JPH06308118A - Cell sorting and electrode insertion method and device - Google Patents
Cell sorting and electrode insertion method and deviceInfo
- Publication number
- JPH06308118A JPH06308118A JP5098227A JP9822793A JPH06308118A JP H06308118 A JPH06308118 A JP H06308118A JP 5098227 A JP5098227 A JP 5098227A JP 9822793 A JP9822793 A JP 9822793A JP H06308118 A JPH06308118 A JP H06308118A
- Authority
- JP
- Japan
- Prior art keywords
- cells
- image
- cell
- fluorescence
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manipulator (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Microscoopes, Condenser (AREA)
Abstract
(57)【要約】
【目的】 細胞の選別と電極刺入方法および装置に関
し、簡単で且つ確実な方法および装置構成を提供するこ
とを目的とする。
【構成】 蛍光色素を付与し蛍光を発する複数の細胞と
蛍光を発しない複数の細胞とからなる試料について落射
蛍光顕微鏡を用いて細胞の反射光像と透過光像とを観察
し、それぞれテレビカメラで撮影する工程と、撮影した
細胞の反射光像を画像解析装置で二値化処理して蛍光を
発する細胞と発しない細胞とに区別し、蛍光を発する細
胞の二値化した蛍光像をフレームメモリに記録する工程
と、二値化した蛍光像と透過光像とをモニタ上で重ね合
わせ、または併置する工程とからなることを特徴として
細胞の位置決め方法を構成する。
(57) [Abstract] [Object] An object of the present invention is to provide a simple and reliable method and apparatus configuration for cell selection and electrode insertion method and apparatus. [Structure] A reflected light image and a transmitted light image of cells are observed using an epi-fluorescence microscope for a sample consisting of a plurality of cells to which a fluorescent dye is applied and which emits fluorescence and a plurality of cells that do not emit fluorescence, and a television camera respectively. And the reflected light image of the imaged cells is binarized with an image analyzer to distinguish between cells that emit fluorescence and cells that do not, and the binarized fluorescence image of cells that emit fluorescence is framed. A cell positioning method is characterized by comprising a step of recording in a memory and a step of superimposing or binarizing a binarized fluorescence image and a transmitted light image on a monitor.
Description
【0001】[0001]
【産業上の利用分野】本発明は特定細胞の選別方法,電
極刺入方法および刺入装置の構成に関する。神経生理学
の研究においては細胞の膜電位の測定,薬物投与などの
必要から特定の細胞内に高濃度の電解質溶液を充填した
ガラス微小電極を刺入することが行なわれている。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selecting specific cells, an electrode insertion method, and a structure of an insertion device. In the study of neurophysiology, glass microelectrodes filled with a high-concentration electrolyte solution are inserted into specific cells for the purpose of measuring the membrane potential of cells and administering drugs.
【0002】[0002]
【従来の技術】細胞にガラス微小電極を刺入する方法と
して当初は顕微鏡で細胞を観察しながら水圧または油圧
で動作するマニピュレータを用いてガラス微小電極を刺
入するのが一般であったが、操作には熟練した技術と経
験を必要としていた。その後、この操作を簡単化する方
法としてテレビ画面上に写し出した複数の細胞を画面上
でマウス(手持ち式位置入力装置)を用いて指定するこ
とにより特定の細胞にガラス微小電極を刺入したり、薬
物注入を行なえる装置が市販されるようになってきた。2. Description of the Related Art Initially, as a method for piercing cells with glass microelectrodes, it was common to puncture glass microelectrodes using a manipulator operated by water pressure or hydraulic pressure while observing the cells with a microscope. The operation required skill and experience. After that, as a method to simplify this operation, you can insert a glass microelectrode into a specific cell by designating multiple cells projected on the TV screen using a mouse (handheld position input device) on the screen. , Devices that can inject drugs have become commercially available.
【0003】然し、最近では事前に蛍光色素などで染色
して特定の細胞をマークしておき、この特定の細胞にガ
ラス微小電極を刺入する必要が増加しており、この場
合、蛍光顕微鏡の下で蛍光を発している細胞を選別して
記憶しておき、透過顕微鏡の下でガラス微小電極を刺入
する必要があるが、細胞の数が多いことから、蛍光像と
透過光像を交互に観察して電極の刺入を行なうのは煩雑
であり、誤って異なる細胞に刺入する恐れがあった。Recently, however, there is an increasing need for marking specific cells in advance by dyeing with a fluorescent dye or the like and inserting a glass microelectrode into the specific cells. It is necessary to select and memorize the cells emitting fluorescence underneath and insert the glass microelectrode under the transmission microscope.However, because of the large number of cells, the fluorescence image and transmitted light image alternate. It is complicated to observe the above and insert the electrode, and there is a risk of accidentally inserting into different cells.
