processing circuit 6 Controller M Listener (game operator) d Distance between sound image and listener (game operator) x Sound image localization position sp1, sp2 Transducer (speaker)
Claims (4)
サから、音像定位処理された信号を再生して、聴取者に
前記複数のトランスジューサとは異なる任意の位置に音
像が定位しているように感じさせる音像定位処理におけ
る距離感制御方法であって、 所望の音像定位位置と聴取者との距離に応じて、信号の
振幅及び周波数特性を制御するようにしたことを特徴と
する音像定位処理における距離感制御方法。1. A sound image localization signal is reproduced from a plurality of transducers arranged apart from each other so that a sound image is localized at an arbitrary position different from the plurality of transducers to a listener. A method of controlling a sense of distance in a sound image localization process, which is characterized in that the amplitude and frequency characteristics of a signal are controlled according to a desired sound image localization position and a distance between a listener and the sound image localization process. Distance control method.
て、大気による音の吸収を再現するようにしたことを特
徴とする請求項1に記載の音像定位処理における距離感
制御方法。2. A sense of distance control method in sound image localization processing according to claim 1, wherein a high frequency component of the signal is attenuated according to the distance to reproduce sound absorption by the atmosphere. .
レベル比及び時間間隔を可変して、現実の音像空間に相
当する反射音と残響音を再現するようにしたことを特徴
とする請求項1〜2に記載の音像定位処理における距離
感制御方法。3. A reflected sound and a reverberant sound corresponding to an actual sound image space are reproduced by varying a level ratio and a time interval between a direct sound and an indirect sound of a signal according to a distance. The sense of distance control method in the sound image localization process according to claim 1.
の周波数を可変して、ドップラー効果を再現するように
したことを特徴とする請求項1〜3に記載の音像定位処
理における距離感制御方法。4. The sound image localization process according to claim 1, wherein the frequency of the signal is varied according to the relative speed between the sound image and the listener to reproduce the Doppler effect. Distance control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12515593A JPH06315200A (en) | 1993-04-28 | 1993-04-28 | Distance sensation control method for sound image localization processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12515593A JPH06315200A (en) | 1993-04-28 | 1993-04-28 | Distance sensation control method for sound image localization processing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06315200A true JPH06315200A (en) | 1994-11-08 |
Family
ID=14903242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12515593A Pending JPH06315200A (en) | 1993-04-28 | 1993-04-28 | Distance sensation control method for sound image localization processing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06315200A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5982903A (en) * | 1995-09-26 | 1999-11-09 | Nippon Telegraph And Telephone Corporation | Method for construction of transfer function table for virtual sound localization, memory with the transfer function table recorded therein, and acoustic signal editing scheme using the transfer function table |
US6470087B1 (en) | 1996-10-08 | 2002-10-22 | Samsung Electronics Co., Ltd. | Device for reproducing multi-channel audio by using two speakers and method therefor |
KR20050053313A (en) * | 2003-12-02 | 2005-06-08 | 소니 가부시끼 가이샤 | Sound field reproduction apparatus and sound field space reproduction system |
JP2007079179A (en) * | 2005-09-14 | 2007-03-29 | Univ Waseda | Apparatus and method for controlling auditory sense of distance in acoustic reproduction |
JP2008141310A (en) * | 2006-11-30 | 2008-06-19 | Oki Electric Ind Co Ltd | Telephone terminal, call signal adjusting method, and program for call signal adjustment |
JP2008228155A (en) * | 2007-03-15 | 2008-09-25 | Oki Electric Ind Co Ltd | Sound image localization processor, method, and program |
JP2010041190A (en) * | 2008-08-01 | 2010-02-18 | Yamaha Corp | Acoustic device and program |
JP2010130403A (en) * | 2008-11-28 | 2010-06-10 | Sharp Corp | Video control device, imaging apparatus and display apparatus which are provided with same |
JP2011028169A (en) * | 2009-07-29 | 2011-02-10 | Copcom Co Ltd | Sound effect generating device, sound effect generating program for providing the same, and recording medium |
US8005234B2 (en) | 2006-02-08 | 2011-08-23 | Yamaha Corporation | Method for synthesizing impulse response and method for creating reverberation |
JP2014063183A (en) * | 2013-11-05 | 2014-04-10 | Copcom Co Ltd | Sound effect generation device and sound effect generation program for achieving sound effect generation device |
JP2014063182A (en) * | 2013-11-05 | 2014-04-10 | Copcom Co Ltd | Sound effect generation device and sound effect generation program for achieving sound effect generation device |
JP2014063181A (en) * | 2013-11-05 | 2014-04-10 | Copcom Co Ltd | Sound effect generation device and sound effect generation program for achieving sound effect generation device |
JPWO2015107926A1 (en) * | 2014-01-16 | 2017-03-23 | ソニー株式会社 | Audio processing apparatus and method, and program |
-
1993
- 1993-04-28 JP JP12515593A patent/JPH06315200A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004103023A1 (en) * | 1995-09-26 | 2004-11-25 | Ikuichiro Kinoshita | Method for preparing transfer function table for localizing virtual sound image, recording medium on which the table is recorded, and acoustic signal editing method using the medium |
