[go: up one dir, main page]

JPH06313762A - Multiple frequency type eddy current flaw detector - Google Patents

Multiple frequency type eddy current flaw detector

Info

Publication number
JPH06313762A
JPH06313762A JP5104284A JP10428493A JPH06313762A JP H06313762 A JPH06313762 A JP H06313762A JP 5104284 A JP5104284 A JP 5104284A JP 10428493 A JP10428493 A JP 10428493A JP H06313762 A JPH06313762 A JP H06313762A
Authority
JP
Japan
Prior art keywords
frequency
eddy current
signals
bridge circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5104284A
Other languages
Japanese (ja)
Inventor
Motoharu Goto
元晴 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5104284A priority Critical patent/JPH06313762A/en
Publication of JPH06313762A publication Critical patent/JPH06313762A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To eliminate noise and unneeded signal efficiently with an operation by accurately extracting an individual signal component for each frequency applied to a test coil. CONSTITUTION:A first switcher 16 for inputting the output signal of transmitters 1 and 2 is provided at the input side of a power amplifier 4. A second switcher 17 is provided at a side for sending signals to synchronous detectors 11 and 12, a timing signal output from a timing signal generator 18 is input to both switchers 16 and 17, and then signals are switched at a determined timing. Further, retention circuits 19 and 20 are provided at the output sides of the synchronous detectors 11 and 12, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属表面及び内部の欠陥
を検出するための渦流探傷装置において、探傷周波数と
して2種類以上の異なる探傷周波数を用いる多重周波数
型渦流探傷装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detector for detecting defects on a metal surface and inside, and relates to an improvement of a multi-frequency eddy current flaw detector which uses two or more different flaw detection frequencies as flaw detection frequencies.

【0002】[0002]

【従来の技術】一般に、多重周波数型渦流探傷装置は、
複数の探傷周波数を用いることによりそれぞれの周波数
で得られる金属内部で発生する渦電流が異なる表皮効果
を示すことを利用し、両周波数による渦電流の変化を同
時に検出してそれぞれの信号間の相関関係に従って演算
処理を行って探傷するもので、雑音信号の抑制及び傷信
号の検出精度を向上させるのに有効な方法である。
2. Description of the Related Art Generally, a multi-frequency eddy current flaw detector is
By utilizing the fact that the eddy currents generated inside the metal obtained at each frequency show different skin effects by using multiple flaw detection frequencies, the changes in the eddy currents due to both frequencies are detected at the same time and the correlation between each signal is detected. The flaw detection is performed by performing the arithmetic processing according to the relationship, and is an effective method for suppressing the noise signal and improving the detection accuracy of the flaw signal.

【0003】図3に従来の多重周波数型渦流探傷装置の
ブロック図を示す。
FIG. 3 shows a block diagram of a conventional multi-frequency eddy current flaw detector.

【0004】発信器2及び発信器2から出力される周波
数f1 及びf2 の探傷信号は合成器3で合成され、増幅
器4で電力増幅された後、ブリッジ回路5に出力され
る。
The flaw detection signals of the frequencies f 1 and f 2 output from the oscillator 2 and the oscillator 2 are combined by the combiner 3, power-amplified by the amplifier 4, and then output to the bridge circuit 5.

【0005】図4に合成前の波形(a)(b)と合成後
の波形(c)とを示す。電力増幅された波形は波形
(c)のように波形(a)(b)を重畳した波形に変化
する。
FIG. 4 shows waveforms (a) and (b) before combining and a waveform (c) after combining. The power-amplified waveform changes to a waveform obtained by superimposing the waveforms (a) and (b) like the waveform (c).