【0004】[0004]
【発明が解決しようとする課題】複数種の細胞の内から
必要とする特定の細胞を蛍光色素で染色することは可能
であり、この特定の細胞をモニタ(監視装置)上で多数
の細胞の透過光像に重畳または併置して示すことができ
れば、ガラス微小電極の刺入を間違えなく行なうことが
できる。It is possible to stain a specific cell required from a plurality of types of cells with a fluorescent dye, and this specific cell can be displayed on a monitor (monitoring device). If it is possible to superimpose or to be juxtaposed with the transmitted light image, it is possible to puncture the glass microelectrode without mistake.
【0005】また、ガラス微小電極を駆動するマニピュ
レータの制御をコンピュータで行い、電極の細胞刺入を
電極より検出した細胞の電気的現象によって検出し、そ
の情報をコンピュータにフィードバックすれば自動的に
ガラス電極を刺入することが可能となる。そこで、刺入
方法と装置を実用化することが課題である。Further, a computer controls a manipulator for driving glass microelectrodes, cell penetration of the electrodes is detected by an electrical phenomenon of cells detected from the electrodes, and the information is fed back to the computer to automatically detect the glass. It is possible to insert the electrode. Therefore, it is an issue to put the insertion method and the device into practical use.
【0006】[0006]
【課題を解決するための手段】上記の課題の内、特定細
胞の選別方法としては、蛍光色素を付与し蛍光を発する
複数の細胞と蛍光を発しない複数の細胞とからなる試料
について落射蛍光顕微鏡を用いて細胞の蛍光像と透過光
像とを観察し、それぞれテレビカメラで撮影する工程
と、撮影した細胞の蛍光像を画像解析装置で二値化処理
して蛍光を発する細胞と発しない細胞とに区別し、蛍光
を発する細胞の二値化像をフレームメモリに記録する工
程と、二値化像と透過光像とをモニタ上で重ね合わせる
ことで特定細胞の選別が可能である。[Means for Solving the Problems] Among the above-mentioned problems, as a method for selecting specific cells, an epifluorescence microscope is used for a sample consisting of a plurality of cells to which a fluorescent dye is added and which emit fluorescence and a plurality of cells which do not emit fluorescence. Observing the fluorescence image and transmitted light image of the cell using the, respectively, the step of photographing with a TV camera, and the fluorescence image of the photographed cell is binarized by the image analysis device, cells that emit fluorescence and cells that do not emit fluorescence It is possible to select specific cells by distinguishing between the two, and recording a binarized image of fluorescent cells in a frame memory and superimposing the binarized image and the transmitted light image on a monitor.
【0007】また、ガラス微小電極を正確に刺入する装
置構成としては、ガラス微小電極を電極ホルダを介して
プローブに接続し、このプローブを三次元マニピュレー
タで駆動する手段と、三次元マニュピュレータのコント
ロールハンドルにステッピングモータを取り付け、この
モータをコンピュータで制御する手段と、電気刺激装置
からのパルスとバズコントローラからの高周波信号をコ
ンピュータで制御しながらプローブに加える手段と、プ
ローブで検出した電位変化を増幅し、画像表示すると共
にコンピュータに入力し、事前に設定した電気的特性と
比較して刺入を検知する手段とからなる電極刺入装置を
使用すれば良い。Further, as a device configuration for accurately inserting a glass microelectrode, a means for connecting the glass microelectrode to a probe through an electrode holder and driving the probe with a three-dimensional manipulator, and a three-dimensional manipulator A stepping motor is attached to the control handle, a means for controlling this motor with a computer, a means for applying a pulse from the electrostimulator and a high frequency signal from the buzz controller to the probe while controlling it with a computer, and a potential change detected by the probe It is only necessary to use an electrode puncturing device including means for amplifying and displaying an image, inputting it to a computer, and comparing the electric characteristics set in advance to detect puncturing.
【0008】また、ガラス微小電極の刺入方法として
は、細胞への電極の刺入を電気刺激装置と高周波発振装
置を用い、コンピュータで制御しつゝ三次元マニピュレ
ータを用いて行うが、この際に、静止膜電位より検出す
る,膜電位の変化より判定する,活動電位より判定す
る,膜抵抗と膜容量による電気緊張電位の変化より判定
するの内の何れかの方法をとることにより行なうことが
できる。As a method for inserting a glass microelectrode, an electrode is inserted into a cell using an electric stimulator and a high-frequency oscillator and controlled by a computer using a three-dimensional manipulator. In addition, any of the methods of detecting from resting membrane potential, judging from changes in membrane potential, judging from action potential, and judging from changes in electric tension potential due to membrane resistance and membrane capacitance are used. You can
【0009】[0009]
【作用】 図1は特定細胞の選別工程を示すものである。すな
わち、ガラス微小電極の刺入を行おうとする特定の種類
の細胞だけに蛍光色素を取り込ませた後、この細胞群を
落射蛍光顕微鏡で観察し、この画像をSIT(Silicon
Intensifier Target Tube)カメラを介して画像解析装置
に入力させると、この画像解析装置は輝度調整, 輪郭強
調, 閾値処理などの機能をもっているので、蛍光を発し
ている細胞だけを選別する( 二値化処理) することがで
き、この蛍光像の情報をフレームメモリに蓄えておく。[Operation] FIG. 1 shows a process of selecting specific cells. That is, after a fluorescent dye is incorporated only into cells of a specific type in which a glass microelectrode is to be inserted, this cell group is observed with an epifluorescence microscope, and this image is SIT (Silicon
Intensifier Target Tube) When input to the image analysis device through the camera, this image analysis device has functions such as brightness adjustment, contour enhancement, and threshold processing, so only cells that emit fluorescence are selected (binarization). Processing) and the information of this fluorescent image is stored in the frame memory.
