JPH06314661A - Forming method for semiconductor thin film - Google Patents
Forming method for semiconductor thin filmInfo
- Publication number
- JPH06314661A JPH06314661A JP6022962A JP2296294A JPH06314661A JP H06314661 A JPH06314661 A JP H06314661A JP 6022962 A JP6022962 A JP 6022962A JP 2296294 A JP2296294 A JP 2296294A JP H06314661 A JPH06314661 A JP H06314661A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- film
- forming
- semiconductor thin
- polycrystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 63
- 239000004065 semiconductor Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims description 35
- 239000010408 film Substances 0.000 claims abstract description 88
- 239000012535 impurity Substances 0.000 claims abstract description 37
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000012495 reaction gas Substances 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims description 15
- 239000007789 gas Substances 0.000 claims description 13
- 238000005229 chemical vapour deposition Methods 0.000 claims description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 2
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 claims description 2
- OEYOHULQRFXULB-UHFFFAOYSA-N arsenic trichloride Chemical compound Cl[As](Cl)Cl OEYOHULQRFXULB-UHFFFAOYSA-N 0.000 claims description 2
- 229910000077 silane Inorganic materials 0.000 claims description 2
- QTQRGDBFHFYIBH-UHFFFAOYSA-N tert-butylarsenic Chemical compound CC(C)(C)[As] QTQRGDBFHFYIBH-UHFFFAOYSA-N 0.000 claims description 2
- ZGNPLWZYVAFUNZ-UHFFFAOYSA-N tert-butylphosphane Chemical compound CC(C)(C)P ZGNPLWZYVAFUNZ-UHFFFAOYSA-N 0.000 claims description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 claims 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 47
- 239000000758 substrate Substances 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 22
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 21
- 239000011574 phosphorus Substances 0.000 description 21
- 238000002425 crystallisation Methods 0.000 description 9
- 230000008025 crystallization Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910018594 Si-Cu Inorganic materials 0.000 description 2
- 229910008465 Si—Cu Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical group [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体薄膜の形成方法に
関し、特に各種半導体デバイスに使用される多結晶シリ
コン薄膜の形成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a semiconductor thin film, and more particularly to a method for forming a polycrystalline silicon thin film used in various semiconductor devices.
【0002】[0002]
【従来の技術】多結晶シリコン薄膜は、各種の電極、配
線材料あるいは抵抗体として、半導体デバイスの形成材
料として重要な役割を担っている。例えば、メモリーデ
バイスにおける容量電極、ゲート電極、あるいはデバイ
ス活性層と配線層とのコンタクト埋設材料などに多結晶
シリコン薄膜が適用されている。また、近年において
は、多結晶シリコン薄膜そのものをデバイスの活性層と
して用いる多結晶シリコン薄膜トランジスタ(TFT)
が開発され、SRAM(スタティックRAM)の負荷素
子として、あるいは液晶表示装置(LCD)用の液晶駆
動素子として実用化されている。2. Description of the Related Art A polycrystalline silicon thin film plays an important role as a material for forming a semiconductor device as various electrodes, wiring materials or resistors. For example, a polycrystalline silicon thin film is applied to a capacitor electrode, a gate electrode in a memory device, or a contact burying material between a device active layer and a wiring layer. Further, in recent years, a polycrystalline silicon thin film transistor (TFT) using a polycrystalline silicon thin film itself as an active layer of a device.
Have been developed and put into practical use as a load element of SRAM (static RAM) or a liquid crystal drive element for a liquid crystal display (LCD).
【0003】従来、これらの多結晶シリコン薄膜の形成
方法としては、シラン系ガス(SiH4 ,Si2 H6 )
を成膜ガスとする化学気相成長(CVD)法を用い、6
50℃程度の成膜温度で多結晶シリコン薄膜を直接堆積
する方法、あるいは500℃程度の成膜温度でまずアモ
ルファスシリコン薄膜を堆積させ、その後試料温度を6
00〜900℃程度のある温度に保持して熱処理(結晶
化処理)を行い多結晶シリコン薄膜を得る方法がある。
後者の方法は例えば、小林(Kobayashi)らに
より、アブストラクト オブ ザ トエンティス コン
ファレンス オン ソリッド ステイト デバイセス
アンド マテリアルズ(Abstracts of t
he 20th Conference on Sol
id State Devices and Mate
rials)1989.pp.57−60に報告されて
いる。Conventionally, as a method of forming these polycrystalline silicon thin films, a silane-based gas (SiH 4 , Si 2 H 6 ) has been used.
Using a chemical vapor deposition (CVD) method with a film forming gas of 6
A method of directly depositing a polycrystalline silicon thin film at a film forming temperature of about 50 ° C., or an amorphous silicon thin film is first deposited at a film forming temperature of about 500 ° C., and then the sample temperature is set to 6
There is a method in which a polycrystalline silicon thin film is obtained by performing heat treatment (crystallization treatment) while maintaining it at a certain temperature of about 00 to 900 ° C.
The latter method is described in, for example, Kobayashi et al., Abstract of the Entities Conference on Solid State Devices.
And Materials (Abstracts of t
he 20th Conference on Sol
id State Devices and Mate
rials) 1989. pp. 57-60.
【0004】特に、後者の方法で形成した多結晶シリコ
ン薄膜は、平均結晶粒径が大きいため、前者の方法で形
成した多結晶シリコン薄膜と比較してより低抵抗化が可
能であること、あるいはトランジスタ特性に強く影響す
る結晶粒界が少ないことなどの利点を持っている。この
ため、この後者の方法が現在注目を集めており、TFT
用薄膜への適用、あるいは将来の各種電極形成法とし
て、精力的に開発が行われている。In particular, since the polycrystalline silicon thin film formed by the latter method has a large average crystal grain size, the resistance can be made lower than that of the polycrystalline silicon thin film formed by the former method, or It has advantages such as few crystal grain boundaries that strongly affect the transistor characteristics. For this reason, this latter method is currently receiving attention, and
It is being energetically developed as an application to a thin film for electrodes or as a method for forming various electrodes in the future.
