[go: up one dir, main page]

JPH063122B2 - Metal / ceramic composite and method for producing the same - Google Patents

Metal / ceramic composite and method for producing the same

Info

Publication number
JPH063122B2
JPH063122B2 JP59059524A JP5952484A JPH063122B2 JP H063122 B2 JPH063122 B2 JP H063122B2 JP 59059524 A JP59059524 A JP 59059524A JP 5952484 A JP5952484 A JP 5952484A JP H063122 B2 JPH063122 B2 JP H063122B2
Authority
JP
Japan
Prior art keywords
metal
ceramic
fitting
metal member
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59059524A
Other languages
Japanese (ja)
Other versions
JPS60204901A (en
Inventor
伸夫 津野
實 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP59059524A priority Critical patent/JPH063122B2/en
Priority to US06/700,104 priority patent/US4719074A/en
Priority to CA000474216A priority patent/CA1235633A/en
Priority to DE8585300974T priority patent/DE3571677D1/en
Priority to EP85300974A priority patent/EP0156484B1/en
Priority to EP85300975A priority patent/EP0157479B1/en
Priority to DE8585300975T priority patent/DE3571678D1/en
Publication of JPS60204901A publication Critical patent/JPS60204901A/en
Publication of JPH063122B2 publication Critical patent/JPH063122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • B23P11/005Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by expanding or crimping
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/025Fixing blade carrying members on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • F02F7/0087Ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B4/00Shrinkage connections, e.g. assembled with the parts at different temperature; Force fits; Non-releasable friction-grip fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/121Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/134Zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/171Steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2200/00Constructional details of connections not covered for in other groups of this subclass
    • F16B2200/85Ceramic-to-metal-connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は金属・セラミツクス結合体およびその製造法に
関するものである。さらに詳しくは、金属とセラミツク
スを嵌合により結合した金属・セラミツクス結合体とそ
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal / ceramics composite and a method for producing the same. More specifically, the present invention relates to a metal / ceramics combined body in which a metal and a ceramics are combined by fitting and a method for manufacturing the same.

セラミツクスは硬くて耐摩耗性にすぐれているうえ、高
温での機械的性質や耐食性にすぐれているため、高温で
の機械的強度や耐摩耗性が必要とされるガスタービンや
ターボチャージャーのローターの構造材料として適して
いる。このため、ガスタービンローターやターボチャー
ジャーローターのセラミツクス化が検討されている。例
えば、米国特許第4396445号明細書には、翼部と
軸部がセラミツクスからなる構造のタービンローターが
開示されている。この構造のタービンローターではセラ
ミツクス製軸部の一端にねじ部を設けて、金属製圧縮機
インペラを固定している。しかし、この構造のタービン
ローターは圧縮機インペラを構成する金属材料と、軸部
を構成するセラミツクス材料との熱膨張差のため、ター
ビンローターの使用中にセラミツクス軸のねじ部が破損
する欠点がある。また、セラミツクスに対するねじ加工
は高度の技術を必要とし、時間と費用のかかる欠点があ
る。この対策として、実開昭57−92097号公報に
はタービンローターのセラミツクス軸に、金属軸の端部
に設けた筒状部を嵌合する構造が提示されている。しか
し、この構造では、金属軸部表面のベアリング当接部の
耐摩耗性向上のため、金属製軸筒状部表面に表面硬化処
理をしてからセラミツクス軸を嵌合すると、該表面硬化
部にクラツクが発生する欠点がある。また、金属製軸と
セラミツクス軸とを嵌合後、金属製軸表面に窒化処理等
の表面硬化処理を施すと、嵌合部の締付力が低下した
り、嵌合部が抜けたりする欠点がある。さらにまた、金
属製軸とセラミツクス軸を嵌合後、焼入れ処理を行う
と、焼入れによる金属軸の相変態のため、嵌合部が抜け
る欠点がある。このため、上記構造では金属軸部表面の
ベアリング当接部の耐摩耗性が不足し実用にならない欠
点があつた。
Ceramics are hard and have excellent wear resistance, as well as excellent mechanical properties and corrosion resistance at high temperatures, so they are suitable for rotors of gas turbines and turbochargers that require mechanical strength and wear resistance at high temperatures. Suitable as a structural material. For this reason, ceramics for gas turbine rotors and turbocharger rotors are being studied. For example, U.S. Pat. No. 4,396,445 discloses a turbine rotor having a structure in which blades and shafts are made of ceramics. In the turbine rotor of this structure, a screw portion is provided at one end of the ceramic shaft portion to fix the metal compressor impeller. However, the turbine rotor of this structure has a drawback that the screw part of the ceramic shaft is damaged during use of the turbine rotor due to the difference in thermal expansion between the metal material forming the compressor impeller and the ceramic material forming the shaft part. . Further, threading for ceramics requires a high level of technology, and has the drawback of being time-consuming and costly. As a countermeasure against this problem, Japanese Utility Model Laid-Open No. 57-92097 discloses a structure in which a ceramic shaft of a turbine rotor is fitted with a cylindrical portion provided at an end of a metal shaft. However, in this structure, in order to improve the wear resistance of the bearing contact portion on the surface of the metal shaft, when the ceramic shaft is fitted after the surface hardening treatment is performed on the surface of the metal shaft cylindrical portion, the surface hardening portion There is a drawback that cracking occurs. Further, when the surface of the metal shaft is subjected to a surface hardening treatment such as nitriding after the metal shaft and the ceramic shaft are fitted together, the tightening force of the fitting part may be reduced or the fitting part may come off. There is. Furthermore, if the metal shaft and the ceramic shaft are fitted together and then subjected to quenching treatment, there is a drawback that the fitting portion comes off due to phase transformation of the metal shaft due to quenching. Therefore, the above structure has a drawback in that the bearing contact portion on the surface of the metal shaft portion has insufficient wear resistance and is not practical.

本発明の目的は結合力が大きく、しかも金属部分の所定
位置の耐摩耗性が大きい、金属・セラミツクス結合体と
その製造法を提供することである。
It is an object of the present invention to provide a metal / ceramic composite body having a large bonding force and a large wear resistance at a predetermined position of a metal portion, and a method for producing the same.

本発明の特徴とする所は下記の点にある。The features of the present invention are as follows.