【0010】一方、落射蛍光顕微鏡の透過像をCCDカ
メラで撮像し、この透過像を画像解析装置に入力させ、
輝度調整, 輪郭強調などを行なった後、モニタ上で透過
光像と蛍光像を重畳或いは併置させるとガラス微小電極
の刺入を行おうとする特定の細胞だけが明瞭になり、電
極の刺入を間違いなく行なうことができる。 図2は細胞にガラス微小電極を正確に挿入する装置
構成を示すもので、細胞への刺入を行なうガラス微小電
極1は電極ホルダ2で保持されてプローブ(Probe)3に
接続されている。このプローブ3は三次元マニピュレー
タ4で駆動されるが、この駆動源はマニピュレータコン
トローラ5であって、このハンドル部にステッピングモ
ータ7が取り付けてあり、コンピュータ9で制御され
る。On the other hand, a transmission image of the epi-illumination fluorescence microscope is picked up by a CCD camera, and this transmission image is input to an image analysis device,
After adjusting the brightness and emphasizing the contours, etc., if the transmitted light image and the fluorescence image are superimposed or placed side by side on the monitor, only the specific cells that are going to be inserted into the glass microelectrode become clear, and the insertion of the electrode becomes clear. You can definitely do it. FIG. 2 shows a device configuration for accurately inserting a glass microelectrode into a cell. A glass microelectrode 1 for inserting a cell is held by an electrode holder 2 and connected to a probe (Probe) 3. The probe 3 is driven by a three-dimensional manipulator 4. The drive source is a manipulator controller 5, a stepping motor 7 is attached to this handle portion, and it is controlled by a computer 9.
【0011】次に、プローブ3で検出した電位変化は増
幅器10で増幅し、これをメモリオシロスコープ11で監視
するすると共に、データのフィードバックを行なうため
にコンピュータ9に入力するよう構成する。また、ガラ
ス微小電極1を細胞13に刺入するには細胞13の内外の電
位変化などの観察が必要で、ガラス微小電極3の対極と
なる不関電極(アース電極)14をリンゲル液15の一端に
設置してプローブ3に結線しておく。Next, the potential change detected by the probe 3 is amplified by the amplifier 10, monitored by the memory oscilloscope 11, and input to the computer 9 for data feedback. Further, in order to puncture the cell 13 with the glass microelectrode 1, it is necessary to observe potential changes inside and outside the cell 13, and the indifferent electrode (earth electrode) 14 as the counter electrode of the glass microelectrode 3 is connected to one end of the Ringer solution 15. And connect to the probe 3 in advance.
【0012】次に、細胞13にガラス微小電極1を刺入す
るには電極ホルダ2に微小な振動を与えて行なうことが
必要であり、また、測定のためのパルスをガラス微小電
極1と不関電極14との間に与えることが必要である。そ
こで、前者はバズ(Buzz)コントローラ17からの高周波信
号を増幅器10を通して電極ホルダ2に与え、コンピュー
タ9で制御することで行い、また、パルスは電気刺激装
置18からアイソレータ19と増幅器10を経てプローブ3に
印加する。このような構成をとることによりガラス微小
電極1の細胞13への刺入を正確に行なうことが可能とな
る。 ガラス微小電極の細胞への刺入を行なう指標として
静止膜電位の検知,活動電位の検知,膜抵抗と膜容量に
よる電気緊張電位の変化を挙げることができる。一般
に、静止した細胞内は細胞外に較べてー60〜ー80 mVの
電位をもつことから、図2においてガラス微小電極1と
不関電極14との間の電位を観察すると、ガラス微小電極
1が細胞外液(リンゲル液15) に接している間は電位差
はないが、細胞膜を突き破ると電位は突然に負の方向に
変化する。従って、予め、電位がー60〜ー80 mV変化す
ると三次元マニピュレータ4が停止するようにコンピュ
ータ9に設定しておけば、ガラス微小電極1が細胞13を
貫通することなく停止させることが可能である。Next, in order to insert the glass microelectrode 1 into the cell 13, it is necessary to give a slight vibration to the electrode holder 2, and a pulse for measurement is not applied to the glass microelectrode 1. It is necessary to provide between the electrodes 14 and 15. Therefore, the former is performed by applying a high-frequency signal from the buzz controller 17 to the electrode holder 2 through the amplifier 10 and controlling it by the computer 9, and the pulse is transmitted from the electric stimulator 18 through the isolator 19 and the amplifier 10 to the probe. 3 is applied. With such a configuration, it becomes possible to accurately insert the glass microelectrode 1 into the cell 13. As an index for inserting a glass microelectrode into a cell, detection of resting membrane potential, detection of action potential, and change of electric tension potential due to membrane resistance and membrane capacitance can be mentioned. In general, the inside of a quiescent cell has a potential of −60 to −80 mV compared to the outside of the cell. Therefore, observing the potential between the glass microelectrode 1 and the indifferent electrode 14 in FIG. There is no potential difference while the cells are in contact with extracellular fluid (Ringer's solution 15), but the potential suddenly changes in the negative direction when they penetrate the cell membrane. Therefore, if the computer 9 is set in advance so that the three-dimensional manipulator 4 stops when the potential changes by -60 to -80 mV, the glass microelectrode 1 can be stopped without penetrating the cell 13. is there.