【0005】次に、このアモルファスシリコンの結晶化
により多結晶シリコン薄膜を形成する従来の方法につい
て、具体例を用いて説明する。まず、シリコン単結晶基
板上に熱酸化膜を100nm成長させた後、通常のLP
CVD炉を用いてアモルファスシリコン薄膜を150n
m成膜し、アモルファスシリコン基板を作成する。成膜
条件は、例えば圧力0.15Torr、温度470℃、
成膜ガス流量100%−Si2 H6 96sccm、He
ベース4%−PH3 120sccmである。次に、電気
炉を用い、倒えば窒素雰囲気中で、炉内温度を850℃
に保持し30分間の熱処理を施してアモルファスシリコ
ン薄膜の結晶化を行い多結晶シリコン薄膜を得る。この
時のPH3 ガスとSi2 H6 ガス流量から得られる反応
ガス中のPおよびSi原子数比(P/Si=2.5×1
0-2)でアモルファスシリコンを成膜すると、結晶化後
の膜中に存在するP濃度はおよそ3×1020cm-3とな
る。従来より用いられている100nm程度以上の膜厚
の多結晶シリコン膜では、この程度に高濃度のPが膜中
に存在する場合、抵抗率が約6×10-3Ω・mと充分低
抵抗な多結晶シリコン膜となる。Next, a conventional method of forming a polycrystalline silicon thin film by crystallizing this amorphous silicon will be described with reference to a specific example. First, a thermal oxide film is grown to 100 nm on a silicon single crystal substrate, and then a normal LP is formed.
Amorphous silicon thin film 150n using CVD furnace
m to form an amorphous silicon substrate. The film forming conditions are, for example, a pressure of 0.15 Torr, a temperature of 470 ° C.,
Film forming gas flow rate 100% -Si 2 H 6 96 sccm, He
Base is a 4% -PH 3 120sccm. Next, using an electric furnace, in a nitrogen atmosphere if the temperature falls, the temperature inside the furnace is 850 ° C.
Then, the amorphous silicon thin film is crystallized by carrying out a heat treatment for 30 minutes while keeping it at the above temperature to obtain a polycrystalline silicon thin film. The ratio of the numbers of P and Si atoms in the reaction gas obtained from the flow rates of the PH 3 gas and the Si 2 H 6 gas at this time (P / Si = 2.5 × 1
When an amorphous silicon film is formed at 0 -2 ), the P concentration existing in the film after crystallization becomes about 3 × 10 20 cm -3 . In the case of a polycrystalline silicon film having a thickness of about 100 nm or more, which has been conventionally used, when P having such a high concentration is present in the film, the resistivity is about 6 × 10 −3 Ω · m, which is a sufficiently low resistance. It becomes a polycrystalline silicon film.
【0006】ここで、多結晶シリコン膜中の不純物濃度
と抵抗率の関係は、和田(Wada)らにより、デンキ
カガク(Denki Kagaku),47(197
9)118や、中山(Nakayama)らにより、ジ
ャパニーズ ジャーナル オブアプライド フィジクス
(Japanese Journal of App
lied Physics)、23(1984)L49
3などに報告されている。これらによると、3×1020
〜1×1021cm-3付近の膜中リン(P)濃度で抵抗率
が最小となり、それ以上の濃度では抵抗率が増加する傾
向がみられている。Here, the relationship between the impurity concentration in the polycrystalline silicon film and the resistivity is described by Wada et al. In Denki Kagaku, 47 (197).
9) 118, Nakayama, et al., Japanese Journal of Applied Physics (Japanese Journal of App).
Lied Physics), 23 (1984) L49
3 etc. According to these, 3 × 10 20
There is a tendency that the resistivity becomes minimum at a phosphorus (P) concentration in the film in the vicinity of ˜1 × 10 21 cm −3 , and the resistivity increases at a concentration higher than that.
【0007】多結晶シリコン膜中のリン濃度を変化させ
るためにアモルファスシリコン成膜時の反応ガス中のP
/Siを変化させ、結晶化後多結晶シリコン膜の抵抗率
の変化を調べた結果を図3に示す。膜の形成条件として
は、ガス流量比以外は先に示した具体例の条件を用い
た。In order to change the phosphorus concentration in the polycrystalline silicon film, P in the reaction gas at the time of forming the amorphous silicon film
FIG. 3 shows the results of examining the change in resistivity of the polycrystalline silicon film after crystallization by changing / Si. As the film forming conditions, the conditions of the specific examples shown above were used except the gas flow rate ratio.
【0008】図3から分るように、P/Siが小さい量
では反応ガス中のP/Siが大きくなるにつれて膜の抵
抗率は減少する。これは、膜中のリン濃度の増加に伴っ
てキャリア濃度が増加するためである。しかし、P/S
i=1×10-2程度でその抵抗率の減少はなくなり、そ
れ以上P/Siを大きくしても抵抗率の減少は望めな
い。むしろ過剰のPが多結晶シリコンの結晶性を悪く
し、抵抗率は若干増加する傾向さえ見られる。従って、
従来は低抵抗率の多結晶シリコンを成膜する条件として
P/Si=2〜3×10-2程度の値を用い、リンの濃度
が2〜4×1020cm-3の多結晶シリコン膜を得てい
た。As can be seen from FIG. 3, when the amount of P / Si is small, the resistivity of the film decreases as P / Si in the reaction gas increases. This is because the carrier concentration increases as the phosphorus concentration in the film increases. However, P / S
When i = 1 × 10 -2 , the decrease in the resistivity disappears, and the decrease in resistivity cannot be expected even if P / Si is further increased. Rather, excessive P deteriorates the crystallinity of the polycrystalline silicon, and it is even observed that the resistivity slightly increases. Therefore,
Conventionally, a value of about P / Si = 2 × 3 × 10 −2 is used as a condition for forming low resistivity polycrystalline silicon, and a polycrystalline silicon film having a phosphorus concentration of 2 × 4 × 10 20 cm −3. Was getting
【0009】[0009]
【発明が解決しようとする課題】電極材料としての多結
晶シリコンは、半導体デバイスの高集積化により非常に
微細な領域での適用が求められている。例えば、径の大
きさが0.2μm以下のコンタクトホールの埋め込み
や、複雑化した、三次元型容量などの形成において見ら
れる0.1μmよりも狭い領域への埋め込みなどへの適
用により、多結晶シリコンの実質的薄膜化が進んでい
る。Polycrystalline silicon as an electrode material is required to be applied in a very fine region due to high integration of semiconductor devices. For example, by applying to a buried contact hole having a diameter of 0.2 μm or less or a complicated region narrower than 0.1 μm, which is seen in the formation of a three-dimensional type capacitor, etc. Substantial thinning of silicon is progressing.