第1発明 表面に硬化帯と非硬化帯を有する金属部材に設けた凹部
にセラミックス部材に設けた凸部が焼ばめ、冷しばめ、
圧入等の締りばめにより結合されている構造の金属・セ
ラミックス結合体において、該凹部外表面に硬化帯と非
硬化帯とが存在し、しかも上記締りばめによる金属部材
の変形域が上記非硬化帯内にあるとともに、該変形域が
硬化帯境界より1mm以上離れていることを特徴とする金
属・セラミックス結合体。
1st invention A convex portion provided on a ceramic member is shrink-fitted to a concave portion provided on a metal member having a hardened zone and an uncured zone on its surface,
In a metal-ceramic combined body having a structure that is joined by an interference fit such as press fit, a hardened zone and a non-hardened zone are present on the outer surface of the recess, and the deformation area of the metal member due to the interference fit is not A metal / ceramic bonding body, characterized in that the deformation zone is within 1 mm or more from the boundary of the hardening zone while being within the hardening zone.

第2発明 表面の一部を硬化処理した金属部材に設けられている凹
部にセラミックス部材に設けた凸部を焼ばめ、冷しば
め、圧入等の締りばめにより結合して金属・セラミック
ス結合体とする方法において、金属部材に凹部を設け、
しかるのち金属部材の外表面のうち、該凹部形成部の外
表面の上記締りばめによる変形予定域から1mm以上離れ
た部分の表面に表面硬化処理を施したのち、該凹部にセ
ラミックス部材に設けた凸部を締りばめにより結合し
て、締りばめによる金属部材の変形域が非表面硬化帯内
にあるとともに該変形域が硬化帯境界より1mm以上離れ
ているようにすることを特徴とする金属・セラミックス
結合体の製造法。
Second invention Metal / ceramics in which a convex portion provided on a ceramic member is joined to a concave portion provided on a metal member whose surface is partially hardened by shrink fitting, cold fitting, press fitting, or the like. In the method of forming a combined body, the metal member is provided with a recess,
After that, of the outer surface of the metal member, the surface of a portion of the outer surface of the recess forming portion that is 1 mm or more away from the area to be deformed by the above interference fit is subjected to a surface hardening treatment, and then the recess is provided on the ceramic member. The convex portions are joined by an interference fit so that the deformation area of the metal member due to the interference fit is in the non-surface hardening zone and the deformation area is separated from the hardening zone boundary by 1 mm or more. Method for producing combined metal / ceramics.

本発明では金属部材とセラミツクス部材を、表面の一部
に表面硬化処理を行つた金属部材に設けた凹部にセラミ
ツクス部材に設けた凸部を嵌合して結合する。この表面
硬化処理は、少なくとも本発明の金属・セラミツクス結
合体の使用時に、該結合体を構成する金属部分が、他の
機械部品の摩擦あるいは摺動により摩耗する部分につい
て行う。この表面硬化処理により、金属部材表面には硬
化層が形成され、本発明の金属・セラミツクス結合体の
金属部分の特定個所の耐摩耗性が向上する。上記表面硬
化処理方法としては、浸炭、窒化、表面焼入れ、放電硬
化、メツキなどの方法が利用できる。これら表面硬化処
理方法のうち、浸炭、窒化、表面焼入れが厚い表面硬化
層が得られるので好ましい。また、各種窒化方法のう
ち、イオン窒化法が表面硬化部の面積や硬化深さの調整
が容易なのでとくに好ましい。
In the present invention, the metal member and the ceramic member are joined by fitting the convex portion provided on the ceramic member into the concave portion provided on the metal member whose surface is partially hardened. This surface hardening treatment is carried out at least when the metal / ceramics bonded body of the present invention is used, where the metal portion constituting the bonded body is abraded by friction or sliding of other machine parts. By this surface hardening treatment, a hardened layer is formed on the surface of the metal member, and the wear resistance of a specific portion of the metal portion of the metal / ceramics composite of the present invention is improved. As the surface hardening method, methods such as carburizing, nitriding, surface hardening, discharge hardening, and plating can be used. Of these surface hardening treatment methods, a surface hardened layer that is thick in carburization, nitriding and surface hardening can be obtained, which is preferable. Of the various nitriding methods, the ion nitriding method is particularly preferable because the area and the hardening depth of the surface hardened portion can be easily adjusted.

一方、セラミツクス部材上の凸部と金属部材上の凹部の
嵌合による結合では、嵌合により該凹部には締代の大き
さに比例した変形が生ずる。しかし、前記表面硬化層は
脆くて、塑性変形ができないので、この表面硬化部を嵌
合により塑性変形させると、表面硬化層にクラツクが発
生する。このため、本発明の金属・セラミツクス結合体
では、かかる金属部材の変形が金属部材の非硬化帯で生
ずるようにする。この場合に、上記変形部と表面硬化帯
の間には少なくとも1mm以上の間隔を設ける。この間隔
の大きさは嵌合により金属部材の変形が生じた場合に、
その変形の影響により金属部材の表面硬化部にクラツク
等の欠陥が生じない大きさ以上であればよいが、この間
隔はセラミツクス部材と金属部材の加工精度、両部材の
嵌合方法、金属部材の変形量、両部材の形状と寸法に応
じて決定する。
On the other hand, when the protrusions on the ceramics member and the recesses on the metal member are connected by fitting, the fitting causes deformation in the recesses in proportion to the size of the interference. However, since the surface hardened layer is brittle and cannot be plastically deformed, when the surface hardened portion is plastically deformed by fitting, cracks are generated in the surface hardened layer. For this reason, in the metal / ceramics combination of the present invention, such deformation of the metal member occurs in the non-hardened zone of the metal member. In this case, a space of at least 1 mm is provided between the deformed portion and the surface hardened zone. The size of this interval is set when the metal member is deformed by fitting.
As long as the surface hardening portion of the metal member does not cause defects such as cracks due to the influence of the deformation, it is sufficient that this interval is the processing accuracy of the ceramic member and the metal member, the fitting method of both members, and the metal member. It is determined according to the amount of deformation and the shapes and dimensions of both members.