【0013】次に、神経細胞は興奮すると細胞膜内の電
位がー60〜ー80 mVの静止膜電位からプラス方向に変化
する性質があり、この現象は脱分極と言われ、膜電位が
或る閾値を越えると急速に脱分極して膜電位は一時的に
逆転してプラスとなり、2〜3 mS程度と非常に短い持
続時間の後、直ちに静止電位に戻る。この電位変化は活
動電位と呼ばれている。本発明はガラス微小電極1の細
胞13の刺入前にはプローブ3に活動電位は検知されず、
刺入すると検出されることから、活動電位による電位変
化をシュミットトリガー回路を通してパルス成形し、こ
のパルスを三次元マニピュレータ4を停止させる信号と
してコンピュータ9に設定しておけばガラス微小電極1
が細胞13を貫通することなく停止させることが可能であ
る。Next, when a nerve cell is excited, the potential inside the cell membrane changes from the resting membrane potential of -60 to -80 mV in the positive direction. This phenomenon is called depolarization, and there is a membrane potential. When it exceeds the threshold value, it is rapidly depolarized, the membrane potential is temporarily reversed and becomes positive, and after a very short duration of about 2 to 3 mS, it immediately returns to the resting potential. This change in potential is called action potential. According to the present invention, no action potential is detected in the probe 3 before the insertion of the cell 13 of the glass microelectrode 1,
Since it is detected when it is inserted, the potential change due to the action potential is pulse-shaped through the Schmitt trigger circuit, and if this pulse is set in the computer 9 as a signal for stopping the three-dimensional manipulator 4, the glass microelectrode 1
Can be stopped without penetrating the cell 13.
【0014】次に、細胞膜には抵抗があり、また細胞13
の内外には膜容量が存在している。そこで、記録電極を
介して矩形波状の電流パルスを流し、その時に記録され
る電気緊張電位が膜抵抗と膜容量によって変化するのを
利用する。図3はこの関係を示すもので、同図(A)は
刺入前後におけるガラス微小電極1と細胞13の関係を、
また、同図(B)はガラス微小電極1と不関電極との間
に加えるパルス波形と電圧変化とを示している。なお、
ガラス微小電極1と細胞13と不関電極の間にはリンゲル
液15が存在している。Next, there is resistance in the cell membrane, and cells 13
There is a membrane capacity inside and outside of. Therefore, it is used that a rectangular wave current pulse is passed through the recording electrode, and the electric tension potential recorded at that time is changed by the membrane resistance and the membrane capacitance. FIG. 3 shows this relationship. FIG. 3 (A) shows the relationship between the glass microelectrode 1 and the cell 13 before and after insertion.
Further, FIG. 3B shows a pulse waveform and a voltage change applied between the glass microelectrode 1 and the indifferent electrode. In addition,
The Ringer's solution 15 is present between the glass microelectrode 1, the cell 13 and the indifferent electrode.
【0015】先ず、ガラス微小電極1が細胞13に接して
いない場合は定電流パルスを印加しても抵抗は0(電解
液の抵抗だけ)であるから、電圧変化はない。(以上A-
1,B-1)、次に、ガラス微小電極1が細胞13に接すると電
極の先端がシールされるために抵抗が最大となり、電位
変化量は急増するが、膜容量による緩和時間の影響によ
り変形した電位波形となる。(以上A-2,B-2)、次にガラ
ス微小電極1が細胞13を突き破ると、膜抵抗によって図
示するような電位波形となる。(以上A-3,B-3)、そのた
め、通電パルスによる電位変化を予想して一定の電圧値
に達したらマニピュレータが停止するようにコンピュー
タに入力しておけば、ガラス微小電極1が細胞13を貫通
することなく停止させることが可能である。First, when the glass microelectrode 1 is not in contact with the cell 13, the resistance is 0 (only the resistance of the electrolytic solution) even if a constant current pulse is applied, so that there is no voltage change. (Above A-
1, B-1), next, when the glass microelectrode 1 comes into contact with the cell 13, the tip of the electrode is sealed to maximize the resistance and the potential change amount increases rapidly, but due to the influence of the relaxation time due to the membrane capacitance. It becomes a deformed potential waveform. (Above A-2, B-2), then, when the glass microelectrode 1 penetrates the cell 13, a potential waveform as shown in the figure is produced by the membrane resistance. (Above A-3, B-3) Therefore, if the manipulator is input so that the potential change due to the energizing pulse is predicted and the constant voltage value is reached, the glass microelectrode 1 will cause the cells 13 It is possible to stop without penetrating.