【0010】しかし、従来の条件(P/Si=0.02
5)で成膜した場合、多結晶シリコン膜を薄膜化してゆ
くにつれて、図2に示したように、膜厚50nm程度付
近からその抵抗率は急激に増加する現象が見られる。実
際、膜厚100nmにおいては抵抗率6×10-6Ω・m
であったのに対し、膜厚25nmでは6.5×10-5Ω
・mと一桁以上も増加し、より薄膜化すると一層抵抗率
が増加してゆく。しかし、薄膜成長においても成長時の
膜中の不純物(リン)濃度は、従来使用している膜厚の
場合と同程度であり、薄膜化による減少はみられない。
ただし、結晶化の熱処理時における不純物の外方拡散が
あるため、多結晶シリコン膜中の不純物濃度の減少は若
干あるが、この抵抗率の増加を招くほどではない。However, the conventional condition (P / Si = 0.02)
When the film is formed in 5), as the thickness of the polycrystalline silicon film is reduced, as shown in FIG. 2, there is a phenomenon in which the resistivity increases sharply from around the film thickness of about 50 nm. In fact, when the film thickness is 100 nm, the resistivity is 6 × 10 −6 Ω · m
In contrast, the film thickness of 25 nm was 6.5 × 10 −5 Ω.
・ Increase by more than an order of magnitude, and the resistivity will increase as the thickness decreases. However, even in thin film growth, the concentration of impurities (phosphorus) in the film at the time of growth is about the same as in the case of the conventionally used film thickness, and there is no decrease due to thinning.
However, the impurity concentration in the polycrystalline silicon film is slightly decreased because of the outward diffusion of impurities during the crystallization heat treatment, but this is not enough to cause the increase in the resistivity.
【0011】この減少は、高集積化した半導体デバイス
の各種電極材料に多結晶シリコン膜を適用するには大き
な障害となる。本発明の目的は、50nm以下の薄膜に
おいても抵抗率の充分低い半導体薄膜の形成方法を提供
することにある。This decrease is a major obstacle to applying a polycrystalline silicon film to various electrode materials for highly integrated semiconductor devices. An object of the present invention is to provide a method for forming a semiconductor thin film having a sufficiently low resistivity even in a thin film having a thickness of 50 nm or less.
【0012】[0012]
【課題を解決するための手段】第1の発明の半導体薄膜
の形成方法は、不純物を導入しながらCVD法により厚
さ50nm以下のアモルファスシリコン薄膜を堆積した
後に熱処理により多結晶化させる半導体薄膜の形成方法
において、反応ガス中のシリコン(Si)原子数に対す
る不純物原子数Dの比(D/S)を0.05〜0.2に
することを特徴とするものである。A method of forming a semiconductor thin film according to a first aspect of the present invention is a semiconductor thin film in which an amorphous silicon thin film having a thickness of 50 nm or less is deposited by a CVD method while introducing impurities and then polycrystallized by heat treatment. In the forming method, the ratio (D / S) of the number D of impurity atoms to the number of silicon (Si) atoms in the reaction gas is set to 0.05 to 0.2.
【0013】第2の発明の半導体薄膜の形成方法は、不
純物を導入しながらCVD法により厚さ50nm以下の
アモルファスシリコン薄膜を堆積した後に熱処理により
多結晶化させる半導体薄膜の形成方法において、半導体
薄膜中の不純物濃度が5×1020〜2.5×1021cm
-3となるように導入する不純物量を制御することを特徴
とするものである。The method of forming a semiconductor thin film of the second invention is a method of forming a semiconductor thin film in which an amorphous silicon thin film having a thickness of 50 nm or less is deposited by a CVD method while introducing impurities and then polycrystallized by heat treatment. The impurity concentration inside is 5 × 10 20 to 2.5 × 10 21 cm
The feature is that the amount of impurities to be introduced is controlled so as to be −3 .
【0014】D/Sを0.05〜0.2にすることはC
VD法における反応ガスの流量を制御することにより容
易である。D/Sを0.05〜0.2にすることにより
多結晶シリコン膜中の不純物濃度は5×1020〜2.5
×1021cm-3程となる。結晶化の為の熱処理条件によ
りこの不純物濃度は多少ばらつくが、そのばらつきは1
0%以内に抑制可能である。Setting D / S to 0.05 to 0.2 is C
It is easy by controlling the flow rate of the reaction gas in the VD method. By setting D / S to be 0.05 to 0.2, the impurity concentration in the polycrystalline silicon film is 5 × 10 20 to 2.5.
It becomes about 10 21 cm -3 . This impurity concentration varies somewhat depending on the heat treatment conditions for crystallization, but the variation is 1
It can be suppressed within 0%.
【0015】多結晶シリコン膜の抵抗率を1×10-5Ω
・m程度にするためには不純物濃度は5×102 cm-3
以上とする必要がある。しかし不純物濃度が2.5×1
021cm-3以上になると、結晶性の劣化や不純物散乱の
影響によりキャリアの移動度が低下し、逆に抵抗率が増
加してしまうため好ましくない。The resistivity of the polycrystalline silicon film is 1 × 10 -5 Ω
・ The impurity concentration should be 5 × 10 2 cm -3 in order to obtain m.
It is necessary to be above. However, the impurity concentration is 2.5 × 1
When it is 0 21 cm −3 or more, carrier mobility is lowered due to the influence of crystallinity deterioration and impurity scattering, and conversely the resistivity increases, which is not preferable.