【0006】再び図3に戻り、ブリッジ回路5に入力さ
れた信号は試験コイル6に印加され、その中心にある試
験体中に渦電流を発生する。また、渦電流の変化はブリ
ッジ回路5の不平衡分としてとり出され、得られた検出
信号の周波数f1 及びf2 の合成周波数成分から各探傷
周波数の単独成分を分離するため、それぞれ周波数f1
及びf2 の周波数成分の抽出に適した特性を有するフィ
ルタ7及びフィルタ8を通して分離される。図4にこの
分離した後の波形(s)(t)を示す。
Returning to FIG. 3 again, the signal input to the bridge circuit 5 is applied to the test coil 6 to generate an eddy current in the test body at the center thereof. Further, the change in the eddy current is taken out as an unbalanced component of the bridge circuit 5, and the single component of each flaw detection frequency is separated from the combined frequency component of the frequencies f 1 and f 2 of the obtained detection signal. 1
, And f 2 are separated through filters 7 and 8 having characteristics suitable for extracting frequency components. FIG. 4 shows the waveforms (s) (t) after this separation.

【0007】この波型はそれぞれ増幅器9及び増幅器1
0によって増幅された後、同期検波器11及び検波器1
2で同期検波され、交流信号のx軸(実軸成分)及びy
軸(虚軸成分)に分解された後、解析器13に入力され
る。解析器13は得られた周波数f1 及びf2 のx及び
y軸成分から予め設定された演算条件に基づいて演算を
行い、雑音及びその他の不要信号を取り除いた後、目的
とする検出信号成分を含む出力信号Xout及びYou
tを出力することができる。なお、図中、符号14及び
15は位相器を示している。
This wave type is an amplifier 9 and an amplifier 1, respectively.
After being amplified by 0, the synchronous detector 11 and the detector 1
2 is synchronously detected and the x-axis (real axis component) and y of the AC signal
After being decomposed into axes (imaginary axis components), they are input to the analyzer 13. The analyzer 13 performs an operation from the obtained x and y axis components of the frequencies f 1 and f 2 based on a preset operation condition, removes noise and other unnecessary signals, and then detects a target detection signal component. Output signals Xout and You including
t can be output. In the figure, reference numerals 14 and 15 denote phase shifters.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の多重周波数型渦流探傷装置には次のような問
題がある。すなわち、発振器1及び発信器2の信号を合
成して同時に試験コイル6に送る場合、得られた渦電流
変化の情報を含む各周波数の合成信号に対して、印加し
た各周波数単独の信号成分のみ効率良く抽出できるよう
にフィルタ7及び8の時定数を選択しているが、実際に
はフィルタ7および8を通した後の波形(d)(e)は
互いに他の周波数信号の影響が残存し、完全に2つの単
独周波数成分に分離することが難しい。これは周波数f
1 及びf2 が接近している程各周波数成分の分離が困難
となり、また、使用する周波数の数が2周波数よりもさ
らに多くなるに従ってその後のフィルタにする分離がよ
り困難となり、互いの周波数成分の影響を受けることに
なる。このように、印加した信号の周波数成分以外の周
波数成分が検出波形に残存すると、同期検波を行った
際、誤差を生じる原因となり、精度の良い探傷を行うこ
とができない。その結果として、解析器13による演算
においても雑音及び不要信号を予め意図したように消去
できない原因となる。
However, such a conventional multi-frequency eddy current flaw detector has the following problems. That is, when the signals of the oscillator 1 and the oscillator 2 are combined and sent to the test coil 6 at the same time, only the applied signal component of each frequency alone is applied to the combined signal of each frequency including the obtained eddy current change information. The time constants of the filters 7 and 8 are selected so that they can be efficiently extracted, but in reality, the waveforms (d) and (e) after passing through the filters 7 and 8 are affected by other frequency signals. , It is difficult to completely separate into two single frequency components. This is the frequency f
The closer 1 and f 2 are to each other, the more difficult it is to separate each frequency component. Further, as the number of frequencies used increases more than two frequencies, it becomes more difficult to separate them into subsequent filters, and the frequency components of each other become more difficult. Will be affected. Thus, if frequency components other than the frequency components of the applied signal remain in the detected waveform, it causes an error when performing synchronous detection, and accurate flaw detection cannot be performed. As a result, noise and unnecessary signals cannot be erased as intended even in the calculation by the analyzer 13.