【0016】[0016]
実施例1:(請求項1,図1対応) 実験としてミミズを用い、筋肉内に蛍光色素(DiI)結晶
を埋め込み、10時間放置した後に腹髄神経節を切り出す
ことにより神経細胞に蛍光体を取り込ませた。この結
果、神経細胞は落射蛍光顕微鏡の緑色の励起光に対して
赤色の蛍光を発するようになった。この蛍光像をSIT
カメラを介して画像解析装置に導き、二値化処理を行な
って蛍光を発している細胞を選別し、フレームメモリに
蓄えた。そして、この蛍光像と透過光像を重畳してモニ
タ上に表示し、肉眼で電極の刺入を行なったが、マーク
した細胞へのガラス微小電極の刺入は容易に行なうこと
ができた。 実施例2:(請求項2,図2対応) 細胞への刺入を行なうガラス微小電極1には直径が1 m
m の中芯入りパイレックス・ガラス管を微小電極作製器
(型名PN-3, ナリシゲ製) を用いて線引きして作った。
そして、この中に濃度3モルのKCl 水溶液を充填し、こ
の中にAgClを被覆したAg線を挿入し、プローブ3に接続
した。また、細胞13はリンゲル(Ringer)液を電解液15と
し、不関電極14としてはAgClを被覆したAg線を用いた。Example 1: (corresponding to claim 1 and FIG. 1) Using an earthworm as an experiment, a fluorescent dye (DiI) crystal was embedded in muscle, and after leaving it for 10 hours, the abdominal ganglion was cut out to put a fluorescent substance on nerve cells. I took it in. As a result, nerve cells began to emit red fluorescence in response to the green excitation light of the epifluorescence microscope. This fluorescent image is SIT
It led to the image analysis device through the camera, binarized and selected the cells emitting fluorescence and stored them in the frame memory. Then, this fluorescent image and the transmitted light image were superimposed and displayed on a monitor, and the electrodes were pierced with the naked eye, but it was possible to puncture the marked cells with the glass microelectrodes. Example 2: (corresponding to claim 2 and FIG. 2) The glass microelectrode 1 for inserting cells has a diameter of 1 m.
A Pyrex glass tube with a core of m was drawn by using a microelectrode maker (type name PN-3, made by Narishige).
Then, an aqueous solution of KCl 3 having a concentration of 3 mol was filled therein, and an Ag wire coated with AgCl was inserted thereinto and connected to the probe 3. In addition, for the cell 13, a Ringer's solution was used as the electrolyte solution 15, and as the indifferent electrode 14, an Ag wire coated with AgCl was used.
【0017】次に、プローブ3を動かす三次元マニピュ
レータ4としては型名MO-103M(ナリシゲ製)を用い、こ
れを制御するコンピュータ9には型名PC-9801FA (日本
電気)を用いた。次に、プローブ3で検出した電位変化
を増幅する増幅器としては型名MEZ-9301( 日本光電) を
使用し、メモリオシロスコープ11として型名VC-11(日本
光電) を使用した。また、パルスを与える電気刺激装置
12には型名SEN-7203(日本光電) を、アイソレータ19に
は型名SS-201J(日本光電) を、また高周波発振を行なう
バズコントローラ17には型名SS-1433(日本光電) を使用
した。 実施例3:(請求項3および4対応) 試料には赤ミミズの腹髄神経節を用い、この神経節を1
%の酵素(プロテアーゼ)で1分間処理して表面の斜紋
筋肉を溶解除去した。そして、刺入する神経細胞として
はMGF(Median Giant Fiber) を選んだ。まず、実体
顕微鏡で観察しながら三次元マニピュレータでガラス微
小電極を神経節の表面に近づけ、電極の先端がリンゲル
液中に入ったことを確認してから誘導電位を0 mVにリ
セットした。Next, the model name MO-103M (manufactured by Narishige) was used as the three-dimensional manipulator 4 for moving the probe 3, and the model name PC-9801FA (NEC) was used as the computer 9 for controlling this. Next, a model name MEZ-9301 (Nihon Kohden) was used as an amplifier for amplifying the potential change detected by the probe 3, and a model name VC-11 (Nihon Kohden) was used as the memory oscilloscope 11. Also, an electric stimulator that gives a pulse
The model name SEN-7203 (Nippon Kohden) is used for 12, the model name SS-201J (Nippon Kohden) is used for the isolator 19, and the model name SS-1433 (Nippon Kohden) is used for the buzz controller 17 that performs high-frequency oscillation. did. Example 3: (corresponding to claims 3 and 4) The abdominal ganglion of red earthworm was used as a sample, and 1 ganglion of this ganglion was used.
% Of the enzyme (protease) for 1 minute to dissolve and remove the surface oblique muscle. Then, MGF (Median Giant Fiber) was selected as the nerve cell to be inserted. First, while observing with a stereoscopic microscope, the glass microelectrode was brought close to the surface of the ganglion with a three-dimensional manipulator, and it was confirmed that the tip of the electrode entered the Ringer's solution, and then the induced potential was reset to 0 mV.