例えば、セラミツクス部材に設けた直径7.0mmの凸部
を、直径9.3mmの金属部材に設けた内径6.8mmの凹
部に嵌合する場合に、金属部材の変形部と表面硬化帯の
間に設ける間隔は少なくとも1mm以上が必要で、2mm以
上がとくに好ましい。この間隔が2mm以上あれば両部材
嵌合部の加工精度や表面硬化帯の位置ぎめ精度をとくに
高精度とする必要がないので、とくに好ましいものであ
る。しかし、この間隔が1mm以下では、両部材嵌合部の
加工精度や表面硬化帯の位置ぎめ精度をとくに高精度と
する必要があるので好ましくない。なお、上記間隔の上
限は、金属部材表面上で耐摩耗性を必要とする部分の位
置と嵌合による変形部との位置を考慮して適宜決定すれ
ばよいが、表面硬化部分の位置と面積が、金属部材表面
上で耐摩耗性を必要とする部分の位置および面積と同等
以上になるように決定する。これにより、金属部分の所
定個所の表面硬度が大きく、結合部に欠陥のない本発明
の金属・セラミツクス結合体が得られる。
For example, when fitting a convex portion of 7.0 mm in diameter provided on a ceramic member into a concave portion of 6.8 mm in inner diameter provided on a metal member having a diameter of 9.3 mm, between the deformed portion of the metal member and the surface hardened zone. It is necessary that at least 1 mm or more is provided between, and 2 mm or more is particularly preferable. If this distance is 2 mm or more, it is not particularly necessary to make the processing accuracy of both member fitting parts and the positioning accuracy of the surface hardened zone particularly high, which is particularly preferable. However, if this interval is 1 mm or less, it is not preferable because it is necessary to make the processing accuracy of both member fitting portions and the positioning accuracy of the surface hardening zone particularly high. The upper limit of the interval may be appropriately determined in consideration of the position of the portion requiring wear resistance on the metal member surface and the position of the deformed portion due to fitting, but the position and area of the surface-hardened portion Is determined to be equal to or greater than the position and area of the portion requiring wear resistance on the surface of the metal member. As a result, the surface / hardness of the predetermined portion of the metal portion is large, and the metal / ceramics bonded body of the present invention having no defects in the bonded portion can be obtained.

本発明の金属・セラミツクス結合体を構成する金属部材
とセラミツクス材料の嵌合は焼ばめ、冷しばめ、圧入の
いずれかの方法で行うことができる。焼ばめ、冷しばめ
はセラミツクス部材上の凸部直径を金属部材上の凹部内
径より大きく加工し、被嵌合部材の一方を加熱ないしは
冷却して、両部材間にはめ込み可能な寸法差を生ぜし
め、その寸法差を利用して両部材を嵌合するものである
から、嵌合部の寸法が大きい金属・セラミツクス結合体
の嵌合方法として好ましいものである。また、一般に金
属材料の方がセラミツクス部材より熱膨張係数が大きい
ので、金属部材を加熱する焼ばめの方が少ない温度差で
大きい寸法差が得られ、安定した焼ばめ操作ができるの
でより好ましいものである。この場合の焼ばめ、冷しば
めの締代は、嵌合後に金属部材の凹部やセラミツクス部
材の凸部が破損せず、しかも本発明の金属・セラミツク
ス結合体の使用条件で嵌合部に必要とされる締付力が得
られる大きさとする。
The metal member forming the metal / ceramics combined body of the present invention and the ceramic material can be fitted together by any of shrink fitting, cold fitting, and press fitting. Shrink fit and cold fit process the protrusion diameter on the ceramic member to be larger than the inner diameter of the recess on the metal member, heat or cool one of the fitted members, and insert a dimensional difference between both members. This is a preferable method for fitting a metal / ceramics combination body having a large fitting portion size because the two members are fitted together by utilizing the difference in size. In addition, since a metal material generally has a larger coefficient of thermal expansion than a ceramics member, a shrink fit for heating a metal member can obtain a large dimensional difference with a small temperature difference, and a stable shrink fit operation can be performed. It is preferable. In this case, the shrinkage margins of shrink fit and shrink fit do not damage the concave portion of the metal member and the convex portion of the ceramic member after fitting, and the fitting portion is not affected by the use condition of the metal / ceramics combined body of the present invention. The size should be such that the required tightening force can be obtained.

一方、圧入はセラミツクス部材上の凸部を、金属製部材
上に設けた該凸部直径より小径の凹部に荷重をかけて、
強制的に押し込んで嵌合する方法である。上記凸部直径
と凹部内径の寸法差は金属部材の弾性変形および塑性変
形により吸収されるので、圧入前の凸部と凹部の仕上げ
寸法公差は焼ばめ、冷しばめの場合より緩やかでよい。
このため、圧入は嵌合部の寸法が小さい金属・セラミツ
クス結合体の嵌合方法として、より好ましいものであ
る。金属部材上の凹部およびセラミツクス部材上の凸部
の形状と寸法は、圧入時に作用する荷重によつて破壊し
ない形状および寸法とする。また、該凸部直径と該凹部
内径の寸法差は、嵌合部が本発明の金属・セラミツクス
結合体の使用条件に応じた締付力を有するとともに、圧
入時に凸部と凹部のいずれもが破壊しない大きさとす
る。このためには、セラミツクス部材上の凸部と金属部
材上の凹部の寸法差は該凸部直径を該凹部内径より1%
ないし10%大きくするのが好ましく、1%ないし5%
大きくするのがより好ましい。この寸法差が1%以下で
は、圧入部の締付力が不足し、使用中に圧入による嵌合
部が抜けることがあるので好ましくない。寸法差が10
%以上になると、圧入に必要な荷重が大きくなりすぎ
て、圧入時にセラミツクス部材上の凸部が破壊するので
好ましくない。この圧入は室温で行つてもよいし、金属
部材のみを加熱するかあるいは金属部材とセラミツクス
部材の両方を加熱して圧入してもよい。しかし、両部材
を加熱して圧入する方法がもつとも好ましい。何となれ
ば、両部材を加熱すると、金属部材の変形抵抗が減少
し、圧入に要する荷重が低下するので、圧入時の両部材
の破損が起らなくなるうえ、圧入温度からの冷却に際
し、両部材の熱膨張差にもとづく、締付力の増加が生ず
るからである。両部材を加熱して圧入する場合の圧入温
度は、金属部材の焼なまし温度あるいは表面硬化層の軟
化温度のうちの低い方の温度以下で、しかも圧入部の使
用温度以上の温度が好ましい。圧入温度が金属部材の焼
なまし温度より高い場合には、金属部材内に発生した内
部応力が緩和され、圧入部の締付力が低下するので好ま
しくない。また、圧入温度が表面硬化層の軟化温度より
高い場合には、表面硬化処理の効果が減少するので好ま
しくない。さらにまた、圧入温度が圧入部の使用温度よ
り低い場合には、圧入部の温度が使用温度まで上昇する
と、一般には金属部材の熱膨張がセラミツクス部材の熱
膨張より大きいので、圧入部が緩み締付力が低下するの
で好ましくない。
On the other hand, the press-fitting is such that the convex portion on the ceramics member is loaded on a concave portion having a diameter smaller than the diameter of the convex portion provided on the metal member,
This is a method of forcibly pushing in and fitting. Since the dimensional difference between the diameter of the convex portion and the inner diameter of the concave portion is absorbed by the elastic deformation and plastic deformation of the metal member, the finish dimensional tolerance of the convex portion and the concave portion before press-fitting is gentler than that in the case of shrink fitting and shrink fitting. Good.
Therefore, the press-fitting is more preferable as a method of fitting a metal / ceramics combined body having a small fitting portion size. The shape and dimensions of the recesses on the metal member and the protrusions on the ceramic member are such that they will not be destroyed by the load acting during press fitting. Further, the dimensional difference between the diameter of the convex portion and the inner diameter of the concave portion is such that the fitting portion has a tightening force according to the usage conditions of the metal / ceramics combined body of the present invention, and both the convex portion and the concave portion during press fitting. The size should not be destroyed. For this purpose, the dimensional difference between the convex portion on the ceramic member and the concave portion on the metal member is such that the diameter of the convex portion is 1% of the inner diameter of the concave portion.
Preferably 10% to 10% larger, 1% to 5%
It is more preferable to increase the size. If this dimensional difference is 1% or less, the tightening force of the press-fitting portion will be insufficient, and the fitting portion due to the press-fitting may come off during use, which is not preferable. 10 dimensional difference
If it is more than 0.1%, the load required for press-fitting becomes too large, and the convex portion on the ceramics member is destroyed during press-fitting, which is not preferable. This press-fitting may be performed at room temperature, or only the metal member may be heated, or both the metal member and the ceramic member may be heated and press-fitted. However, it is preferable to have a method of heating both members and press-fitting them. What happens is that when both members are heated, the deformation resistance of the metal member decreases, and the load required for press fitting decreases, so damage to both members during press fitting does not occur, and both members are cooled during cooling from the press fitting temperature. This is because the tightening force increases due to the difference in thermal expansion between the two. When both members are heated and press-fitted, the press-fitting temperature is preferably lower than the annealing temperature of the metal member or the softening temperature of the surface-hardened layer, whichever is lower, and more than the working temperature of the press-fitting part. When the press-fitting temperature is higher than the annealing temperature of the metal member, the internal stress generated in the metal member is relieved and the tightening force of the press-fitting portion is reduced, which is not preferable. Further, if the press-fitting temperature is higher than the softening temperature of the surface-hardened layer, the effect of the surface-hardening treatment decreases, which is not preferable. Furthermore, when the press-fitting temperature is lower than the operating temperature of the press-fitting part, when the temperature of the press-fitting part rises to the operating temperature, the thermal expansion of the metal member is generally larger than the thermal expansion of the ceramics member, so the press-fitting part is loosened and tightened. It is not preferable because the attaching force is reduced.