【0009】そこで、本発明の目的は試験コイルに印加
した各周波数に対する単独信号成分を正確に抽出し、演
算による効率的な雑音及び不要信号の消去を可能にした
多重周波数型渦流探傷装置を提供することにある。
Therefore, an object of the present invention is to provide a multi-frequency eddy current flaw detector capable of accurately extracting a single signal component for each frequency applied to a test coil and efficiently eliminating noise and unnecessary signals by calculation. To do.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は複数の発信器の出力信号を時分割してブ
リッジ回路に入力する第1切換器と、ブリッジ回路の出
力信号をそれぞれの周波数に対する探傷波形に分離して
複数の同期検波器に入力する第2切換器と、同期検波器
で各々同期検波して出力される信号を一時的に保持する
保持回路とを設けたことを特徴とするものである。
In order to achieve the above object, the present invention provides a first switching device for time-divisionally inputting output signals of a plurality of oscillators to a bridge circuit, and an output signal of the bridge circuit. A second switching device that separates into flaw detection waveforms for each frequency and inputs to a plurality of synchronous detectors, and a holding circuit that temporarily holds the signals output by synchronous detection by the synchronous detectors are provided. It is characterized by.

【0011】[0011]

【作用】上記の渦流探傷装置においては、複数の異なる
探傷周波数の信号を合成して同時に試験コイルに印加せ
ず、それぞれ周波数の信号を第1切換器によって時分割
で試験コイルに印加する。このため、試験コイルからの
出力信号を印加時と同一のタイシングで切換える第2切
換器によって各周波数での探傷結果が時系列的に得ら
れ、各周波数に対する探傷は互いの周波数の信号の影響
を受けることなく、単一の周波数による探傷を同様に実
施することができ、しかもフィルタ等の信号分離手段を
用いないため、周波数として接近した周波数や多くの周
波数を選択した場合でも探傷の精度に全く影響を及ぼさ
ないで、精度の良い、しかも安定した探傷が可能とな
る。
In the above-mentioned eddy current flaw detector, signals of different flaw detection frequencies are not combined and applied to the test coil at the same time, but the respective frequency signals are applied to the test coil in a time division manner by the first switch. Therefore, the second switching device, which switches the output signal from the test coil with the same timing as when applying, obtains the flaw detection result at each frequency in time series, and the flaw detection for each frequency is influenced by the signals of the other frequencies. It is possible to perform flaw detection with a single frequency in the same way without receiving it, and since no signal separation means such as a filter is used, even if a frequency close to the frequency or many frequencies are selected, the flaw detection accuracy is completely Stable flaw detection with high accuracy can be performed without affecting.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1において、電力増幅器4の入力側に発
信器1及び発信器2の出力信号を入力する第1切換器1
6が設けられる。また、同期検波器11、12に信号を
送る側に第2切換器17が設けられ、双方の切換器1
6、17にタイミング信号発生器18から出力されるタ
イミング信号が入力されて決められたタイミングで切換
えることができるようになっている。
In FIG. 1, the first switch 1 for inputting the output signals of the oscillators 1 and 2 to the input side of the power amplifier 4.
6 is provided. Further, a second switching device 17 is provided on the side that sends signals to the synchronous detectors 11 and 12, and both switching devices 1
The timing signal output from the timing signal generator 18 is input to 6 and 17, and switching can be performed at a predetermined timing.

【0014】さらに、同期検波器11及び12の出力側
に保持回路19及び保持回路20がそれぞれ設けられ
る。タイミング信号発生器18のタイミング信号は同期
検波器11及び12並びに保持回路19及び20に対し
てもそれぞれ入力される。
Further, holding circuits 19 and 20 are provided on the output sides of the synchronous detectors 11 and 12, respectively. The timing signal of the timing signal generator 18 is also input to the synchronous detectors 11 and 12 and the holding circuits 19 and 20, respectively.