【0018】MGF膜の静止膜電位はー50〜ー60 mVで
あるから、誘導電位がー50 mV以下になったら三次元マ
ニピュレータが停止するようにコンピュータに入力し、
また、神経節の厚さは約100 μm であるから、マニピュ
レータの可動範囲がこれを超えないように入力した。ガ
ラス微小電極の刺入速度を毎秒1μm とし、神経節の背
側より正中線付近を狙ってマニピュレータコントローラ
のステッピングモータをONにした。その結果、神経節の
背側表層に近い所で膜電位はー57 mVを示すと同時にス
テッピングモータは停止し、ガラス微小電極の刺入に成
功した。 実施例4:(請求項5対応) 試料には赤ミミズの腹髄神経節を用い、実施例3と同様
に三次元マニピュレータでガラス微小電極を神経節の表
面に近づけ、電極の先端がリンゲル液中に入ったことを
確認して後、閾値を活動電位のオーバシュートの約1/2
の電位である+10 mVに設定し、シュミットトリガー回
路によってこの値を超えた場合にパルスが出力するよう
にしておき、連続してパルスが発生したら三次元マニピ
ュレータが停止するようにした。その結果、ガラス微小
電極が刺入してパルス列が発生すると同時にステッピン
グモータは停止し、ガラス微小電極の刺入に成功した。 実施例5:(請求項6,図3対応) 予め、膜抵抗と膜容量から予想される電気緊張電位の波
形をコンピュータに入力しておき、刺激に同期したレベ
ル以上の電圧波形が現れたときにマニピュレータが停止
するようにした。電気刺激装置を用いて発生させたパル
スは幅20 mS,周波数25HZ,振幅0.5nAである。その結
果、ガラス微小電極が刺入してパルス列が発生すると同
時にステッピングモータは停止し、ガラス微小電極の刺
入に成功した。Since the resting membrane potential of the MGF membrane is -50 to -60 mV, input to the computer so that the three-dimensional manipulator will stop when the induced potential becomes -50 mV or less.
Moreover, since the thickness of the ganglion is about 100 μm, the manipulator's movable range was input so as not to exceed this range. The penetration speed of the glass microelectrode was set to 1 μm per second, and the stepping motor of the manipulator controller was turned on aiming at the midline from the back of the ganglion. As a result, the membrane potential showed -57 mV near the dorsal surface of the ganglion, and at the same time the stepping motor stopped and the glass microelectrode was successfully inserted. Example 4: (corresponding to claim 5) The abdominal ganglion of red earthworm was used as a sample, and a glass microelectrode was brought close to the surface of the ganglion with a three-dimensional manipulator as in Example 3, and the tip of the electrode was in Ringer's solution. After confirming that it entered the threshold, set the threshold value to about 1/2 of the action potential overshoot.
The potential is set to +10 mV, and a pulse is output when this value is exceeded by the Schmitt trigger circuit, and the three-dimensional manipulator is stopped when continuous pulses are generated. As a result, the glass microelectrode was inserted and a pulse train was generated, and at the same time, the stepping motor was stopped, and the glass microelectrode was successfully inserted. Example 5 (corresponding to claim 6 and FIG. 3) When the waveform of the electric tension potential expected from the membrane resistance and the membrane capacitance is input to the computer in advance, and a voltage waveform equal to or higher than the level synchronized with the stimulation appears. The manipulator is now stopped. Pulses generated by using an electric stimulator width 20 mS, frequency 25H Z, the amplitude 0.5 nA. As a result, the glass microelectrode was inserted and a pulse train was generated, and at the same time, the stepping motor was stopped, and the glass microelectrode was successfully inserted.
【0019】[0019]
【発明の効果】本発明の実施により細胞にガラス微小電
極の刺入を行なうに当たって特定細胞の位置決めが容易
となり、また、本発明の刺入装置を使用することにより
正確な刺入が可能となった。EFFECTS OF THE INVENTION The practice of the present invention facilitates the positioning of specific cells when inserting glass microelectrodes into cells, and the use of the insertion device of the present invention enables accurate insertion. It was
【図1】 本発明に係る細胞の選別方法を示す構成図で
ある。FIG. 1 is a block diagram showing a method for selecting cells according to the present invention.
【図2】 本発明に係る刺入装置の構成図である。FIG. 2 is a configuration diagram of a puncturing device according to the present invention.
【図3】 電極刺入による電位変化を示す模式図であ
る。FIG. 3 is a schematic diagram showing a potential change due to electrode insertion.