本発明の金属・セラミツクス結合体は、通常は金属部材
とセラミツクス部材を嵌合したのち、仕上げ加工を行つ
て使用に供する。したがつて、使用時に耐摩耗性を必要
とする金属部分は、仕上げ加工で表面を研削しても、所
定の表面硬さを示すことが必要である。しかし、表面硬
化処理による金属部材表面の硬さおよび金属部材表面か
ら内部にかけての硬さの変化は、金属部材を構成する金
属材料の種類、表面硬化の寸法と条件により種々変化す
る。このため、使用時に耐摩耗性を必要とする金属部分
の仕上げ加工での表面研削量は、所定表面硬さ、金属部
材を構成する金属材料の種類および表面硬化の方法と条
件に応じて決定する。あるいは、上記金属部分の仕上げ
研削量と表面硬さに応じて、該金属部材を構成する金属
材料の種類および表面硬化の方法と条件を決定する。
The metal / ceramics combined body of the present invention is usually used after being subjected to finishing after fitting the metal member and the ceramic member. Therefore, it is necessary for a metal portion that requires wear resistance during use to exhibit a predetermined surface hardness even if the surface is ground by finishing. However, the hardness of the surface of the metal member and the change in the hardness from the surface of the metal member to the inside due to the surface hardening treatment are variously changed depending on the type of metal material forming the metal member, the size and conditions of the surface hardening. For this reason, the amount of surface grinding in the finishing process of the metal part that requires wear resistance during use is determined according to the predetermined surface hardness, the type of metal material forming the metal member, and the method and conditions for surface hardening. . Alternatively, the type of metal material forming the metal member and the method and conditions for surface hardening are determined according to the amount of finish grinding and the surface hardness of the metal portion.

本発明の金属・セラミツクス結合体を構成する金属材料
は浸炭、窒化、表面焼入れ、放電硬化、メツキ等の方法
で表面硬化が可能な市販の金属材料を使用する。たとえ
ば、表面硬化を窒化で行う場合には、ステンレス鋼、合
金工具鋼、クロムモリブデン鋼、アルミニウムクロムモ
リブデン鋼等クロムを含有する鉄合金およびチタン、ジ
ルコウムとこれら元素を含む合金が好ましい。表面硬化
がイオン窒化で行われる場合には、アルミニウムクロム
モリブデン鋼とステンレス鋼が、表面硬度が高くしかも
表面から深い位置まで硬化されるのでより好ましく、ア
ルミニウムクロムモリブデン鋼が安価なのでもつとも好
ましいものである。
As the metal material forming the metal / ceramics composite of the present invention, a commercially available metal material that can be surface hardened by a method such as carburizing, nitriding, surface quenching, discharge hardening, and plating is used. For example, when surface hardening is performed by nitriding, an iron alloy containing chromium such as stainless steel, alloy tool steel, chrome molybdenum steel, and aluminum chrome molybdenum steel, and an alloy containing titanium and zirconium and these elements are preferable. When surface hardening is performed by ion nitriding, aluminum chrome molybdenum steel and stainless steel are more preferable because they have high surface hardness and are hardened from the surface to a deep position, and aluminum chrome molybdenum steel is also preferable because it is inexpensive. .

本発明の金属・セラミツクス結合体を構成するセラミツ
クス材料は窒化硅素、炭化硅素、ジルコニア、アルミ
ナ、ベリリア、サイアロン等から、本発明の金属・セラ
ミツクス結合体の使用目的に応じて選択する。たとえ
ば、本発明の金属・セラミツクス結合体でターボチヤー
ジヤーローターやガスタービンローターを作る場合に
は、排気ガスの高温にさらされ、かつ高速回転するター
ビンホイールとそれに続く回転軸は高温強度が大きく、
比重が小さい窒化硅素が好ましい。
The ceramic material constituting the metal / ceramics composite of the present invention is selected from silicon nitride, silicon carbide, zirconia, alumina, beryllia, sialon, etc. according to the purpose of use of the metal / ceramics composite of the present invention. For example, when a turbocharger rotor or a gas turbine rotor is made of the metal-ceramics combination of the present invention, the turbine wheel that is exposed to the high temperature of exhaust gas and that rotates at high speed and the rotating shaft that follows it have high high temperature strength. ,
Silicon nitride having a small specific gravity is preferable.

第1図は本発明の実施例1〜3を説明するための金属・
セラミツクス結合体の部分断面図である。以下第1図に
もとづいて実施例を説明する。
FIG. 1 shows a metal for explaining Examples 1 to 3 of the present invention.
It is a fragmentary sectional view of a ceramics combination. An embodiment will be described below with reference to FIG.