【0015】異なる周波数f1 及びf2 を発生する発信
器1及び発信器2の各出力はタイミング信号発生器18
から発生するタイミング信号によって第1切換器16で
切換えられ合成される。この合成によって時間的に連続
した異なる周波数の波形(図2の波形(d))となって
電力増幅器4に入力される。ここで、タイミング信号発
生器18の切換時間T1 及びT2 は、予め設定しておい
ても、発信器1あるいは発信器2の周波数によって変化
させても良いが、少なくともそれぞれの周波数の信号が
1波長以上続くようにタイミング信号の周期を設定する
必要がある。
The respective outputs of oscillator 1 and oscillator 2 which generate different frequencies f 1 and f 2 are the timing signal generator 18
The first switching device 16 switches and combines the signals according to the timing signal generated from the. By this synthesizing, a waveform of different frequency continuous in time (waveform (d) in FIG. 2) is input to the power amplifier 4. Here, the switching times T 1 and T 2 of the timing signal generator 18 may be set in advance or may be changed depending on the frequency of the oscillator 1 or the oscillator 2. It is necessary to set the cycle of the timing signal so that it lasts for one wavelength or more.

【0016】電力増幅器4で増幅された合成信号はブリ
ッジ回路5に入力される。ブリッジ回路5では、試験コ
イル6を含み平衡のとれているブリッジに前述合成信号
が印加される。試験体に異常が生じ、試験コイル6にイ
ンピーダンス変化が生じると、ブリッジの平衡がくず
れ、出力が生じる。その出力を増幅器9にて増幅後の波
形は図4の波形(c)に比べ、信号の振幅、位相、異常
信号の含入等の変化を除き、基本的には図2に示す波形
(d)のような周波数f1 及びf2 の波形(a)(b)
が連続する波形が生じる。
The combined signal amplified by the power amplifier 4 is input to the bridge circuit 5. In the bridge circuit 5, the composite signal is applied to the balanced bridge including the test coil 6. When an abnormality occurs in the test body and an impedance change occurs in the test coil 6, the bridge is out of balance and an output is produced. The waveform after the output is amplified by the amplifier 9 is basically the same as the waveform (d) shown in FIG. 2 except for changes in the signal amplitude, phase, inclusion of an abnormal signal, etc. Waveforms (a) and (b) of frequencies f 1 and f 2 such as
A continuous waveform is generated.

【0017】従って第1切換器16と同じタイミングで
第2切換器17を切換えることによって第2切換器17
の出力波形は時分割され、図2の波形(u)(v)のよ
うな周波数f1 に対する探傷波形と、周波数f2 に対す
る探傷波形とに分離される。
Therefore, the second switch 17 is switched by switching the second switch 17 at the same timing as the first switch 16.
2 is time-divided and separated into a flaw detection waveform for the frequency f 1 and a flaw detection waveform for the frequency f 2 like the waveforms (u) and (v) in FIG.

【0018】これらの探傷波形はそれぞれの周波数を発
生する発信器1及び発信器2の出力を位相器14及び位
相器15によって0°及び90°位相をずらした同期信
号によって同期検波され、それぞの探傷波形のx成分
(実数成分)とy成分(虚数成分)とに分離される。
These flaw detection waveforms are synchronously detected by a synchronizing signal obtained by shifting the outputs of the oscillator 1 and the oscillator 2 which generate respective frequencies by 0 ° and 90 ° by the phase shifter 14 and the phase shifter 15, respectively. The flaw detection waveform is separated into an x component (real number component) and ay component (imaginary number component).