US5982903A (en) * | 1995-09-26 | 1999-11-09 | Nippon Telegraph And Telephone Corporation | Method for construction of transfer function table for virtual sound localization, memory with the transfer function table recorded therein, and acoustic signal editing scheme using the transfer function table |
US6470087B1 (en) | 1996-10-08 | 2002-10-22 | Samsung Electronics Co., Ltd. | Device for reproducing multi-channel audio by using two speakers and method therefor |
US7783047B2 (en) | 2003-12-02 | 2010-08-24 | Sony Corporation | Sound filed reproduction apparatus and sound filed space reproduction system |
KR20050053313A (en) * | 2003-12-02 | 2005-06-08 | 소니 가부시끼 가이샤 | Sound field reproduction apparatus and sound field space reproduction system |
JP2007079179A (en) * | 2005-09-14 | 2007-03-29 | Univ Waseda | Apparatus and method for controlling auditory sense of distance in acoustic reproduction |
JP4677587B2 (en) * | 2005-09-14 | 2011-04-27 | 学校法人早稲田大学 | Apparatus and method for controlling sense of distance in auditory reproduction |
US8005234B2 (en) | 2006-02-08 | 2011-08-23 | Yamaha Corporation | Method for synthesizing impulse response and method for creating reverberation |
JP2008141310A (en) * | 2006-11-30 | 2008-06-19 | Oki Electric Ind Co Ltd | Telephone terminal, call signal adjusting method, and program for call signal adjustment |
JP2008228155A (en) * | 2007-03-15 | 2008-09-25 | Oki Electric Ind Co Ltd | Sound image localization processor, method, and program |
US8204262B2 (en) | 2007-03-15 | 2012-06-19 | Oki Electric Industry Co., Ltd. | Sound image localization processor, method, and program |
JP2010041190A (en) * | 2008-08-01 | 2010-02-18 | Yamaha Corp | Acoustic device and program |
JP2010130403A (en) * | 2008-11-28 | 2010-06-10 | Sharp Corp | Video control device, imaging apparatus and display apparatus which are provided with same |
JP2011028169A (en) * | 2009-07-29 | 2011-02-10 | Copcom Co Ltd | Sound effect generating device, sound effect generating program for providing the same, and recording medium |
JP2014063181A (en) * | 2013-11-05 | 2014-04-10 | Copcom Co Ltd | Sound effect generation device and sound effect generation program for achieving sound effect generation device |
JP2014063182A (en) * | 2013-11-05 | 2014-04-10 | Copcom Co Ltd | Sound effect generation device and sound effect generation program for achieving sound effect generation device |
JP2014063183A (en) * | 2013-11-05 | 2014-04-10 | Copcom Co Ltd | Sound effect generation device and sound effect generation program for achieving sound effect generation device |
JPWO2015107926A1 (en) * | 2014-01-16 | 2017-03-23 | ソニー株式会社 | Audio processing apparatus and method, and program |
US10477337B2 (en) | 2014-01-16 | 2019-11-12 | Sony Corporation | Audio processing device and method therefor |
JP2020017978A (en) * | 2014-01-16 | 2020-01-30 | ソニー株式会社 | Voice processing apparatus and method, and program |
US10694310B2 (en) | 2014-01-16 | 2020-06-23 | Sony Corporation | Audio processing device and method therefor |
US10812925B2 (en) | 2014-01-16 | 2020-10-20 | Sony Corporation | Audio processing device and method therefor |
US11223921B2 (en) | 2014-01-16 | 2022-01-11 | Sony Corporation | Audio processing device and method therefor |
US11778406B2 (en) | 2014-01-16 | 2023-10-03 | Sony Group Corporation | Audio processing device and method therefor |
US12096201B2 (en) | 2014-01-16 | 2024-09-17 | Sony Group Corporation | Audio processing device and method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2550380B2 (en) | Three-dimensional auditory display and method utilizing enhanced bionic engineering emulation of human binaural localization | |
JP4602621B2 (en) | Sound correction device | |
EP1025743B1 (en) | Utilisation of filtering effects in stereo headphone devices to enhance spatialization of source around a listener | |
US5371799A (en) | Stereo headphone sound source localization system | |
US8121297B2 (en) | Signal processing device and sound image orientation apparatus | |
US20030086572A1 (en) | Three-dimensional sound reproducing apparatus and a three-dimensional sound reproduction method | |
JPH11187497A (en) | Sound image/sound field control system | |
JP2001511995A (en) | Audio signal processing method | |
JPH06315200A (en) | Distance sensation control method for sound image localization processing | |
JPH0698400A (en) | Acoustic image positioning device | |
JPH07105999B2 (en) | Sound image localization device | |
JP3059191B2 (en) | Sound image localization device | |
GB2202111A (en) | Reverb generator | |
JP2924502B2 (en) | Sound image localization control device | |
JPH0833092A (en) | Design device for transfer function correction filter of stereophonic reproducing device | |
JPH08237790A (en) | Headphone reproducing device | |
JPH099398A (en) | Sound image localization device | |
JPS596560B2 (en) | stereo system | |
JPH08102999A (en) | Stereophonic sound reproducing device | |
JP3090416B2 (en) | Sound image control device and sound image control method | |
JP6643778B2 (en) | Sound equipment, electronic keyboard instruments and programs | |
JP2924539B2 (en) | Sound image localization control method | |
JP3409364B2 (en) | Sound image localization control device | |
JPH10126898A (en) | Sound image localization device and sound image localization method | |
JPH0323751Y2 (en) |