実施例1) 常圧焼結法で作製した窒化硅素(以下窒化硅素という)
丸棒から、直径7.0mm、長さ25mmの凸部11を有す
る、第1図に示す形状のセラミツクス部材10を作製し
た。また、焼なました直径9.3mmのアルミニウムクロム
モリブデン鋼(JIS−SACM645、以下窒化鋼と
いう)丸棒から、一端に内径6.8mm、深さ15mmの凹部
21を有する、第1図に示す形状の金属部材20を作製
した。つぎに、金属部材の凹部入口側端面から17mm離
れた位置までの区間を軟鋼製カバーで覆い、残りの部分
の外表面(第1図のA区間)を、圧力:4Toorの等量の
窒素と水素からなる混合雰囲気中で、550℃に加熱し
ながら20時間イオン窒化処理を行なつた金属部材(金
属部材Aと称す)と、金属部材の外表面全域(第1図B
区間)を金属部材Aと同一条件でイオン窒化処理した金
属部材(金属部材Bと称す)を作製した。
Example 1) Silicon nitride manufactured by an atmospheric pressure sintering method (hereinafter referred to as silicon nitride)
A ceramic member 10 having a shape shown in FIG. 1 having a convex portion 11 having a diameter of 7.0 mm and a length of 25 mm was produced from a round bar. In addition, an aluminum chrome molybdenum steel (JIS-SACM645, hereinafter referred to as nitrided steel) round bar with a diameter of 9.3 mm, which has a recess 21 with an inner diameter of 6.8 mm and a depth of 15 mm at one end, has the shape shown in FIG. The metal member 20 was produced. Next, the section up to the position 17 mm away from the recessed inlet side end surface of the metal member is covered with a mild steel cover, and the outer surface of the remaining portion (section A in Fig. 1) is treated with an equal amount of nitrogen at a pressure of 4 Toor. In a mixed atmosphere composed of hydrogen, a metal member (referred to as metal member A) subjected to ion nitriding treatment for 20 hours while being heated to 550 ° C., and the entire outer surface of the metal member (see FIG. 1B).
A metal member (referred to as metal member B) was produced by subjecting the section) to the ion nitriding treatment under the same conditions as the metal member A.

上記条件でのイオン窒化処理により、窒化鋼の窒化部表
面のビツカース硬さは窒化処理前のHv(0.1)200か
らHv(0.1)1100まで増加した。また、表面から0.2
mmの深さの位置でのビツカース硬さはHv(0.1)700
を示した。
By the ion nitriding treatment under the above conditions, the Vickers hardness of the surface of the nitrided portion of the nitrided steel increased from Hv (0.1) 200 before nitriding treatment to Hv (0.1) 1100. Also, 0.2 from the surface
Vickers hardness at a depth of mm is Hv (0.1) 700
showed that.

上記2種類の金属部材20の凹部21にセラミツクス部
材の凸部11を、350℃で圧入し第1図に示す形状の
金属・セラミツクス結合体を作製した。この圧入によ
り、金属部材凹部入口から深さ13mmまでの区間(第1
図C区間)が変形し、金属部分の直径が約0.2mm増加
した。この圧入による金属部材の変形部分の外表面を検
査したところ、金属部材Aを用いた金属・セラミツクス
結合体については何ら異常が認められなかつた。金属部
材Bを使用した金属・セラミツクス結合体には、金属部
材の軸方向に沿つて長さ約10mm、深さ約0.5mmのクラ
ツクが多数検出された。
The protrusions 11 of the ceramics member were press-fitted into the recesses 21 of the above-mentioned two kinds of metal members 20 at 350 ° C. to produce a metal / ceramics combined body having the shape shown in FIG. Due to this press-fitting, a section from the entrance of the concave portion of the metal member to a depth of 13 mm (first
The section (C in the figure) was deformed, and the diameter of the metal part was increased by about 0.2 mm. When the outer surface of the deformed portion of the metal member due to this press-fitting was inspected, no abnormality was found in the metal / ceramics combined body using the metal member A. In the metal / ceramics combined body using the metal member B, many cracks having a length of about 10 mm and a depth of about 0.5 mm were detected along the axial direction of the metal member.

このように、金属部材の表面硬化部を圧入により変形さ
せると、金属部材表面にクラツクが発生し、健全な金属
・セラミツクス結合体が得られない。これに対し、圧入
による変形部を表面硬化させていない金属部材Aを使用
した本発明の金属・セラミツクス結合体では、圧入によ
り金属部材の変形が生じても、金属部材表面にクラツク
が発生しない。
As described above, when the surface hardened portion of the metal member is deformed by press fitting, cracks are generated on the surface of the metal member, and a sound metal / ceramics combined body cannot be obtained. On the other hand, in the metal / ceramics combined body of the present invention which uses the metal member A whose surface is not hardened by the press-fitting deformation, even if the metal member is deformed by the press-fitting, no crack is generated on the surface of the metal member.

実施例2) 実施例1と同一材料、同一形状のセラミツクス部材と金
属部材を作製した。この金属部材について、凹部側端面
からそれぞれ13.5mm(金属部材Cとする)、14.5mm(金
属部材Dとする)、15.5mm(金属部材Eとする)離れた
位置までの区間の外表面を軟鋼製カバーで覆い、残りの
区間の外表面に実施例1と同一条件でイオン窒化処理を
行つた3種類の金属部材を作製した。これら3種の金属
部材の凹部にセラミツクス部材の凹部を350℃で圧入
し、第1図に示す形状の金属・セラミツクス結合体を作
製した。この圧入により、各金属部材は凹部側端面から
13mm離れた位置までの区間が変形し外径が増加した。
上記各金属・セラミツクス結合体の金属部分の圧入によ
る変形部とその周辺部の外表面を検査したところ、金属
部材D,Eの外表面にはクラツクが存在しなかつた。し
かし、金属部材Cのイオン窒化部と非窒化部の境界付近
に、金属部材の軸方向に沿つて長さ約2mm、深さ約0.2m
mのクラツクが検出された。このように、圧入による金
属部材の変形域と金属部材の表面硬化域とが所定の距離
以上離れている本発明の金属・セラミツクス結合体で
は、圧入により金属部材の変形が生じても金属部材表面
にクラツクが発生しない。
Example 2) A ceramic member and a metal member having the same material and shape as those of Example 1 were produced. About this metal member, the outer surface of the section up to the positions 13.5 mm (referred to as metal member C), 14.5 mm (referred to as metal member D), and 15.5 mm (referred to as metal member E) from the end surface on the concave side is made of mild steel. Three types of metal members were produced, which were covered with a cover made of metal and subjected to ion nitriding treatment on the outer surface of the remaining section under the same conditions as in Example 1. The recesses of the ceramic member were press-fitted into the recesses of these three types of metal members at 350 ° C. to produce a metal / ceramics bonded body having the shape shown in FIG. By this press-fitting, each metal member was deformed in a section up to a position 13 mm away from the end surface on the concave side, and the outer diameter was increased.
When the outer surface of the deformed portion of the metal / ceramics combined body by press fitting of the metal portion and its peripheral portion was inspected, no cracks were found on the outer surface of the metal members D and E. However, in the vicinity of the boundary between the ion-nitrided portion and the non-nitrided portion of the metal member C, the length of about 2 mm and the depth of about 0.2 m along the axial direction of the metal member.
A crack of m has been detected. As described above, in the metal / ceramics combined body of the present invention in which the deformation area of the metal member due to the press-fitting and the surface hardened area of the metal member are separated by a predetermined distance or more, even if the deformation of the metal member occurs due to the press-fitting, the metal member surface No cracks occur.