【0019】同期検波の結果は解析器13によって予め
決められた演算式によって演算されるが、この際、同期
検波の出力はタイミング信号発生器18のタイミング
(T1及びT2 )で切り換わり、同時に出力されないた
め、保持回路19及び保持回路20を用いて周波数f1
及びf2 の周波数に対する探傷結果が同時に現れるよう
に同期検波の出力を一時的に保持する。
The result of the synchronous detection is calculated by the analyzer 13 according to a predetermined arithmetic expression. At this time, the output of the synchronous detection is switched at the timing (T 1 and T 2 ) of the timing signal generator 18, Since they are not output at the same time, the frequency f 1 is set by using the holding circuit 19 and the holding circuit 20.
The output of the synchronous detection is temporarily held so that the flaw detection results for the frequencies f and f 2 appear at the same time.

【0020】この結果、解析器13はラッチ出力を用い
て、同時に演算処理することができ、解析結果を出力す
ることができる。実際には解析結果はリアルタイムに演
算処理することができず、T1 +T2 の周期が終了する
まで演算はできないことになるが、通常の使用では試験
体に対する試験体の走査速度に比べ、T1 +T2 の周期
は極めて早く設定することができるため、実用上は全く
問題なく、ほぼリアルタイムで結果の処理を行うことが
できる。
As a result, the analyzer 13 can simultaneously perform arithmetic processing using the latch output and can output the analysis result. In reality, the analysis result cannot be calculated in real time and cannot be calculated until the cycle of T 1 + T 2 ends, but in normal use, the scanning speed of the test body relative to the test body is lower than that of the test body. Since the cycle of 1 + T 2 can be set extremely fast, there is no problem in practical use, and the processing of the result can be performed in almost real time.

【0021】なお、本発明は上記実施例に限定されない
ことはいうまでもなく、要旨を変更しない範囲で適宜変
形して実施できる。
Needless to say, the present invention is not limited to the above-mentioned embodiments, and can be carried out by appropriately modifying it without departing from the scope of the invention.

【0022】すなわち、図1で示した実施例は2つの周
波数を用いる多重周波数型渦流探傷装置の例であるが、
周波数はこれに限定されず3周波数以上を用いても、単
に、タイミング信号の周期の設定と切換器の切換数を周
波数の数によって変更するだけで良く、発振器、位相
器、同期検波器、保持回路等は使用する周波数の数だけ
用意しておけば良い。また周波数を増加させることによ
る解析精度の低下はなく、周波数の数が多い程従来法に
比べてその精度向上が顕著になる。
That is, the embodiment shown in FIG. 1 is an example of a multi-frequency eddy current flaw detector using two frequencies.
The frequency is not limited to this, and even if three or more frequencies are used, it is only necessary to change the period setting of the timing signal and the number of switching of the switching device according to the number of frequencies, and the oscillator, the phase shifter, the synchronous detector, the holding It suffices to prepare as many circuits as the frequencies to be used. Further, there is no decrease in analysis accuracy due to the increase in frequency, and the greater the number of frequencies, the more remarkable the improvement in accuracy compared to the conventional method.

【0023】また、図1で示した保持回路19及び20
ならびに解析器13はコンピュータ等で換えることも可
能である。
Further, the holding circuits 19 and 20 shown in FIG.
Also, the analyzer 13 can be replaced by a computer or the like.

【0024】さらに、同期検波は各周波数の信号で数周
期分の波で検波できるため、周波数の高い信号の場合、
検波の時間を短くすることが可能である。従って、発信
器1及び2の周波数設定に対してタイミング信号発生器
18のタイミング時間が変化し数周期分に自動設定でき
るような機能を持たせることによって同期検波の時間を
短縮でき、よりリアルタイムに近い探傷方法を実現する
ことができる。
Further, since the synchronous detection can detect a signal of each frequency with a wave of several cycles, in the case of a high frequency signal,
It is possible to shorten the detection time. Therefore, the timing of the timing signal generator 18 changes with respect to the frequency setting of the oscillators 1 and 2, and a function for automatically setting the timing signal for several cycles can be provided to shorten the time for synchronous detection, and in more real time. A near flaw detection method can be realized.