1 ガラス微小電極 3 プローブ 4 三次元マニピュレータ 7 ステッピングモータ 9 コンピュータ 11 メモリオシロスコープ 13 細胞 14 不関電極 15 リンゲル液 17 バズコントローラ 18 電気刺激装置 1 glass microelectrode 3 probe 4 three-dimensional manipulator 7 stepping motor 9 computer 11 memory oscilloscope 13 cell 14 indifferent electrode 15 Ringer's solution 17 buzz controller 18 electrostimulator
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01N 21/64 Z 7414−2J 21/78 C 7906−2J 27/28 341 Z 7363−2J G02B 21/06 7625−2K 21/32 7625−2K G06F 15/62 395 9287−5L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location G01N 21/64 Z 7414-2J 21/78 C 7906-2J 27/28 341 Z 7363-2J G02B 21 / 06 7625-2K 21/32 7625-2K G06F 15/62 395 9287-5L
Claims (6)
胞と蛍光を発しない複数の細胞とからなる試料について
落射蛍光顕微鏡を用いて該細胞の蛍光像と透過光像とを
観察し、それぞれテレビカメラで撮影する工程と、撮影
した細胞の蛍光像を画像解析装置で二値化処理して蛍光
を発する細胞と発しない細胞とに区別し、蛍光を発する
細胞の二値化像をフレームメモリに記録する工程と、該
二値化像と透過光像とをモニタ上で重ね合わせ、または
併置する工程と、からなることを特徴とする細胞の選別
方法。1. A fluorescence image and a transmitted light image of the cells are observed using an epi-fluorescence microscope for a sample consisting of a plurality of cells to which a fluorescent dye is applied and which emits fluorescence and a plurality of cells that do not emit fluorescence. The process of photographing with a TV camera and the fluorescence image of the photographed cell are binarized by an image analyzer to distinguish between cells that emit fluorescence and cells that do not emit fluorescence, and the binarized image of cells that emit fluorescence is stored in a frame memory. And a step of superimposing the binarized image and the transmitted light image on a monitor or arranging them side by side on a monitor.
ローブに接続し、該プローブを三次元マニピュレータで
駆動する手段と、該三次元マニュピュレータのコントロ
ールハンドルにステッピングモータを取り付け、該モー
タをコンピュータで制御する手段と、電気刺激装置から
のパルスとバズコントローラからの高周波信号をコンピ
ュータで制御しながら前記プローブに加える手段と、プ
ローブで検出した電位変化を増幅し、画像表示すると共
にコンピュータに入力し、事前に設定した電気的特性値
と比較して刺入を検知する手段と、からなることを特徴
とする電極刺入装置。2. A means for connecting a glass microelectrode to a probe through an electrode holder and driving the probe with a three-dimensional manipulator, and a stepping motor attached to a control handle of the three-dimensional manipulator, the motor being operated by a computer. A means for controlling, a means for applying a pulse from the electrostimulator and a high frequency signal from the buzz controller to the probe while controlling the computer, and amplifying the potential change detected by the probe, inputting it to the computer together with displaying an image, An electrode puncturing device comprising: a means for detecting puncture by comparing with a preset electrical characteristic value.
ュータで制御しつゝ三次元マニピュレータを用いて細胞
への電極の刺入を行い、細胞膜の電気的特性の変化より
検出することを特徴とする電極刺入方法。3. An electric stimulator and a high-frequency oscillator are controlled by a computer, and an electrode is inserted into a cell by using a three-dimensional manipulator, and detection is performed based on a change in electrical characteristics of a cell membrane. Electrode insertion method.
より判定することを特徴とする請求項3記載の電極刺入
方法。4. The electrode insertion method according to claim 3, wherein the presence or absence of insertion into cells is determined by detecting the resting potential.
することを特徴とする請求項3記載の電極刺入方法。5. The electrode insertion method according to claim 3, wherein the presence / absence of insertion into a cell is determined from an action potential.