実施例3) 窒化硅素丸棒から、第1表に示す直径で、長さが25mm
の凸部を有する、第1図に示す形状のセラミツクス部材
を作製した。また、焼なました窒化鋼丸棒から、直径9.
3mm、長さ80mmの試験片を作り、該試験片の一端から
15mm離れた位置までの区間を軟鋼製カバーで覆い、残
りの部分の表面を実施例1と同一条件でイオン窒化によ
り硬化させた。しかるのち、該試験片の非硬化部側の端
部に第1表に示す直径で深さ15mmの凹部を有する第1
図に示す形状の金属部材を作製した。この金属部材の凹
部にセラミツクス部材の凸部を350℃で圧入し、第1
図に示す形状の金属・セラミツクス結合体を作製した。
つぎに、金属部材の端部に所定寸法のねじ22を加工し
たのち、第2図に示す治具を用い、第2図に図示の部分
を加熱炉に入れて350℃に保持しながら、セラミツク
ス部材と金属部材をそれぞれ上下方向に引抜いて、圧入
部の引抜に要する荷重を測定し、得られた結果を第1表
に示した。
Example 3) From a silicon nitride round bar, the diameter is shown in Table 1 and the length is 25 mm.
A ceramic member having the shape shown in FIG. Also, from annealed nitrided steel round bar, diameter 9.
A test piece having a length of 3 mm and a length of 80 mm was prepared, and a section up to a position 15 mm away from one end of the test piece was covered with a mild steel cover, and the surface of the remaining portion was cured by ion nitriding under the same conditions as in Example 1. . After that, a first recess having a diameter shown in Table 1 and a depth of 15 mm is formed at the end on the non-cured portion side of the test piece.
A metal member having the shape shown in the figure was produced. The convex portion of the ceramic member is press-fitted into the concave portion of the metal member at 350 ° C.
A metal / ceramics composite having the shape shown in the figure was produced.
Next, after the screw 22 having a predetermined size is processed on the end of the metal member, the jig shown in FIG. 2 is used to put the portion shown in FIG. The member and the metal member were vertically pulled out, and the load required for pulling out the press-fitting portion was measured. The obtained results are shown in Table 1.

第1表に示した結果のうち、No.1〜No.6はセラミツク
ス部材上の凸部直径と金属部材上の凹部内径との寸法差
が本発明の大きさである金属・セラミツクス結合体であ
り、No.10〜No.12は該寸法差が本発明外の大きさで
ある金属・セラミツクス結合体である。第1表から明ら
かなように、上記寸法差が本発明の大きさである金属・
セラミツクス結合体は、350℃において大きな引抜荷
重を示している。これに対し、該寸法差が本発明の大き
さ以下の金属・セラミツクス結合体は引抜荷重が小さ
い。また、該寸法差が本発明の大きさ以上の金属・セラ
ミツクス結合体は圧入時にセラミツクス部材の凸部が破
損する。
Among the results shown in Table 1, No. 1 to No. 6 are metal / ceramics combined bodies in which the dimensional difference between the convex portion diameter on the ceramic member and the concave portion inner diameter on the metal member is the size of the present invention. No. 10 to No. 12 are metal-ceramics combined bodies in which the dimensional difference is outside the scope of the present invention. As is clear from Table 1, the above-mentioned dimensional difference is the size of the present invention.
The ceramic composite shows a large pulling load at 350 ° C. On the other hand, the metal / ceramics combined body having the dimensional difference equal to or less than the size of the present invention has a small drawing load. Further, in the metal / ceramics combined body having the dimensional difference larger than that of the present invention, the convex portion of the ceramics member is damaged during press fitting.

実施例4) 直径61mmのタービンホイール41と直径9.1mmのター
ビンシヤフト42を窒化硅素で一体的に成形した全長6
0mmのセラミツクス部材40を作製した。このセラミツ
クス部材のタービンシヤフト先端に直径6mm、長さ13
mmの凸部43を加工した。また、全長70mm、直径9.1m
mの窒化鋼丸棒を作り、該丸棒の一端から13mm離れた
位置までの区間を軟鋼製カバーで覆い、残りの部分の表
面を実施例1と同一条件でイオン窒化処理により硬化さ
せた。つぎに、該丸棒の非窒化部側の端部に直径5.8m
m、深さ12mmの凹部52を加工し、金属部材50を作
製した。この凹部52に上記タービンシヤフト先端の凸
部43を、嵌合部の使用温度以上の温度である350℃
で圧入嵌合して、セラミツクス部材40と金属部材50
一体的に結合したのち、セラミツクスタービンシヤフト
42とメタルタービンシヤフト51の直径を9.0mm、コ
ンプレツサーホイール側回転軸58を直径5mmに加工
し、第8図に示す形状の、タービンホイールとタービン
シヤフトの一部が窒化硅素、残りの部分が窒化鋼からな
るターボチヤージヤーローターを作製した。このターボ
チヤージヤーローターを高温回転試験装置に組込んで燃
焼ガスにより150000rpmで1時間回転試験を行な
つたが、嵌合部およびメタルタービンシヤフトのベアリ
ング当接面54に何ら異常は認められなかつた。
Example 4) A turbine wheel 41 having a diameter of 61 mm and a turbine shaft 42 having a diameter of 9.1 mm are integrally molded of silicon nitride to have a total length of 6
A 0 mm ceramic member 40 was produced. A diameter of 6 mm and a length of 13 mm are attached to the tip of the turbine shaft of this ceramic member.
The mm convex portion 43 was processed. Also, total length 70 mm, diameter 9.1 m
A m-nitride steel round bar was prepared, a section from the one end to a position 13 mm apart was covered with a mild steel cover, and the surface of the remaining part was cured by ion nitriding treatment under the same conditions as in Example 1. Next, at the end of the round bar on the non-nitriding side, a diameter of 5.8 m
A metal member 50 was manufactured by processing the recess 52 having a depth of 12 mm and a depth of 12 mm. The convex portion 43 at the tip of the turbine shaft is provided in the concave portion 52 at 350 ° C. which is a temperature higher than the working temperature of the fitting portion.
By press fitting with the ceramic member 40 and the metal member 50.
After they are integrally connected, the ceramic turbine shaft 42 and the metal turbine shaft 51 are machined to have a diameter of 9.0 mm and the rotary shaft 58 on the compressor wheel side is machined to have a diameter of 5 mm. A turbocharger rotor was manufactured in which a part of the above was made of silicon nitride and the remaining part was made of nitrided steel. This turbocharger rotor was installed in a high-temperature rotation tester and a rotation test was carried out at 150,000 rpm for 1 hour using combustion gas. No abnormality was found in the fitting portion and the bearing contact surface 54 of the metal turbine shaft. It was