【0016】[0016]
【実施例】次に、本発明の実施例について、図面を参照
して説明する。図1(a)〜(c)は、本発明の第1の
実施例を説明するための半導体チップの断面図であり、
膜厚が薄く低抵抗率の多結晶シリコン薄膜を得ることを
目的としたものである。Embodiments of the present invention will now be described with reference to the drawings. 1A to 1C are sectional views of a semiconductor chip for explaining a first embodiment of the present invention.
The purpose is to obtain a polycrystalline silicon thin film having a thin film thickness and a low resistivity.
【0017】まず、図1(a)に示すように、面方位
(100),抵抗率1×10-2Ω・mのP型シリコン基
板11上に熱酸化法によりシリコン酸化膜12を100
nmの厚さに形成した。First, as shown in FIG. 1A, a silicon oxide film 12 is formed on a P-type silicon substrate 11 having a plane orientation (100) and a resistivity of 1 × 10 −2 Ω · m by a thermal oxidation method.
It was formed to a thickness of nm.
【0018】次に、図1(b)に示すように、抵抗加熱
炉を用いた通常のバッチ式LPCVD装置を用い、リン
(P)ドープの厚さ10〜100nmのアモルファスシ
リコン薄膜13を複数枚成膜した。成膜条件は、反応管
内温度470℃,圧力0.15Torr,反応ガスとし
て100%−Si2 H6 ,Heベース4%−PH3 ガス
を用い、それぞれの流量は96sccm,120〜48
0sccmとした。この条件での反応ガス中のP/Si
値は2.0×10-2〜1×10-1となり、結晶化後の膜
中リン濃度として、2×1020〜1.3×1021cm-3
の膜から得られるように設定した。Next, as shown in FIG. 1B, a plurality of amorphous silicon thin films 13 having a thickness of 10 to 100 nm and doped with phosphorus (P) are used by using an ordinary batch type LPCVD apparatus using a resistance heating furnace. A film was formed. The film forming conditions are: a reaction tube temperature of 470 ° C., a pressure of 0.15 Torr, a reaction gas of 100% -Si 2 H 6 , and a He base of 4% -PH 3 gas, and the respective flow rates are 96 sccm, 120 to 48.
It was set to 0 sccm. P / Si in the reaction gas under these conditions
The value was 2.0 × 10 -2 to 1 × 10 -1 , and the phosphorus concentration in the film after crystallization was 2 × 10 20 to 1.3 × 10 21 cm -3.
It was set up so that it could be obtained from the membrane.
【0019】その後、図1(c)に示すように、このア
モルファスシリコン薄膜13を窒素雰囲気中で850
℃,30分間の熱処理を行い多結晶シリコン薄膜14を
形成した。尚、熱処理としては600〜900℃,30
分〜2時間の条件を用いることができる。Thereafter, as shown in FIG. 1C, the amorphous silicon thin film 13 is heated to 850 in a nitrogen atmosphere.
A polycrystalline silicon thin film 14 was formed by heat treatment at 30 ° C. for 30 minutes. In addition, as the heat treatment, 600 to 900 ° C., 30
Conditions of minutes to 2 hours can be used.
【0020】膜中のリン濃度が3×1020cm-3(P/
Si=2.5×10-2)のものを従来例として、またリ
ン濃度が1.3×1021cm-3(P/Si=1.0×1
0-1)および2.0×1021cm-3(P/Si=1.5
×10-1)のものをそれぞれ実施例として図2に示す。
従来例においては膜厚が100nm以上では6×10-6
Ω・mと充分抵抗率が低くなるにもかかわらず、成膜す
るアモルファスシリコンの膜厚が薄くなると、およそ5
0nm付近から結晶化後の多結晶シリコンの抵抗率が急
激に増加する減少が現れる。その原因は、膜厚が薄くな
るにつれ多結晶シリコンの結晶粒径が小さくなり、粒界
に偏析する不純物量が増加し、活性化可能な不純物原子
数が不足することが考えられる。The phosphorus concentration in the film is 3 × 10 20 cm -3 (P /
Si = 2.5 × 10 −2 ) as a conventional example, and phosphorus concentration of 1.3 × 10 21 cm −3 (P / Si = 1.0 × 1)
0 −1 ) and 2.0 × 10 21 cm −3 (P / Si = 1.5
2 × 10 −1 ) are shown as examples in FIG.
In the conventional example, when the film thickness is 100 nm or more, 6 × 10 −6
Even if the resistivity is sufficiently low as Ω · m, if the film thickness of the amorphous silicon to be formed becomes thin, it becomes approximately 5
From around 0 nm, there is a sharp decrease in the resistivity of the polycrystalline silicon after crystallization. It is considered that the cause is that the crystal grain size of polycrystalline silicon becomes smaller as the film thickness becomes thinner, the amount of impurities segregated at the grain boundaries increases, and the number of activatable impurity atoms becomes insufficient.
【0021】これに対し膜中のリン濃度が1.3×10
21cm-3においては膜厚30nm程度まで、2.0×1
021cm-3においては膜厚20nm程度まで抵抗率を1
×10-5Ω・mに下げることができる。つまり、第1の
実施例の方法によれば、より多くの不純物を膜中に導入
することによって薄膜化による偏析量の増加を補償し、
活性化しうる不純物原子数を増やすことができるため、
従来よりも抵抗率を下げることができる。On the other hand, the phosphorus concentration in the film is 1.3 × 10
At 21 cm -3 , the film thickness up to about 30 nm is 2.0 x 1
At 0 21 cm -3 , the resistivity is 1 up to a film thickness of about 20 nm.
It can be lowered to × 10 −5 Ω · m. That is, according to the method of the first embodiment, by introducing more impurities into the film, the increase in the segregation amount due to the thinning is compensated,
Since the number of impurity atoms that can be activated can be increased,
It is possible to lower the resistivity than before.
【0022】次に、膜厚18nm,50nmおよび10
0nmの多結晶シリコンに関して、膜中のリン濃度が2
×1020cm-3から1.3×1021cm-3となるよう
に、成膜時のP/Si値を2.0×10-2からその5倍
の値の1×10-1まで増加させた場合の膜中リン濃度と
抵抗率の変化を図4に示す。Next, film thicknesses of 18 nm, 50 nm and 10
Regarding 0 nm polycrystalline silicon, the phosphorus concentration in the film is 2
The P / Si value at the time of film formation is set from 2.0 × 10 -2 to five times the value of 1 × 10 -1 so as to be from × 10 20 cm -3 to 1.3 × 10 21 cm -3. FIG. 4 shows changes in the phosphorus concentration in the film and the resistivity when the concentration was increased.
【0023】図4に示すように、膜厚100nm以上の
多結晶シリコン膜では膜中リン濃度2×1020cm-3に
おいて充分に抵抗率が下がり、それ以上に濃度を増やし
ても抵抗率は減少していない。一方、膜厚50nmの膜
では、膜中リン濃度を2×1020cm-3から5×1020
cm-3と増やすことにより、抵抗率は1.5×10-5Ω
・mから1×10-5Ω・mに減少し、各種電極材料とし
て適用するのに充分低い抵抗率となる。また、リン濃度
を1.0×10-21 cm-3より大きくすることにより、
厚さ100nmの膜に匹敵する抵抗率の多結晶シリコン
膜が得られることが分る。As shown in FIG. 4, in the case of a polycrystalline silicon film having a film thickness of 100 nm or more, the resistivity is sufficiently reduced when the phosphorus concentration in the film is 2 × 10 20 cm -3 , and the resistivity is increased even if the concentration is further increased. Not decreasing. On the other hand, for a film having a film thickness of 50 nm, the phosphorus concentration in the film is 2 × 10 20 cm −3 to 5 × 10 20.
By increasing to cm -3 , the resistivity is 1.5 × 10 -5 Ω
・ Reduced from m to 1 × 10 -5 Ω ・ m, and the resistivity is low enough to be applied as various electrode materials. Further, by making the phosphorus concentration larger than 1.0 × 10 −21 cm −3 ,
It can be seen that a polycrystalline silicon film having a resistivity comparable to that of a film having a thickness of 100 nm can be obtained.
【0024】このように第1の実施例によれば、従来法
と比較して膜厚50nm以下の薄膜においても低抵抗率
の多結晶シリコン薄膜を形成できる。As described above, according to the first embodiment, a polycrystalline silicon thin film having a low resistivity can be formed even in a thin film having a film thickness of 50 nm or less as compared with the conventional method.
【0025】尚、第1の実施例においては、リン(P)
ドープ膜についてのみ説明したが、ドーパント不純物が
砒素(As)あるいはボロン(B)であっても、本発明
によって同様の効果(抵抗率の低減)が得られている。
不純物がPの場合はPH3 の代りに第三ブチルフォスフ
ィンを、不純物がAsの場合はアルシン,第三ブチルア
ルシンまたは三塩化砒素を、不純物がBの場合はジボラ
ンをそれぞれ用いることができる。また成膜ガスとして
はSi2 H6 の代りにSiH4 を用いてもよい。In the first embodiment, phosphorus (P) is used.
Although only the doped film has been described, even if the dopant impurity is arsenic (As) or boron (B), the same effect (reduction in resistivity) is obtained by the present invention.
When the impurity is P, tert-butylphosphine can be used instead of PH 3 , when the impurity is As, arsine, tert-butylarsine or arsenic trichloride can be used, and when the impurity is B, diborane can be used. Further, SiH 4 may be used instead of Si 2 H 6 as the film forming gas.
【0026】図5(a)〜(d)は本発明の第2の実施
例を説明するための半導体チップの断面図である。この
第2の実施例は、本発明を各種半導体装置におけるデバ
イス活性層と配線層とのコンタクト埋設材料に適用した
ものである。FIGS. 5A to 5D are sectional views of a semiconductor chip for explaining the second embodiment of the present invention. In the second embodiment, the present invention is applied to a contact burying material for a device active layer and a wiring layer in various semiconductor devices.
【0027】まず、図5(a)に示すように、面方位
(100)のP型シリコン基板21の表面にAsをイオ
ン注入してn+ 拡散層22を形成する。次に図5(b)
に示すように、全面に厚さ1μmのシリコン酸化膜23
を形成し、フォトリソグラフィー工程およびイオンエッ
チング工程により、直径0.15μm,深さ0.5μm
のコンタクトホール28を形成する。First, as shown in FIG. 5A, As is ion-implanted into the surface of a P-type silicon substrate 21 having a plane orientation (100) to form an n + diffusion layer 22. Next, FIG. 5 (b)
, The silicon oxide film 23 having a thickness of 1 μm is formed on the entire surface.
Formed by photolithography process and ion etching process, and has a diameter of 0.15 μm and a depth of 0.5 μm.
Contact hole 28 is formed.
【0028】次に図5(c)に示すように、第1の実施
例と同様に、膜中のリン濃度が3×1020cm-3(従来
例)および1.3×1021cm-3(実施例)となるよう
に、成膜時のP/Si値をそれぞれ2.5×10-2,1
×10-1としてPドーピングを行いながら全面にアモル
ファスシリコン薄膜を100nm成膜し、850℃,3
0分の熱処理条件によりアモルファスシリコン薄膜を結
晶化して多結晶シリコン薄膜24を形成した。その後、
イオンエッチング工程により酸化膜上の多結晶シリコン
薄膜を取り除いた。Next, as shown in FIG. 5C, the phosphorus concentration in the film is 3 × 10 20 cm −3 (conventional example) and 1.3 × 10 21 cm − as in the first embodiment. 3 (Example) so that the P / Si values during film formation are 2.5 × 10 -2 and 1 respectively.
An amorphous silicon thin film having a thickness of 100 nm is formed on the entire surface while P doping is performed at × 10 −1 , and the temperature is 850 ° C.
The amorphous silicon thin film was crystallized under the heat treatment condition of 0 minutes to form a polycrystalline silicon thin film 24. afterwards,
The polycrystalline silicon thin film on the oxide film was removed by the ion etching process.
【0029】以下図5(d)に示すように、スパッタ法
によりチタン(Ti)膜25を30nm,窒化チタン
(TiN)膜26Aを100nm,A1−Si−Cu合
金膜27を550nm,窒化チタン膜26Bを30nm
の順に堆積させて上部電極を作成し、分離溝29を作っ
て多結晶シリコン・コンタクトプラグ部を1000個直
列に並べた。以上のコンタクト抵抗評価用基板作製プロ
セスにおいて、従来方法と本実施例の方法とは、アモル
ファスシリコン薄膜成膜時のP/Si値のみが異なり、
他のプロセスはすべて同一である。As shown in FIG. 5D, a titanium (Ti) film 25 of 30 nm, a titanium nitride (TiN) film 26A of 100 nm, an A1-Si-Cu alloy film 27 of 550 nm, and a titanium nitride film are formed by a sputtering method. 26B to 30 nm
In this order, the upper electrode was formed by depositing in order, the separation groove 29 was formed, and 1000 polycrystalline silicon contact plugs were arranged in series. In the contact resistance evaluation substrate manufacturing process described above, the conventional method and the method of this example differ only in P / Si value at the time of forming an amorphous silicon thin film,
All other processes are the same.
【0030】作製したコンタクト抵抗評価用基板につい
て、コンタクト抵抗を測定した。その結果コンタクト1
つ当たりの抵抗は、従来法によって得られる抵抗値(8
00〜1000Ω)に比べて、本第2の実施例では45
0Ωと非常に低減された。本実施例の手段を用いること
により、径0.15μm程度の微細なコンタクト部の形
成が可能となり、今後の半導体デバイスの高集積化に大
いに寄与することがわかった。また、膜中のリン濃度が
8×1020cm-2となるようにP/Si値を7.5×1
0-2として成膜を行った場合でも、同等の効果が得られ
た。The contact resistance of the produced contact resistance evaluation substrate was measured. As a result, contact 1
The resistance per hit is the resistance value (8
In the second embodiment, it is 45
It was greatly reduced to 0Ω. It has been found that the use of the means of this embodiment makes it possible to form a fine contact portion having a diameter of about 0.15 μm, which will greatly contribute to high integration of semiconductor devices in the future. Further, the P / Si value is set to 7.5 × 1 so that the phosphorus concentration in the film becomes 8 × 10 20 cm −2.
Even when the film was formed as 0 -2 , the same effect was obtained.
【0031】図6(a)〜(c)は本発明の第3の実施
例を説明するための半導体チップの断面図である。この
第3の実施例は、本発明をメモリーデバイスの容量電極
に適用したものである。FIGS. 6A to 6C are sectional views of a semiconductor chip for explaining the third embodiment of the present invention. In the third embodiment, the present invention is applied to the capacitive electrode of a memory device.
【0032】まず、図6(a)に示すように、面方位
(100)P型シリコン単結晶基板表面にAsをイオン
注入してn+ の拡散層32を作り、その上に熱酸化法に
より厚さ1μmのシリコン酸化膜33を形成し、その酸
化膜に幅1μmの溝を形成する。そして第2の実施例と
同様に、膜中のリン濃度が3×1020cm-3(従来例)
および8×1020cm-3(実施例)となるように、成膜
時のP/Si値をそれぞれ2.5×10-2,7.5×1
0-1としてPドーピングを行いながらアモルファスシリ
コン薄膜を30nmおよび100nm成膜し、850
℃,30分の熱処理により結晶化し、多結晶シリコン膜
35を形成する。First, as shown in FIG. 6A, As is ion-implanted into the surface of a P-type silicon single crystal substrate having a plane orientation of (100) to form an n + diffusion layer 32, and thermal diffusion is performed thereon. A silicon oxide film 33 having a thickness of 1 μm is formed, and a groove having a width of 1 μm is formed in the oxide film. Then, similarly to the second embodiment, the phosphorus concentration in the film is 3 × 10 20 cm −3 (conventional example).
And 8 × 10 20 cm −3 (Example) so that the P / Si values during film formation are 2.5 × 10 −2 and 7.5 × 1 respectively.
Amorphous silicon thin films of 30 nm and 100 nm are formed while P doping is performed at 0 −1.
Crystallization is performed by heat treatment at 30 ° C. for 30 minutes to form a polycrystalline silicon film 35.
【0033】次に図6(b)に示すように、多結晶シリ
コン薄膜35をパターニングし下部電極35Aを形成し
た後、容量絶縁膜36を5nmの厚さに形成する。次に
図6(c)に示すように、上部電極37としてP/Si
=2.5×10-2でアモルファスシリコン膜を150n
m成膜し、850℃,30分の熱処理により多結晶化し
た。Next, as shown in FIG. 6B, after patterning the polycrystalline silicon thin film 35 to form the lower electrode 35A, a capacitance insulating film 36 is formed to a thickness of 5 nm. Next, as shown in FIG. 6C, P / Si is used as the upper electrode 37.
= 2.5 × 10 -2 , 150n amorphous silicon film
A film was formed and polycrystallized by heat treatment at 850 ° C. for 30 minutes.
【0034】このようにして作製した容量についてその
特性を測定した。高周波C−V特性より、下部電極に+
3V印加したときの容量値Cとゼロバイアス付近での容
量値C0 との比(C/C0 )を表1に示す。The characteristics of the capacitor thus manufactured were measured. From the high frequency C-V characteristics, + on the lower electrode
Table 1 shows the ratio (C / C 0 ) between the capacitance value C when 3 V is applied and the capacitance value C 0 near zero bias.
【0035】[0035]
【表1】 [Table 1]
【0036】表1より、従来の方法では下部電極膜厚を
100nmから30nmと薄くするとC/C0 値が0.