【0025】[0025]

【発明の効果】以上説明したように本発明は異なる周波
数の探傷信号を発生する複数の発信器の出力信号を時分
割してブリッジ回路に入力し、また、ブリッジ回路の出
力信号をそれぞれの周波数に対する探傷波形に分離する
ように第1及び第2切換器を設けて探傷するようにした
ので、単一の周波数による探傷と同等の高い精度を保っ
て金属内部の傷を探傷することができる。
As described above, according to the present invention, the output signals of a plurality of oscillators that generate flaw detection signals of different frequencies are time-divisionally input to the bridge circuit, and the output signals of the bridge circuit are input to the respective frequencies. Since the first and second switching devices are provided so as to separate into flaw detection waveforms for the flaw detection, flaw detection inside the metal can be performed with high accuracy equivalent to flaw detection with a single frequency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による渦流探傷装置の一実施例を示すブ
ロック図。
FIG. 1 is a block diagram showing an embodiment of an eddy current flaw detector according to the present invention.

【図2】本発明の合成前、後の探傷波形及び周波数分離
後の探傷波形を示す波形図。
FIG. 2 is a waveform diagram showing a flaw detection waveform before and after synthesis and a flaw detection waveform after frequency separation according to the present invention.

【図3】従来の渦流探傷装置を示すブロック図。FIG. 3 is a block diagram showing a conventional eddy current flaw detector.

【図4】従来の合成前、後の探傷波形及び周波数分離後
の探傷波形を示す波形図。
FIG. 4 is a waveform diagram showing a conventional flaw detection waveform before and after synthesis and a flaw detection waveform after frequency separation.

【符号の説明】 1、2…発信器 5………ブリッジ回路 11、12…同期検波器 13………解析器 16………第1切換器 17………第2切換器 18………タイミング信号発生器 19、20…保持回路[Explanation of Codes] 1, 2 ... Oscillator 5 ......... Bridge circuit 11, 12 ... Synchronous detector 13 ......... Analyzer 16 ......... First switch 17 ......... Second switch 18 ... Timing signal generator 19, 20 ... Holding circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 異なる周波数の探傷信号を発生する複数
の発信器と、これらの発信器からの出力信号を増幅して
試験コイルに印加し、試験体中に渦電流を生じさせるブ
リッジ回路とを備え、渦電流の変化を該ブリッジ回路を
通して不平衡分としてとり出し、この検出波形を複数の
同期検波器で同期検波し、さらに得られた周波数成分か
ら予め決められた演算式に従って演算して金属内部の傷
を探傷するように構成した多重周波数型渦流探傷装置に
おいて、複数の前記発信器の出力信号を時分割して前記
ブリッジ回路に入力する第1切換器と前記ブリッジ回路
の出力信号をそれぞれの周波数に対する探傷波型に分離
して複数の前記周波数検波器に入力する第2切換器と、
前記同期検波器で各々同期検波して出力される信号を一
時的に保持する保持回路とを設けたことを特徴とする多
重周波数型渦流探傷装置。
1. A plurality of oscillators that generate flaw detection signals of different frequencies, and a bridge circuit that amplifies output signals from these oscillators and applies the amplified signals to a test coil to generate an eddy current in a test body. The change of the eddy current is taken out as an unbalanced component through the bridge circuit, the detected waveform is synchronously detected by a plurality of synchronous detectors, and the obtained frequency components are calculated according to a predetermined arithmetic expression to calculate the metal. In a multi-frequency eddy current flaw detector configured to detect an internal flaw, a first switching device that time-divisionally outputs the output signals of a plurality of the oscillators and inputs them to the bridge circuit, and the output signals of the bridge circuit, respectively. A second switching device which separates into a flaw detection wave type for the frequency of and inputs to a plurality of the frequency detectors;
A multi-frequency type eddy current flaw detector, comprising: a holding circuit for temporarily holding a signal output by synchronous detection by the synchronous detector.
JP5104284A 1993-04-30 1993-04-30 Multiple frequency type eddy current flaw detector Withdrawn JPH06313762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5104284A JPH06313762A (en) 1993-04-30 1993-04-30 Multiple frequency type eddy current flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5104284A JPH06313762A (en) 1993-04-30 1993-04-30 Multiple frequency type eddy current flaw detector

Publications (1)

Publication Number Publication Date
JPH06313762A true JPH06313762A (en) 1994-11-08

Family

ID=14376635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5104284A Withdrawn JPH06313762A (en) 1993-04-30 1993-04-30 Multiple frequency type eddy current flaw detector

Country Status (1)

Country Link
JP (1) JPH06313762A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545732A (en) * 2006-08-03 2009-12-24 コミツサリア タ レネルジー アトミーク Device with separate emission / reception functions for conducting eddy current tests on conductive parts
JP4676080B2 (en) * 2000-03-24 2011-04-27 インモビリーエンゲゼルシャフト・ヘルムート・フィッシャー・ゲーエムベーハー・ウント・コンパニイ・カーゲー Method and apparatus for nondestructive measurement of thin layer thickness
KR20210107997A (en) * 2020-02-25 2021-09-02 주식회사 엘지화학 Method for inspecting battery on based big data

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676080B2 (en) * 2000-03-24 2011-04-27 インモビリーエンゲゼルシャフト・ヘルムート・フィッシャー・ゲーエムベーハー・ウント・コンパニイ・カーゲー Method and apparatus for nondestructive measurement of thin layer thickness
JP2009545732A (en) * 2006-08-03 2009-12-24 コミツサリア タ レネルジー アトミーク Device with separate emission / reception functions for conducting eddy current tests on conductive parts
KR20210107997A (en) * 2020-02-25 2021-09-02 주식회사 엘지화학 Method for inspecting battery on based big data

Similar Documents

Publication Publication Date Title
US4467281A (en) Multi frequency eddy current test apparatus with intermediate frequency processing
US4078255A (en) Sequence generator having amplitudes and phases of spectral components randomly distributed
SE7609913L (en) KIT AND DEVICE FOR NON-LARGE TEST BY FOUCAULT CURRENTS
CA1080798A (en) Pulsed rf excited spectrometer having improved pulse width control
AU7369994A (en) Robust delay fault built-in self-testing method and apparatus
US4061968A (en) Process of and apparatus for non-destructive eddy current testing involves the suppression of displayed lobes corresponding to fault parameters to be eliminated from the display
SU1281180A3 (en) Device for eddy current check of article
US4564809A (en) Eddy current test method with degree of amplification selected in accordance with a compensation signal
JPH06313762A (en) Multiple frequency type eddy current flaw detector
JPH04350576A (en) Method and apparatus for measuring additional phase noise
JP3696379B2 (en) Multi-input amplitude / phase measurement method and apparatus
JPH0545401A (en) Inspection circuit of partial discharge monitoring device
JPH0374341B2 (en)
JPH07270383A (en) Eddy current flaw detector
JPS54130984A (en) Dynamic balance tester
SU1322136A1 (en) Device for eddy-current checking
SU1626144A1 (en) Eddy current device for non-destructive testing
JPH11355882A (en) Sound source position analyzer
JPS63234173A (en) Partial electric discharge measuring instrument
RU2285282C2 (en) Device for determining frequency characteristics of functioning objects
SU1087875A1 (en) Non-destructive inspection method
JP2688301B2 (en) Receiver
RU2629711C1 (en) Device for eddy current test of metallic non-magnetic objects
SU1527568A1 (en) Apparatus for nondestructive inspection of objects
SU789731A1 (en) Apparatus for nondestructive eddy-current monitoring

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704