以上述べたことから明らかなように、本発明の金属・セ
ラミツクス結合体は所定部位を表面硬化処理した金属部
材に設けた凹部に、該凹部内径より1%〜10%大きい
直径を有する凸部を嵌合して一体的に結合したものであ
るから、結合強度が大きくしかも金属部分の所定部位の
耐摩耗性がすぐれている。したがつて、本発明の金属・
セラミツクス結合体でタービンホイールおよびタービン
シヤフトの一部が窒化硅素、その他の部分が窒化鋼から
なるターボチヤージヤーローターを構成すれば、応答性
と耐久性にすぐれた高効率のターボチヤージヤーとする
ことができる。
As is clear from the above description, the metal / ceramics combined body of the present invention is provided with a convex portion having a diameter 1% to 10% larger than the inner diameter of the concave portion provided in the concave portion provided in the metal member having the predetermined portion surface-hardened. Since they are fitted and integrally joined, the joining strength is high and the wear resistance of a predetermined portion of the metal portion is excellent. Therefore, the metal of the present invention
By constructing a turbocharger rotor that consists of ceramic wheels, part of the turbine wheel and turbine shaft is silicon nitride, and the other part is nitrided steel, a highly efficient turbocharger with excellent responsiveness and durability. can do.

このように本発明の金属・セラミツクス結合体はセラミ
ツクスの耐熱性、耐摩耗性、高強度などの特性を生かし
てターボチヤージヤーローターやガスタービンローター
などのエンジン部品や高温や繰り返し荷重を受ける構造
体部品として使用することができ、かつこれらを安価か
つ耐久性に優れたものとして提供することができる利点
を有する。
As described above, the metal / ceramics combined body of the present invention is a structure that receives the high temperature and repetitive load of engine parts such as turbocharger rotor and gas turbine rotor by taking advantage of the heat resistance, wear resistance, and high strength of ceramics. It has an advantage that it can be used as a body part and can be provided at low cost and with excellent durability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を説明するための金属・セラミ
ツクス結合体の部分断面図、 第2図は金属・セラミツクス結合体の引抜試験の方法を
示す説明図、 第3図は本発明の金属・セラミツクス結合体の具体的応
用例のターボチヤージヤーローターの圧入嵌合部の縦断
面図を示す説明図である。 10…セラミツクス部材 11…セラミツクス部材上の凸部 20…金属部材 21…金属部材上の凹部 22…ねじ 30…引抜試験用プルロツド 31…引抜試験用ツカミ具 40…セラミツクス部材 41…セラミツクスタービンホイール 42…セラミツクスタービンシヤフト 43…セラミツクスタービンシヤフト上の凸部 50…金属部材 51…メタルタービンシヤフト 52…メタルタービンシヤフト上の凹部 58…コンプレツサーホイール側回転軸 54…ベアリング当接部表面
FIG. 1 is a partial cross-sectional view of a metal / ceramics bonded body for explaining an embodiment of the present invention, FIG. 2 is an explanatory view showing a method of pulling out a metal / ceramics bonded body, and FIG. 3 is a view of the present invention. It is explanatory drawing which shows the longitudinal cross-sectional view of the press fit fitting part of the turbocharger rotor of the specific application example of a metal / ceramics coupling body. DESCRIPTION OF SYMBOLS 10 ... Ceramic member 11 ... Convex part on ceramic member 20 ... Metal member 21 ... Recess on metal member 22 ... Screw 30 ... Pull-out test pull rod 31 ... Pull-out test tool 40 ... Ceramic member 41 ... Ceramic turbine wheel 42 ... Ceramics turbine shaft 43 ... Convex portion on ceramics turbine shaft 50 ... Metal member 51 ... Metal turbine shaft 52 ... Recessed portion on metal turbine shaft 58 ... Rotor shaft on compressor wheel 54 ... Bearing contact surface