98から0.85と小さくなり、下部電極の多結晶シリ
コン内でキャリアの空乏化が拡がっていることがわか
る。一方、第3の実施例によれば、0.94とC/C0
値の減少はほとんどなく、多結晶シリコン内に従来例に
比べて充分な量のキャリアが存在し、良好な電極が形成
されていることがわかる。From Table 1, according to the conventional method, when the thickness of the lower electrode is reduced from 100 nm to 30 nm, the C / C 0 value becomes 0.
It becomes smaller from 98 to 0.85, and it can be seen that depletion of carriers is widened in the polycrystalline silicon of the lower electrode. On the other hand, according to the third embodiment, 0.94 and C / C 0
It can be seen that there is almost no decrease in the value, a sufficient amount of carriers are present in the polycrystalline silicon as compared with the conventional example, and a good electrode is formed.
【0037】[0037]
【発明の効果】以上説明したように本発明は、不純物を
導入しながらCVD法により厚さ50nm以下のアモル
ファスシリコン薄膜を堆積した後に熱処理により多結晶
化させる半導体薄膜の形成方法において、膜中の不純物
濃度を、薄膜化による不純物原子の偏析量を補償し、か
つ、結晶性の劣化や不純物散乱による移動度の低下を起
こさない範囲の5×1020〜2.5×1021cm-3とな
るように、成膜ガス流量に対する不純物導入ガス流量の
比を増加させ、その値としては、反応ガス中のシリコン
原子数Sと不純物原子数Dの比(D/S)を、0.05
〜0.2に大きくして成膜することにより、結晶化後に
抵抗率の充分低い多結晶シリコン薄膜を容易に形成でき
るという効果がある。As described above, the present invention provides a method for forming a semiconductor thin film in which an amorphous silicon thin film having a thickness of 50 nm or less is deposited by a CVD method while introducing impurities and then polycrystallized by heat treatment. The impurity concentration is set to 5 × 10 20 to 2.5 × 10 21 cm −3 in a range that compensates for the amount of impurity atom segregation due to thinning and does not cause deterioration of crystallinity or reduction of mobility due to impurity scattering. As described above, the ratio of the flow rate of the impurity-introduced gas to the flow rate of the film-forming gas is increased.
By increasing the film thickness to ˜0.2, it is possible to easily form a polycrystalline silicon thin film having a sufficiently low resistivity after crystallization.
【図1】本発明の第1の実施例を説明するための半導体
チップの断面図。FIG. 1 is a sectional view of a semiconductor chip for explaining a first embodiment of the present invention.
【図2】リンの濃度を変えた場合の多結晶シリコン薄膜
の膜厚と抵抗率との関係を示す図。FIG. 2 is a graph showing the relationship between the film thickness and the resistivity of a polycrystalline silicon thin film when the phosphorus concentration is changed.
【図3】P/Si値と抵抗率との関係を示す図。FIG. 3 is a diagram showing a relationship between P / Si value and resistivity.
【図4】多結晶シリコン膜中のリン濃度と抵抗率との関
係を示す図。FIG. 4 is a diagram showing the relationship between the phosphorus concentration in a polycrystalline silicon film and the resistivity.
【図5】本発明の第2の実施例を説明するための半導体
チップの断面図。FIG. 5 is a sectional view of a semiconductor chip for explaining a second embodiment of the present invention.
【図6】本発明の第3の実施例を説明するための半導体
チップの断面図。FIG. 6 is a sectional view of a semiconductor chip for explaining a third embodiment of the present invention.
11,21 シリコン基板 12,23,33 シリコン酸化膜 13 アモルファスシリコン薄膜 14,24,35 多結晶シリコン薄膜 22,32 n+ 拡散層 25 チタン膜 26A,26B 窒化チタン膜 27 Al−Si−Cu合金膜 28 コンタクトホール 29 分離溝 35A 下部電極 36 絶縁膜 37 上部電極11, 21 Silicon substrate 12, 23, 33 Silicon oxide film 13 Amorphous silicon thin film 14, 24, 35 Polycrystalline silicon thin film 22, 32 n + Diffusion layer 25 Titanium film 26A, 26B Titanium nitride film 27 Al-Si-Cu alloy film 28 Contact Hole 29 Separation Groove 35A Lower Electrode 36 Insulating Film 37 Upper Electrode
Claims (7)
さ50nm以下のアモルファスシリコン薄膜を堆積した
後に熱処理により多結晶化させる半導体薄膜の形成方法
において、反応ガス中のシリコン(Si)原子数に対す
る不純物原子数Dの比(D/S)を0.05〜0.2に
することを特徴とする半導体薄膜の形成方法。1. A method of forming a semiconductor thin film in which an amorphous silicon thin film having a thickness of 50 nm or less is deposited by a CVD method while introducing an impurity and then polycrystallized by heat treatment, wherein an impurity is contained with respect to the number of silicon (Si) atoms in a reaction gas. A method for forming a semiconductor thin film, wherein the ratio (D / S) of the number of atoms D is set to 0.05 to 0.2.
〜2.5×1021cm-3となるように導入する不純物量
を制御する請求項1記載の半導体薄膜の形成方法。2. The impurity concentration in the semiconductor thin film is 5 × 10 20.
2. The method for forming a semiconductor thin film according to claim 1, wherein the amount of impurities introduced is controlled so as to be about 2.5 × 10 21 cm −3 .
さ50nm以下のアモルファスシリコン薄膜を堆積した
後に熱処理により多結晶化させる半導体薄膜の形成方法
において、半導体薄膜中の不純物濃度が5×1020〜
2.5×1021cm-3となるように導入する不純物量を
制御することを特徴とする半導体薄膜の形成方法。3. A method of forming a semiconductor thin film in which an amorphous silicon thin film having a thickness of 50 nm or less is deposited by a CVD method while introducing impurities and then polycrystallized by heat treatment, wherein the impurity concentration in the semiconductor thin film is 5 × 10 20 to
A method for forming a semiconductor thin film, which comprises controlling the amount of impurities to be introduced so as to be 2.5 × 10 21 cm −3 .
i2 H6 )を成膜ガスとして用いる請求項1または請求
項3記載の半導体薄膜の形成方法。4. Silane (SiH 4 ) or disilane (S
The method for forming a semiconductor thin film according to claim 1 or 3, wherein i 2 H 6 ) is used as a film forming gas.
(PH3 )または第三ブチルフォスフィンを用いる請求
項1または請求項3記載の半導体薄膜の形成方法。5. The method for forming a semiconductor thin film according to claim 1, wherein phosphine (PH 3 ) or tert-butylphosphine is used as a gas for introducing impurities.
H3 )または三塩化砒素(AsCl3 )または第三ブチ
ルアルシンを用いる請求項1または請求項3記載の半導
体薄膜の形成方法。6. The gas for introducing impurities contains arsine (As)
H 3) or arsenic trichloride (AsCl 3) or claim 1 or claim 3 method of forming a semiconductor thin film according using tertiary butyl arsine.
H6 )を用いる請求項1または請求項3記載の半導体薄
膜の形成方法。7. Diborane (B 2
The method for forming a semiconductor thin film according to claim 1, wherein H 6 ) is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2296294A JP3006396B2 (en) | 1993-03-02 | 1994-02-22 | Method of forming semiconductor thin film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-40800 | 1993-03-02 | ||
JP4080093 | 1993-03-02 | ||
JP2296294A JP3006396B2 (en) | 1993-03-02 | 1994-02-22 | Method of forming semiconductor thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06314661A true JPH06314661A (en) | 1994-11-08 |
JP3006396B2 JP3006396B2 (en) | 2000-02-07 |
Family
ID=26360258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2296294A Expired - Lifetime JP3006396B2 (en) | 1993-03-02 | 1994-02-22 | Method of forming semiconductor thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3006396B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2716749A1 (en) * | 1994-02-28 | 1995-09-01 | Fujitsu Ltd | Semiconductor device having a highly doped silicon film. |
US5714415A (en) * | 1995-02-01 | 1998-02-03 | Nec Corporation | Method of forming thin semiconductor film |
US6040236A (en) * | 1996-09-06 | 2000-03-21 | Nec Corporation | Method for manufacturing silicon thin film conductive element |
JP2014207475A (en) * | 2009-04-21 | 2014-10-30 | テトラサン インコーポレイテッド | High-efficiency solar cell structure and manufacturing method |
JP2017069588A (en) * | 2010-07-02 | 2017-04-06 | サンパワー コーポレイション | Method of manufacturing solar cell with tunnel dielectric layer |
-
1994
- 1994-02-22 JP JP2296294A patent/JP3006396B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2716749A1 (en) * | 1994-02-28 | 1995-09-01 | Fujitsu Ltd | Semiconductor device having a highly doped silicon film. |
US5714415A (en) * | 1995-02-01 | 1998-02-03 | Nec Corporation | Method of forming thin semiconductor film |
US6040236A (en) * | 1996-09-06 | 2000-03-21 | Nec Corporation | Method for manufacturing silicon thin film conductive element |
JP2014207475A (en) * | 2009-04-21 | 2014-10-30 | テトラサン インコーポレイテッド | High-efficiency solar cell structure and manufacturing method |
EP4350784A3 (en) * | 2009-04-21 | 2024-07-10 | Tetrasun, Inc. | High-efficiency solar cell structures and methods of manufacture |
EP4350782A3 (en) * | 2009-04-21 | 2024-07-10 | Tetrasun, Inc. | High-efficiency solar cell structures and methods of manufacture |
EP4350783A3 (en) * | 2009-04-21 | 2024-07-10 | Tetrasun, Inc. | High-efficiency solar cell structures and methods of manufacture |
JP2017069588A (en) * | 2010-07-02 | 2017-04-06 | サンパワー コーポレイション | Method of manufacturing solar cell with tunnel dielectric layer |
CN106847937A (en) * | 2010-07-02 | 2017-06-13 | 太阳能公司 | Method for manufacturing the solar cell with tunnel dielectric layer |
JP2019091919A (en) * | 2010-07-02 | 2019-06-13 | サンパワー コーポレイション | Manufacturing method of solar cell with tunnel dielectric layer |
Also Published As
Publication number | Publication date |
---|---|
JP3006396B2 (en) | 2000-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5242855A (en) | Method of fabricating a polycrystalline silicon film having a reduced resistivity | |
JP2689935B2 (en) | Semiconductor thin film forming method | |
EP0707344B1 (en) | Semiconductor device using a polysilicium thin film and production thereof | |
JPH1197710A (en) | Crystallizing method of amorphous film and thin film transistor | |
JP2954039B2 (en) | Method for forming SiGe thin film | |
US6326226B1 (en) | Method of crystallizing an amorphous film | |
JPH0391239A (en) | Manufacturing method of semiconductor device | |
JPH05299348A (en) | Forming method for polysrystalline silicon thin film | |
JP3006396B2 (en) | Method of forming semiconductor thin film | |
US5464795A (en) | Method of forming polycrystalline silicon thin films for semiconductor devices | |
JPH0563439B2 (en) | ||
JP2002203809A (en) | Semiconductor device and manufacturing method thereof | |
JPH0786515A (en) | Method of forming polysilicon resistor | |
JP3203652B2 (en) | Semiconductor thin film manufacturing method | |
JPH04245419A (en) | Manufacture of semiconductor substrate | |
JP2953396B2 (en) | Method for manufacturing silicon thin film conductive element | |
JPH03205830A (en) | Manufacture of semiconductor device and polycrystalline germanium | |
JP2707985B2 (en) | Method for manufacturing semiconductor device | |
KR100196596B1 (en) | Method of forming thin semiconductor film | |
JPH097909A (en) | Method of manufacturing semiconductor device | |
JPH07321044A (en) | Method for manufacturing semiconductor device | |
US6562704B2 (en) | Method for manufacturing semiconductor device, and semiconductor device | |
GB2326648A (en) | Growth of polycrystalline silicon film by raising temperature during deposition | |
JP2682797B2 (en) | Method for manufacturing polycrystalline thin film transistor | |
GB2308233A (en) | Gate electrode formation |