刺入の有無を膜抵抗と膜容量より判定することを特徴と
する請求項3記載の電極刺入方法。6. The electrode insertion method according to claim 3, wherein the presence or absence of the contact of the electrode with the cell surface and the insertion into the cell is determined from the membrane resistance and the membrane capacitance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5098227A JPH06308118A (en) | 1993-04-26 | 1993-04-26 | Cell sorting and electrode insertion method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5098227A JPH06308118A (en) | 1993-04-26 | 1993-04-26 | Cell sorting and electrode insertion method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06308118A true JPH06308118A (en) | 1994-11-04 |
Family
ID=14214079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5098227A Withdrawn JPH06308118A (en) | 1993-04-26 | 1993-04-26 | Cell sorting and electrode insertion method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06308118A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999046588A1 (en) * | 1998-03-12 | 1999-09-16 | Isao Karube | Apparatus for automatically measuring minute membrane potential |
US6111258A (en) * | 1998-01-30 | 2000-08-29 | Aisin Seiki Kabushiki Kaisha | Method for working in a specimen and a stage for the method |
WO2003005005A1 (en) * | 2001-07-03 | 2003-01-16 | Hitachi, Ltd. | Biological sample optical measuring method and biological sample optical measuring apparatus |
US6803207B2 (en) | 2001-05-18 | 2004-10-12 | Hitachi, Ltd. | Apparatus and method for oocytes or eggs selection |
JP2005333889A (en) * | 2004-05-27 | 2005-12-08 | Cybox Co Ltd | Method for necrocytosis and device therefor |
JP2007093488A (en) * | 2005-09-29 | 2007-04-12 | Olympus Corp | Method and device for acquiring image of test sample of biological origin using optical imaging means |
JP2007140557A (en) * | 2007-02-16 | 2007-06-07 | Olympus Corp | Manipulator device and method for estimating position of leading end of operating means of device |
CN101982775A (en) * | 2010-10-09 | 2011-03-02 | 浙江大学 | Drug screening method based on cell fluorescent images |
US9530204B2 (en) | 2010-11-19 | 2016-12-27 | Olympus Corporation | Method of preparing biological specimen |
CN114813515A (en) * | 2021-01-28 | 2022-07-29 | 桂林优利特医疗电子有限公司 | A kind of particle analysis method |
CN116945664A (en) * | 2023-08-01 | 2023-10-27 | 南开大学 | A method for preparing composite microtubules and a method for regulating local extracellular environment |
-
1993
- 1993-04-26 JP JP5098227A patent/JPH06308118A/en not_active Withdrawn
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6111258A (en) * | 1998-01-30 | 2000-08-29 | Aisin Seiki Kabushiki Kaisha | Method for working in a specimen and a stage for the method |
WO1999046588A1 (en) * | 1998-03-12 | 1999-09-16 | Isao Karube | Apparatus for automatically measuring minute membrane potential |
US6803207B2 (en) | 2001-05-18 | 2004-10-12 | Hitachi, Ltd. | Apparatus and method for oocytes or eggs selection |
WO2003005005A1 (en) * | 2001-07-03 | 2003-01-16 | Hitachi, Ltd. | Biological sample optical measuring method and biological sample optical measuring apparatus |
US7400753B2 (en) | 2001-07-03 | 2008-07-15 | Hitachi, Ltd. | Biological sample optical measuring method and biological sample optical measuring apparatus |
JP2005333889A (en) * | 2004-05-27 | 2005-12-08 | Cybox Co Ltd | Method for necrocytosis and device therefor |
JP2007093488A (en) * | 2005-09-29 | 2007-04-12 | Olympus Corp | Method and device for acquiring image of test sample of biological origin using optical imaging means |
JP2007140557A (en) * | 2007-02-16 | 2007-06-07 | Olympus Corp | Manipulator device and method for estimating position of leading end of operating means of device |
CN101982775A (en) * | 2010-10-09 | 2011-03-02 | 浙江大学 | Drug screening method based on cell fluorescent images |
US9530204B2 (en) | 2010-11-19 | 2016-12-27 | Olympus Corporation | Method of preparing biological specimen |
CN114813515A (en) * | 2021-01-28 | 2022-07-29 | 桂林优利特医疗电子有限公司 | A kind of particle analysis method |
CN116945664A (en) * | 2023-08-01 | 2023-10-27 | 南开大学 | A method for preparing composite microtubules and a method for regulating local extracellular environment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06308118A (en) | Cell sorting and electrode insertion method and device | |
Del Castillo et al. | Localization of active spots within the neuromuscular junction of the frog | |
Frank et al. | Potentials recorded from the spinal cord with microelectrodes | |
TASAKI | Properties of myelinated fibers in frog sciatic nerve and in spinal cord as examined with micro-electrodes | |
Mountcastle et al. | Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli | |
Allen et al. | Intracellular calcium and tension during fatigue in isolated single muscle fibres from Xenopus laevis. | |
Walker Jr | Ion specific liquid ion exchanger microelectrodes | |
Lassen et al. | Direct measurements of membrane potential and membrane resistance of human red cells | |
AU2003216353B2 (en) | Cell viability detection using electrical measurements | |
DE746762T1 (en) | BIOSENSOR WITH A PLUG-IN MEMORY KEY | |
Burtt et al. | Electrical responses to visual stimulation in the optic lobes of the locust and certain other insects | |
DE2656654C3 (en) | Device for measuring the volume and certain optical properties of particles | |
EP2529199B1 (en) | Measuring system and measuring method for determining blood glucose | |
CN106963377A (en) | The method and system of complex action potential record is induced for quickly obtaining | |
US9772322B2 (en) | Cell observation device, and cell observation method | |
Behrens et al. | Light-initiated responses of retinula and eccentric cells in the Limulus lateral eye | |
WO2002099408A1 (en) | Signal detecting sensor provided with multi-electrode | |
Ueda et al. | Oscillations of cytoplasmic concentrations of Ca2+ and K+ in fused L cells | |
JP2506289Y2 (en) | Automatic capillary electrophoresis device | |
Murnick et al. | High-resolution iontophoresis for single-synapse stimulation | |
Hallett et al. | Studies of calcium influx into squid giant axons with aequorin | |
CN105044086A (en) | Pressure-steam sterilization chemical indication card color-change determination device | |
Behrens et al. | Electrical properties of the vertically growing root tip of Lepidium sativum L. | |
Glantz | Peripheral versus central adaptation in the crustacean visual system. | |
Bingley | Membrane potentials in Amoeba proteus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000704 |