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−217814(JP,A) 特開 昭54−42520(JP,A) 特開 昭59−13678(JP,A) 特開 昭58−61269(JP,A) 実開 昭59−9102(JP,U) 実開 昭57−92097(JP,U) ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-58-217814 (JP, A) JP-A-54-42520 (JP, A) JP-A-59-13678 (JP, A) JP-A-58- 61269 (JP, A) Actually opened 59-9102 (JP, U) Actually opened 57-92097 (JP, U)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】表面に硬化帯と非硬化帯を有する金属部材
に設けた凹部にセラミックス部材に設けた凸部が焼ば
め、冷しばめ、圧入等の締りばめにより結合されている
構造の金属・セラミックス結合体において、該凹部外表
面に硬化帯と非硬化帯とが存在し、しかも上記締りばめ
による金属部材の変形域が上記非硬化帯内にあるととも
に、該変形域が硬化帯境界より1mm以上離れていること
を特徴とする金属・セラミックス結合体。
1. A convex portion provided on a ceramic member is joined to a concave portion provided on a metal member having a hardened zone and an uncured zone on the surface by shrink fit, shrink fit, press fit, or the like. In the metal / ceramic composite having the structure, there are a hardened zone and a non-hardened zone on the outer surface of the recess, and the deformation area of the metal member due to the interference fit is within the non-hardened zone, and the deformation area is A metal / ceramic composite characterized by being separated by 1 mm or more from the boundary of the hardening zone.
【請求項2】前記硬化帯がイオン窒化されたものである
特許請求の範囲第1項に記載の金属・セラミックス結合
体。
2. The metal / ceramic bonding article according to claim 1, wherein the hardening zone is ion-nitrided.
【請求項3】金属部材が窒化鋼、セラミックス部材が窒
化硅素からなる特許請求の範囲第1項ないし第2項のい
ずれかに記載の金属・セラミックス結合体。
3. The metal / ceramic bonding body according to claim 1, wherein the metal member is made of nitrided steel and the ceramic member is made of silicon nitride.
【請求項4】金属・セラミックス結合体がターボチャー
ジャーローターである特許請求の範囲第1項ないし第3
項のいずれかに記載の金属・セラミックス結合体。
4. A metal-ceramic combined body which is a turbocharger rotor.
Item 8. A metal / ceramic composite body according to any one of items.
【請求項5】表面の一部を硬化処理した金属部材に設け
られている凹部にセラミックス部材に設けた凸部を焼ば
め、冷しばめ、圧入等の締りばめにより結合して金属・
セラミックス結合体とする方法において、金属部材に凹
部を設け、しかるのち金属部材の外表面のうち、該凹部
形成部の外表面の上記締りばめによる変形予定域から1
mm以上離れた部分の表面に表面硬化処理を施したのち、
該凹部にセラミックス部材に設けた凸部を締りばめによ
り結合して、締りばめによる金属部材の変形域が非表面
硬化帯内にあるとともに該変形域が硬化帯境界より1mm
以上離れているようにすることを特徴とする金属・セラ
ミックス結合体の製造法。
5. A metal formed by shrink-fitting a convex portion provided on a ceramic member into a concave portion provided on a metal member whose surface is partially hardened by shrink fitting, cold fitting, press-fitting, or the like.・
In the method of forming a ceramics combined body, a concave portion is provided in a metal member, and then, from the outer surface of the metallic member, the outer surface of the concave portion-forming portion is to be deformed by the above-mentioned interference fit to 1
After surface hardening treatment on the surface of the part that is more than mm away,
The convex portion provided on the ceramic member is coupled to the concave portion by an interference fit so that the deformation area of the metal member due to the interference fit is within the non-surface hardening zone and the deformation area is 1 mm from the hardening zone boundary.
A method for producing a metal / ceramic composite body, characterized in that they are separated as described above.
【請求項6】上記硬化処理がイオン窒化によるものであ
る特許請求の範囲第5項記載の金属・セラミックス結合
体の製造法。
6. The method for producing a metal / ceramic bonding body according to claim 5, wherein the hardening treatment is ion nitriding.
【請求項7】前記嵌合が金属部材の焼なまし温度以下お
よび室温または嵌合部の最高使用温度以上の温度におけ
る圧入である特許請求の範囲第5項ないし第6項のいず
れかに記載の金属・セラミックス結合体の製造法。
7. The method according to any one of claims 5 to 6, wherein the fitting is press-fitting at a temperature not higher than an annealing temperature of the metal member and at a temperature higher than a room temperature or a maximum working temperature of the fitting portion. Method for manufacturing metal / ceramic composites.
【請求項8】セラミックス部材上の凸部直径が金属部材
上の凹部内径より1%ないし10%大である特許請求の範
囲第5項ないし第7項のいずれかに記載の金属・セラミ
ックス結合体の製造法。
8. The metal / ceramic bonding article according to claim 5, wherein the diameter of the convex portion on the ceramic member is 1% to 10% larger than the inner diameter of the concave portion on the metal member. Manufacturing method.
JP59059524A 1984-03-29 1984-03-29 Metal / ceramic composite and method for producing the same Expired - Fee Related JPH063122B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59059524A JPH063122B2 (en) 1984-03-29 1984-03-29 Metal / ceramic composite and method for producing the same
US06/700,104 US4719074A (en) 1984-03-29 1985-02-11 Metal-ceramic composite article and a method of producing the same
CA000474216A CA1235633A (en) 1984-03-29 1985-02-13 Metal.sup..ceramics composite article and a method of producing the same
DE8585300974T DE3571677D1 (en) 1984-03-29 1985-02-14 Metal ceramics composite article and a method of producing the same
EP85300974A EP0156484B1 (en) 1984-03-29 1985-02-14 Metal ceramics composite article and a method of producing the same
EP85300975A EP0157479B1 (en) 1984-03-29 1985-02-14 A metal ceramics composite article and a process for manufacturing the same
DE8585300975T DE3571678D1 (en) 1984-03-29 1985-02-14 A metal ceramics composite article and a process for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059524A JPH063122B2 (en) 1984-03-29 1984-03-29 Metal / ceramic composite and method for producing the same

Publications (2)

Publication Number Publication Date
JPS60204901A JPS60204901A (en) 1985-10-16
JPH063122B2 true JPH063122B2 (en) 1994-01-12

Family

ID=13115738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059524A Expired - Fee Related JPH063122B2 (en) 1984-03-29 1984-03-29 Metal / ceramic composite and method for producing the same

Country Status (1)

Country Link
JP (1) JPH063122B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006209U (en) * 1994-07-06 1995-01-24 大阪鞄材株式会社 Belt fasteners for carrying luggage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2811020B2 (en) * 1990-04-17 1998-10-15 日本特殊陶業株式会社 Joint of ceramic and steel and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599102U (en) * 1982-07-08 1984-01-20 日産自動車株式会社 Turbo gear rotation axis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006209U (en) * 1994-07-06 1995-01-24 大阪鞄材株式会社 Belt fasteners for carrying luggage

Also Published As

Publication number Publication date
JPS60204901A (en) 1985-10-16

Similar Documents

Publication Publication Date Title
US4719074A (en) Metal-ceramic composite article and a method of producing the same
EP0139406B1 (en) Metal-ceramics composite article and a method of producing the same
US4614453A (en) Metal-ceramic composite body and a method of manufacturing the same
US4784574A (en) Turbine rotor units and method of producing the same
US4761117A (en) Turbine rotor and a method of producing the same
JPH0248514B2 (en)
US4719075A (en) Metal-ceramic composite article and a process for manufacturing the same
US4798493A (en) Ceramic-metal composite body
JPS61219767A (en) Metal ceramic bonded body
EP0238321B1 (en) Metal-ceramic composite bodies and a method for manufacturing the same
EP0472171B1 (en) Ceramic rotor and metal shaft assembly
JPS61191572A (en) Metal and ceramic joined body
JPH063122B2 (en) Metal / ceramic composite and method for producing the same
EP0156484B1 (en) Metal ceramics composite article and a method of producing the same
JPH06170652A (en) Combined body of ceramic and metal
JPH0444630B2 (en)
JPH09272021A (en) Manufacture of turbine rotor
JPH0658044B2 (en) Turbine rotor and method for producing the same
EP0732481B1 (en) Turbine rotor
JP2529407B2 (en) Turbin rotor
Kawase et al. Development of ceramic turbocharger rotors for high temperature use
JPH02211359A (en) Ceramics crown piston and manufacture thereof
JPH0628819B2 (en) Method for manufacturing metal / ceramic composite
JPH0449512B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees