[go: up one dir, main page]

JPH06305837A - Sintered silicon nitride - Google Patents

Sintered silicon nitride

Info

Publication number
JPH06305837A
JPH06305837A JP5117851A JP11785193A JPH06305837A JP H06305837 A JPH06305837 A JP H06305837A JP 5117851 A JP5117851 A JP 5117851A JP 11785193 A JP11785193 A JP 11785193A JP H06305837 A JPH06305837 A JP H06305837A
Authority
JP
Japan
Prior art keywords
sintered body
dispersed particles
silicon nitride
crystal grains
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5117851A
Other languages
Japanese (ja)
Other versions
JP3395247B2 (en
Inventor
Masashi Yoshimura
雅司 吉村
Takehisa Yamamoto
剛久 山本
Tatsutama Matsui
辰珠 松井
Akira Yamakawa
晃 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11785193A priority Critical patent/JP3395247B2/en
Priority to US08/138,346 priority patent/US5424256A/en
Priority to DE69317254T priority patent/DE69317254T2/en
Priority to SG1996005175A priority patent/SG43189A1/en
Priority to EP93117039A priority patent/EP0615963B1/en
Priority to KR1019930026821A priority patent/KR970001266B1/en
Publication of JPH06305837A publication Critical patent/JPH06305837A/en
Application granted granted Critical
Publication of JP3395247B2 publication Critical patent/JP3395247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】 【目的】 機械部品用構造材料として十分な強度を備
え、且つ強度のバラツキが少なく高い信頼性を有すると
共に、切削工具としても優れた切削性能を有し、生産性
及びコストの面においても優れた窒化ケイ素系焼結体を
提供する。 【構成】 Si34及び/又はサイアロンの柱状結晶粒
及び等軸状結晶粒と、これらの結晶粒の間に存在する粒
界相と、粒界相中に分散した分散粒子とから構成され、
柱状結晶粒の平均短軸径が0.3μm以下及び平均長軸
径が5μm以下であり、等軸状結晶粒の平均粒径が0.
5μm以下であり、分散粒子の平均粒径が0.1μm以
下であって、分散粒子の体積が他の焼結体組織の全体積
を1としたとき0.05体積%以上である窒化ケイ素系
焼結体。
(57) [Abstract] [Purpose] The product has sufficient strength as a structural material for machine parts, has high reliability with little variation in strength, and has excellent cutting performance as a cutting tool, thus improving productivity and cost. Also in terms of the above, a silicon nitride-based sintered body that is excellent is provided. [Structure] Columnar and equiaxed crystal grains of Si 3 N 4 and / or sialon, a grain boundary phase existing between these crystal grains, and dispersed particles dispersed in the grain boundary phase. ,
The average minor axis diameter of the columnar crystal grains is 0.3 μm or less and the average major axis diameter is 5 μm or less, and the average grain diameter of the equiaxed crystal grains is 0.1 μm or less.
5 μm or less, the average particle diameter of dispersed particles is 0.1 μm or less, and the volume of dispersed particles is 0.05 vol% or more when the total volume of other sintered body structures is 1. Sintered body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、室温において優れた機
械的強度を有し且つそのバラツキが小さく、生産性及び
コスト的にも優れた窒化ケイ素焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body which has excellent mechanical strength at room temperature, has a small variation, and is excellent in productivity and cost.

【0002】[0002]

【従来の技術】窒化ケイ素は、強度、破壊靭性値、耐食
性、耐摩耗性、耐熱衝撃性、耐酸化性等においてバラン
スのとれた材料であるため、切削工具をはじめ摺動部品
その他の機械構造材料として広い範囲で利用されている
が、強度面においても信頼性においても金属材料に劣る
という問題があった。
2. Description of the Related Art Since silicon nitride is a material having a well-balanced strength, fracture toughness value, corrosion resistance, wear resistance, thermal shock resistance, oxidation resistance, etc., it is used for cutting tools, sliding parts and other mechanical structures. Although it is used in a wide range of materials, it has a problem that it is inferior to metal materials in terms of strength and reliability.

【0003】かかる窒化ケイ素系焼結体における強度劣
化の原因の一つとして、焼結体組織内部に存在する粒界
相の問題がある。この粒界相は、窒化ケイ素の焼結に不
可欠な焼結助剤に由来するガラス質からなり、一般に窒
化ケイ素のマトリックスと比べ脆性であるため粒界相に
応力集中を受けると破壊し易く、窒化ケイ素系焼結体の
強度劣化の主要な原因となっている。
One of the causes of the strength deterioration in such a silicon nitride sintered body is the problem of the grain boundary phase existing inside the sintered body structure. This grain boundary phase is made of a glassy material derived from a sintering aid indispensable for the sintering of silicon nitride, and is generally more brittle than the matrix of silicon nitride, so it is easy to break when stress is applied to the grain boundary phase, It is a major cause of strength deterioration of silicon nitride-based sintered bodies.

【0004】このため、窒化ケイ素系焼結体の粒界相を
低減させることによって、強度向上を図る種々の方法が
試みられてきた。例えば、特開平3−117315号公
報には、α−Si34の柱状結晶粒とβ−Si34の等
軸状結晶粒からなる微細な組織とし、粒界相の厚さを低
減させる方法が開示されている。しかし、α結晶粒を微
細にするためには、原料粉末にα率の高い微細なSi3
4粉末を使用する必要があり、コスト高になる欠点が
あった。又、焼結中にβ率を高めなければ優れた強度特
性が得られないことから、焼結中にβ結晶粒の大きさも
2μm以上となってしまうため、組織の微細化だけで粒
界相を低減するには限界があった。
Therefore, various methods have been attempted for improving the strength by reducing the grain boundary phase of the silicon nitride sintered body. For example, in Japanese Patent Laid-Open No. 3-117315, a fine structure including columnar crystal grains of α-Si 3 N 4 and equiaxed crystal grains of β-Si 3 N 4 is used to reduce the thickness of grain boundary phase. A method of causing is disclosed. However, in order to make α crystal grains finer, it is necessary to add fine Si 3
Since it is necessary to use N 4 powder, there is a drawback that the cost becomes high. In addition, since excellent strength characteristics cannot be obtained unless the β ratio is increased during sintering, the size of β crystal grains also becomes 2 μm or more during sintering, and therefore the grain boundary phase can be obtained only by refining the structure. There was a limit to the reduction.

【0005】又、特開昭61−91065号公報や特開
平2−4406号公報に開示されるように、等軸結晶粒
のα’−サイアロン(一般式Mx(Si,Al)12(O,N)
16であり、M=Mg、Ca、Li及び希土類元素)と、
柱状結晶粒のβ’−サイアロンとを組み合わせる方法も
知られている。しかし、これらの方法も公報に記載され
た実施例によれば、曲げ強度が100kg/mm2を安
定して越える焼結体はいずれもホットプレス法により製
造されたものであり、工業的に安定して高い強度特性を
得るに至っていない。
Further, as disclosed in JP-A-61-191065 and JP-A-2-4406, α'-sialon of the equiaxed crystal grain (general formula M x (Si, Al) 12 (O , N)
16 and M = Mg, Ca, Li and rare earth elements),
There is also known a method of combining with columnar crystal grains β′-sialon. However, according to the examples described in the publications, these methods also show that any sintered body having a bending strength stably exceeding 100 kg / mm 2 is manufactured by the hot pressing method, and is industrially stable. Has not yet achieved high strength characteristics.

【0006】窒化ケイ素の焼結体組織中に微細な異種粒
子を分散複合させることにより、強度の向上を図る試み
も行われている。例えば、特開平4−202059号公
報に記載の方法では、短軸径が0.05〜3μmでアス
ペクト比が3〜20の柱状窒化ケイ素又はサイアロン
に、1〜500nmの微粒子を分散させている。しか
し、その実施例に示された強度は最高167kg/mm
2であるものの、粗大な窒化ケイ素を含むことがあるた
め強度劣化を招き易く、従ってワイブル係数は9程度に
過ぎず、安定して高い強度特性を得ることができない欠
点があった。
[0006] Attempts have been made to improve the strength by dispersing and complexing fine dissimilar particles in the structure of a sintered body of silicon nitride. For example, in the method described in JP-A-4-202059, fine particles of 1 to 500 nm are dispersed in columnar silicon nitride or sialon having a minor axis diameter of 0.05 to 3 μm and an aspect ratio of 3 to 20. However, the strength shown in the example is up to 167 kg / mm.
Although it is 2 , since it may contain coarse silicon nitride, strength deterioration is likely to occur, so that the Weibull coefficient is only about 9 and there is a drawback that stable and high strength characteristics cannot be obtained.

【0007】又、特開平4−295056号公報には、
柱状窒化ケイ素の粒界相に異種粒子を分散させる方法が
開示されている。しかしながら、この場合の窒化ケイ素
は、短軸径が最大2〜3.5μm及び長軸径が10〜1
4μmにも達するので、マトリックス自身が破壊源とな
り、実施例の強度は最高で158kg/mm2に過ぎ
ず、又焼成温度も1800℃以上であることから、生産
性及びコストの面でも満足できるものではなかった。
Further, Japanese Patent Laid-Open No. 4-295056 discloses that
A method of dispersing different kinds of particles in the grain boundary phase of columnar silicon nitride is disclosed. However, in this case, silicon nitride has a maximum minor axis diameter of 2 to 3.5 μm and a major axis diameter of 10 to 1
Since it reaches 4 μm, the matrix itself becomes a destruction source, the strength of the example is only 158 kg / mm 2 at the maximum, and the firing temperature is 1800 ° C. or more, which is satisfactory in terms of productivity and cost. Was not.

【0008】[0008]

【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、機械部品用構造材料として十分な強度を備
え、且つ強度のバラツキが少なく高い信頼性を有すると
共に、生産性及びコストの面においても優れた窒化ケイ
素系焼結体を提供することを目的とする。
In view of the above conventional circumstances, the present invention has sufficient strength as a structural material for machine parts, has high reliability with little variation in strength, and has high productivity and cost. It is also an object of the present invention to provide an excellent silicon nitride-based sintered body.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する窒化ケイ素系焼結体は、Si34
及び/又はサイアロンの柱状結晶粒及び等軸状結晶粒
と、これらの結晶粒の間に存在する粒界相と、粒界相中
に分散した分散粒子とから構成され、前記柱状結晶粒の
平均短軸径が0.3μm以下及び平均長軸径が5μm以
下であり、等軸状結晶粒の平均粒径が0.5μm以下で
あり、分散粒子の平均粒径が0.1μm以下であって、
分散粒子の体積が他の焼結体組織の全体積を1としたと
き0.05体積%以上であることを特徴とする。
In order to achieve the above object, the silicon nitride sintered body provided by the present invention is Si 3 N 4
And / or sialon columnar crystal grains and equiaxed crystal grains, a grain boundary phase existing between these crystal grains, and dispersed particles dispersed in the grain boundary phase, and the average of the columnar crystal grains. The minor axis diameter is 0.3 μm or less and the average major axis diameter is 5 μm or less, the equiaxed crystal grains have an average grain size of 0.5 μm or less, and the dispersed particles have an average grain size of 0.1 μm or less. ,
It is characterized in that the volume of dispersed particles is 0.05% by volume or more when the total volume of the other sintered body structures is 1.

【0010】[0010]

【作用】本発明においては、窒化ケイ素系焼結体におけ
る強度劣化の原因となる粒界相の相対的量を低減させる
ために、窒化ケイ素やサイアロンの柱状結晶粒と等軸状
結晶粒とを組み合わせて充填させるだけでなく、これら
の結晶粒の間に存在する粒界相中に分散粒子を分散させ
ることによって、粒界相の表面積が増加して相対的にガ
ラス相の量が減少している。加えて、粒界相に微細な分
散粒子を含ませることで、組織全体の粒成長が抑制され
る作用効果が認められ、柱状結晶粒と等軸状結晶粒の大
きさが制御されて微細で均一な組織を得ることができ
る。
In the present invention, columnar crystal grains of silicon nitride or sialon and equiaxed crystal grains are used in order to reduce the relative amount of the grain boundary phase that causes strength deterioration in the silicon nitride sintered body. By not only combining and filling, but also dispersing the dispersed particles in the grain boundary phase existing between these crystal grains, the surface area of the grain boundary phase is increased and the amount of the glass phase is relatively decreased. There is. In addition, by including fine dispersed particles in the grain boundary phase, the effect of suppressing the grain growth of the entire structure is recognized, and the size of the columnar crystal grains and the equiaxed crystal grains is controlled to be fine. A uniform structure can be obtained.

【0011】この結果、本発明の窒化ケイ素系焼結体で
は、窒化ケイ素やサイアロンの柱状結晶粒と等軸状結晶
粒が微細且つ均一化され、同時に粒界相の量の低減によ
り粒界での脆性を低減化することができるので、JIS
R 1601に準拠した室温での3点曲げ強度において
常に160kg/mm2以上の強度が安定して得られ
る。又、本発明の窒化ケイ素系焼結体は切削性に優れ、
切削工具としても非常に有用であることが判った。
As a result, in the silicon nitride-based sintered body of the present invention, the columnar crystal grains of silicon nitride or sialon and the equiaxed crystal grains are made fine and uniform, and at the same time, the amount of grain boundary phase is reduced to form grain boundaries. Since it is possible to reduce the brittleness of JIS,
In the three-point bending strength at room temperature according to R 1601, a strength of 160 kg / mm 2 or more is always obtained stably. Further, the silicon nitride-based sintered body of the present invention has excellent machinability,
It was also found to be very useful as a cutting tool.

【0012】このような優れた強度を安定して得るため
には、Si34及び/又はサイアロンの柱状結晶粒(β
結晶)と等軸状結晶粒(α結晶)の両者を含み、柱状結
晶粒の平均短軸径が0.3μm以下及び平均長軸径が5
μm以下であり、等軸状結晶粒の平均粒径が0.5μm
以下であることが必要である。これらの結晶粒の平均粒
径がそれぞれの上限値を越える場合には、組織が不均一
になって大きな結晶粒自体が破壊源となったり、柱状結
晶粒と等軸状結晶粒との充填密度の低下を招いたり、粒
界相の厚さが大きくなったりするため、焼結体の強度が
劣化するからである。
In order to obtain such excellent strength in a stable manner, columnar crystal grains of Si 3 N 4 and / or sialon (β
Crystal) and equiaxed crystal grains (α crystal), and the average minor axis diameter of the columnar crystal grains is 0.3 μm or less and the average major axis diameter is 5 μm.
The average grain size of equiaxed crystal grains is 0.5 μm or less.
It must be: If the average grain size of these crystal grains exceeds the respective upper limit values, the structure becomes non-uniform and the large crystal grains themselves become the fracture source, or the packing density of columnar grains and equiaxed grains is large. Of the grain boundary phase or the thickness of the grain boundary phase is increased, so that the strength of the sintered body is deteriorated.

【0013】粒界相に分散される分散粒子は、平均粒径
が0.1μm以下であり、且つ分散粒子の体積が他の焼
結体組織の全体積を1としたとき0.05体積%以上を
占めることが必要である。分散粒径の平均粒径が0.1
μmより大きくなると、粒界相に存在する以外に、3重
点や等軸結晶粒と同じ大きさで存在する量が多くなり、
粒界相のガラス相の相対的量を低減させることができ
ず、しかも組織全体の粒成長も大きくなるので、所望の
強度が得られない。
The dispersed particles dispersed in the grain boundary phase have an average particle diameter of 0.1 μm or less, and the volume of the dispersed particles is 0.05% by volume when the total volume of other sintered body structures is 1. It is necessary to occupy the above. Average particle size of dispersed particle size is 0.1
If it is larger than μm, in addition to existing in the grain boundary phase, the amount existing in the same size as the triple point or equiaxed crystal grains increases,
Since the relative amount of the glass phase of the grain boundary phase cannot be reduced and the grain growth of the entire structure becomes large, the desired strength cannot be obtained.

【0014】又、分散粒子の体積が他の焼結体組織の全
体積を1としたとき0.05体積%未満では、ガラス相
の低減される量が極めて少ないため、やはり所望の強度
を達成することができない。しかし、分散粒子の体積が
多くなると必然的にその平均粒径も大きくなるので、平
均粒径が0.1μmを越えない程度に分散粒子の体積を
抑える必要があることは言うまでもない。
If the volume of the dispersed particles is less than 0.05% by volume when the total volume of the other sintered body structures is 1, the amount of the glass phase reduced is extremely small, so that the desired strength is also achieved. Can not do it. However, as the volume of the dispersed particles increases, the average particle size also inevitably increases, and it goes without saying that it is necessary to suppress the volume of the dispersed particles so that the average particle size does not exceed 0.1 μm.

【0015】かかる分散粒子は、窒化ケイ素又はサイア
ロン以外の化合物であって、例えばTi、Zr、Hf、
V、Cr等の化合物であってよく、中でもTiの化合物
が好ましい。尚、焼結体中におけるこれらの化合物は、
X線回折法による測定によれば、少なくともTiN等の
ような窒化物を含んでいることが認められる。
Such dispersed particles are compounds other than silicon nitride or sialon, such as Ti, Zr, Hf,
It may be a compound such as V or Cr, and among them, a compound of Ti is preferable. Incidentally, these compounds in the sintered body,
According to the measurement by the X-ray diffraction method, it is recognized that at least a nitride such as TiN is contained.

【0016】特に、分散粒子がチタン化合物の場合、焼
結体中に占める体積が他の焼結体組織の全体積を1とし
たとき、TiNに換算して0.05〜4体積%の範囲で
あることが好ましい。Ti化合物が0.05体積%未満
では所望の強度が得られず、4体積%を越えるとTi化
合物同士が凝集して平均粒径が大きくなり、欠陥を形成
するため所望の強度が得られない。又、焼結体中のTi
化合物が4体積%を越える場合、その原料粉末はTi化
合物の存在により焼結性が低下するため焼結体の組織に
不均一な部分が生じ、強度の低下につながる。
In particular, when the dispersed particles are titanium compounds, the volume occupied in the sintered body is in the range of 0.05 to 4% by volume in terms of TiN when the total volume of other sintered body structures is 1. Is preferred. If the Ti compound content is less than 0.05% by volume, the desired strength cannot be obtained. If the Ti compound content exceeds 4% by volume, the Ti compounds agglomerate to increase the average particle size and form a defect, so that the desired strength cannot be obtained. . In addition, Ti in the sintered body
When the content of the compound exceeds 4% by volume, the sinterability of the raw material powder deteriorates due to the presence of the Ti compound, so that a non-uniform portion occurs in the structure of the sintered body, leading to a decrease in strength.

【0017】本発明の窒化ケイ素系焼結体を得るために
は、原料の窒化ケイ素粉末の表面に存在するSiO2
反応して、できるだけ低温で液相を形成する焼結助剤、
例えばY23、Al23、MgO、CeO2、CaO、
スピネル等を使用し、N2ガス等の非酸化性雰囲気中に
おいて1650℃以下の温度で焼結する。更に、得られ
た焼結体を非酸化性の加圧雰囲気中で2次焼結し、緻密
化することが好ましい。2次焼結は1次焼結に連続して
行ってもよいし、1次室温後一旦室温に冷却してから2
次焼結を行ってもよい。
To obtain the silicon nitride-based sintered body of the present invention, a sintering aid that reacts with SiO 2 existing on the surface of the raw material silicon nitride powder to form a liquid phase at a temperature as low as possible,
For example, Y 2 O 3 , Al 2 O 3 , MgO, CeO 2 , CaO,
Using spinel or the like, sintering is performed at a temperature of 1650 ° C. or lower in a non-oxidizing atmosphere such as N 2 gas. Further, it is preferable that the obtained sintered body is secondarily sintered in a non-oxidizing pressurized atmosphere to densify it. The secondary sintering may be performed continuously with the primary sintering, or after the primary room temperature is once cooled to room temperature, the secondary sintering is performed.
Subsequent sintering may be performed.

【0018】本発明では、分散粒子であるTiN等の窒
化物を含む化合物等は、例えばTiNのような窒化物粉
末自体を出発原料としてもよいが、焼結中に当該化合物
を生成するような他の化合物の粉末、例えばTiO2
ような酸化物粉末を出発原料とすることが望ましい。特
にTiO2粉末を原料として用いる場合、焼結体中に平
均粒径が0.1μm以下のTiNを含む分散粒子を得る
ために、1次粒径の平均が0.2μm以下であることが
好ましい。
In the present invention, the compound containing nitride such as TiN, which is the dispersed particles, may be a nitride powder itself such as TiN as a starting material, but the compound is formed during sintering. It is desirable to start with powders of other compounds, for example oxide powders such as TiO 2 . Particularly when TiO 2 powder is used as a raw material, the average primary particle size is preferably 0.2 μm or less in order to obtain dispersed particles containing TiN having an average particle size of 0.1 μm or less in the sintered body. .

【0019】尚、本発明においては、Ti化合物等の分
散粒子が焼結時に粒成長抑制作用を果すので、原料の窒
化ケイ素粉末として高価なα率が高く且つ微細な粉末を
使用しなくても、窒化ケイ素の柱状のβ結晶粒と等軸状
のα結晶粒の微細で均一な組織を得ることができる。
又、焼結温度が1650℃以下と低いので、窒化ケイ素
の昇華分解を抑えるために用いる加圧雰囲気中で焼結を
行う必要がなく、大量生産に適したプッシャー式やベル
ト式の連続焼結炉等を用いることが可能である。更に、
熱間静水圧プレス(HIP)焼結を用いなくても、容易
に高強度の焼結体を得ることができる。従って、本発明
の窒化ケイ素系焼結体は、生産性及びコストの面におい
ても優れたものである。
In the present invention, since the dispersed particles of the Ti compound and the like have the effect of suppressing grain growth during sintering, it is not necessary to use a fine powder having a high α ratio as the raw material silicon nitride powder. It is possible to obtain a fine and uniform structure of columnar β crystal grains of silicon nitride and equiaxed α crystal grains.
Moreover, since the sintering temperature is as low as 1650 ° C. or lower, there is no need to perform sintering in a pressurized atmosphere used to suppress sublimation decomposition of silicon nitride, and pusher type or belt type continuous sintering suitable for mass production. A furnace or the like can be used. Furthermore,
A high-strength sintered body can be easily obtained without using hot isostatic pressing (HIP) sintering. Therefore, the silicon nitride-based sintered body of the present invention is excellent in productivity and cost.

【0020】[0020]

【実施例】実施例1 市販されている平均粒径0.7μmで、α率85%のS
34粉末と、焼結助剤としてY23粉末、Al23
末及びMgO粉末を、それぞれ下記表1に示す割合で配
合し、更に分散粒子の原料として1次粒径30nmのT
iO2粉末を、他の焼結体組織全体の体積を1としたと
きのTiNの体積換算で、表1に示す割合で配合した。
これらの粉末を、ナイロン製ボールミルにてエタノール
中で100時間の湿式混合した後、3000kg/cm
2でCIP成形した。
Example 1 S having a commercially available average particle size of 0.7 μm and an α ratio of 85%
i 3 N 4 powder, and Y 2 O 3 powder, Al 2 O 3 powder, and MgO powder as sintering aids were mixed in the proportions shown in Table 1 below, and the primary particle diameter was 30 nm as a raw material for dispersed particles. Of T
The iO 2 powder was blended in a ratio shown in Table 1 in terms of TiN volume conversion when the volume of the entire other sintered body structure was 1.
These powders were wet mixed in ethanol with a nylon ball mill for 100 hours, and then 3000 kg / cm.
CIP molding was performed at 2 .

【0021】[0021]

【表1】 Si3423 Al23 MgO TiO2 試料 (wt%) (wt%) (wt%) (wt%) (TiN換算vol%) 1 91 5 3 1 0.05 2 91 5 3 1 0.1 3 91 5 3 1 0.5 4 91 5 3 1 2.4 5 91 5 3 1 4.0 6 93 4 2 1 0.3 7 98 1 0.5 0.5 0.2 8* 91 5 3 1 0 9* 91 5 3 1 0.01 10* 91 5 3 1 7.0 11* 91 5 3 1 10.0 (注)表中の*を付した試料は比較例である。[Table 1] Si3NFour Y2O3 Al2O3 MgO TiO2 sample (wt%) (wt%) (wt%) (wt%) (TiN equivalent vol%) 1 91 5 3 1 0.05 2 91 5 3 1 0.1 3 91 5 3 1 0.5 4 91 5 3 1 2.4 5 91 5 3 1 4.0 6 93 4 2 1 0.3 7 98 1 0.5 0.5 0.2 8 * 91 5 3 1 0 9 * 91 5 3 1 0.01 10 * 91 5 3 1 7.0 11 * 91 5 3 1 10.0 (Note) Samples marked with * in the table are comparative examples.

【0022】次に、得られた各成形体を、1気圧のN2
ガス雰囲気中において1500℃で4時間1次焼結し、
引き続いて1000気圧のN2ガス雰囲気中において1
600℃で1時間の2次焼結を実施した。得られた各焼
結体から3×4×40mmの抗折試験片を各15本づつ
切り出し、#800のダイヤモンド砥石により研削加工
仕上げを行った後、JIS R 1601に準拠した室温
での3点曲げ強度を実施して、平均曲げ強度とワイブル
係数を測定した。
Next, each of the obtained molded bodies was treated with N 2 at 1 atm.
Primary sintering at 1500 ° C. for 4 hours in a gas atmosphere,
Then, in a N 2 gas atmosphere of 1000 atm, 1
Secondary sintering was carried out at 600 ° C. for 1 hour. Fifteen 3 × 4 × 40 mm bending test pieces were cut out from each of the obtained sintered bodies, each was ground and finished with a # 800 diamond grindstone, and then three points at room temperature in accordance with JIS R 1601. Bending strength was performed to measure average bending strength and Weibull modulus.

【0023】又、各焼結体について、相対密度を求める
と共に、X線回折法により柱状のα(α’を含む)結晶
とβ(β’を含む)結晶のピーク比の高さから両結晶の
α:β比を求めた。更に、各焼結体の任意の一断面をラ
ッピング加工した後、80℃のHF:HNO3=2:1
のエッチング液により30分エッチング処理し、倍率5
000倍の走査型電子顕微鏡で観察することにより、各
結晶の平均粒径を求めた。分散粒子の平均粒径は同様に
して透過型電子顕微鏡により求めた。これらの結果を表
2及び表3に示した。
In addition, the relative density of each sintered body was determined, and both crystals were obtained from the height of the peak ratio of the columnar α (including α ') and β (including β') crystals by the X-ray diffraction method. The α: β ratio of was determined. Furthermore, after lapping an arbitrary cross section of each sintered body, HF: HNO 3 at 80 ° C. = 2: 1
Etching is performed for 30 minutes with the etching solution of, and the magnification is 5
The average grain size of each crystal was determined by observing with a scanning electron microscope of 000 times. The average particle size of the dispersed particles was similarly determined by a transmission electron microscope. The results are shown in Tables 2 and 3.

【0024】[0024]

【表2】 相対密度 等軸結晶 柱 状 結 晶 粒 径 分散粒子試料 (%) α:β比 粒径(nm) 短軸(nm) 長軸(μm) 粒径(nm) 1 99.2 15:85 350 250 2.0 30 2 99.4 15:85 300 240 2.0 30 3 99.2 13:87 300 230 2.0 30 4 99.1 9:91 250 200 2.0 50 5 99.4 8:92 250 200 1.5 90 6 99.3 17:83 250 200 2.0 40 7 99.1 17:83 300 250 2.0 30 8* 99.0 16:84 400 330 2.5 − 9* 99.0 9:91 320 290 2.5 30 10* 97.2 9:91 300 300 1.5 350 11* 96.9 5:95 300 330 1.0 400 (注)表中の*を付した試料は比較例である。[Table 2] Relative Density Equiaxed Crystal Column-Shaped Crystal Grain Size Dispersed Particle Sample (%) α: β Specific Particle Size (nm) Minor Axis (nm) Major Axis (μm) Particle Size (nm) 1 99.2 15:85 350 250 2.0 30 2 99.4 15:85 300 240 2.0 30 3 99.2 13:87 300 230 2.0 30 4 99.1 9:91 250 200 2.0 50 5 99.4 8:92 250 200 1.5 90 6 99.3 17:83 250 200 2.0 40 7 99.1 17:83 300 250 2.0 30 8 * 99.0 16:84 400 330 2.5 − 9 * 99.0 9:91 320 290 2.5 30 10 * 97.2 9:91 300 300 1.5 350 11 * 96.9 5:95 300 330 1.0 400 (Note ) Samples marked with * in the table are comparative examples.

【0025】[0025]

【表3】 [Table 3]

【0026】上記の結果から、本発明例の各試料は曲げ
強度が170kg/mm2以上と高く且つワイブル係数
が22以上と強度のバラツキが少ないことが判る。これ
に対して、比較例の試料8と9は分散粒子の体積が少な
過ぎるため強度向上がなされず、試料10と11は分散
粒子の体積が多すぎ、従ってまた分散粒子の粒径が大き
くなり過ぎるため、強度が劣化していることが判る。
From the above results, it is understood that each of the samples of the present invention has a high bending strength of 170 kg / mm 2 or more and a Weibull coefficient of 22 or more, showing little variation in strength. On the other hand, in Comparative Examples 8 and 9, the strength of the dispersed particles was not improved because the volume of the dispersed particles was too small, and in Samples 10 and 11, the volume of the dispersed particles was too large, and thus the particle diameter of the dispersed particles was large. Therefore, it can be seen that the strength is deteriorated.

【0027】実施例2 実施例1と同じ各原料粉末を下記表4(試料1と8は実
施例1と同一配合)に示す割合で配合し、実施例1と同
様にして製造した各成形体を、N2ガス雰囲気中におい
て表5に示す条件で、それぞれ1次焼結及び2次焼結を
実施した。
EXAMPLE 2 The same raw material powders as in Example 1 were blended in the proportions shown in Table 4 below (Samples 1 and 8 were the same as in Example 1), and each compact was produced in the same manner as in Example 1. Was subjected to primary sintering and secondary sintering under the conditions shown in Table 5 in an N 2 gas atmosphere.

【0028】[0028]

【表4】 Si3423 Al23 MgO TiO2 試料 (wt%) (wt%) (wt%) (wt%) (TiN換算vol%) 2 91 5 3 1 0.1 12 91 5 3 1 0.4 13 89 6 4 1 1.0 14 85 10 4 1 3.0 8* 91 5 3 1 0 15* 89 6 4 1 5.0 (注)表中の*を付した試料は比較例である。[Table 4] Si3NFour Y2O3 Al2O3 MgO TiO2 sample (wt%) (wt%) (wt%) (wt%) (TiN equivalent vol%) 2 91 5 3 1 0.1 12 91 5 3 1 0.4 13 89 6 4 1 1.0 14 85 10 4 1 3.0 8 * 91 5 3 1 0 15 * 89 6 4 1 5.0 (Note) Samples marked with * in the table This is a comparative example.

【0029】[0029]

【表5】 [Table 5]

【0030】得られた各焼結体について、実施例1と同
様に相対密度、α:β比、α結晶である柱状結晶の短軸
及び長軸の平均粒径、β結晶である等軸状結晶の平均粒
径、分散粒子の平均粒径を測定すると共に、室温での3
点曲げ強度とワイブル係数を測定し、これらの結果を表
6及び表7に示した。
For each of the obtained sintered bodies, as in Example 1, the relative density, the α: β ratio, the average grain sizes of the minor and major axes of the columnar crystals that are α crystals, and the equiaxed shape that is β crystals. Measure the average particle size of crystals and dispersed particles, and
The point bending strength and the Weibull coefficient were measured, and these results are shown in Tables 6 and 7.

【0031】[0031]

【表6】 相対密度 等軸結晶 柱 状 結 晶 粒 径 分散粒子試 料 (%) α:β比 粒径(nm) 短軸(nm) 長軸(μm) 粒径(nm) 2−A 99.2 16:84 300 230 2.0 30 2−B 99.0 4:96 300 250 1.7 30 2−C 98.8 19:81 350 200 2.5 30 2−D 99.3 10:90 250 200 2.0 30 2−E 99.2 10:90 300 200 2.0 30 12−F 99.5 17:83 200 200 2.5 30 13−G 99.0 16:84 300 250 2.0 60 14−H 98.5 10:90 350 200 1.8 100 14−I 98.9 16:84 350 200 2.3 60 8−J* 97.5 25:75 500 300 1.5 − 8−K* 98.5 16:84 300 300 1.6 − 15−L* 96.2 7:93 450 200 1.0 200 15−M* 98.3 1:99 450 350 1.0 200 (注)表中の*を付した試料は比較例である。[Table 6] Relative Density Equiaxed Crystal Column-Shaped Crystal Grain Size Dispersed Particle Sample (%) α: β Specific Particle Size (nm) Minor Axis (nm) Major Axis (μm) Particle Size (nm) 2-A 99.2 16:84 300 230 2.0 30 2-B 99.0 4:96 300 250 1.7 30 2-C 98.8 19:81 350 200 2.5 30 2-D 99.3 10:90 250 200 2.0 30 2-E 99.2 10:90 300 200 2.0 30 12-F 99.5 17:83 200 200 2.5 30 13-G 99.0 16:84 300 250 2.0 60 14-H 98.5 10:90 350 200 1.8 100 14-I 98.9 16:84 350 200 2.3 60 8-J * 97.5 25:75 500 300 1.5-8-K * 98.5 16:84 300 300 1.6-15-L * 96.2 7:93 450 200 1.0 200 15-M * 98.3 1:99 450 350 1.0 200 (Note) * in the table The sample marked with is a comparative example.

【0032】[0032]

【表7】 [Table 7]

【0033】実施例3 実施例1と同じ各原料粉末を用いたがTiO2粉末のみ
1次粒径を変化させ、下記表8に示す割合で配合した。
得られた各粉末を実施例1と同様に成形し、各成形体を
1気圧のN2ガス雰囲気中において1500℃で4時間
1次焼結し、引き続いて1000気圧のN2ガス雰囲気
中において1600℃で1時間の2次焼結を実施した。
Example 3 The same raw material powders as in Example 1 were used, but only the TiO 2 powder was blended in the proportions shown in Table 8 below, with the primary particle size varied.
Each of the obtained powders was molded in the same manner as in Example 1, each molded body was subjected to primary sintering at 1500 ° C. for 4 hours in a N 2 gas atmosphere at 1 atm, and subsequently in a N 2 gas atmosphere at 1000 atm. Secondary sintering was performed at 1600 ° C. for 1 hour.

【0034】[0034]

【表8】 Si3423 Al23 MgO TiO2 TiO2 試 料 (wt%) (wt%) (wt%) (wt%) (TiN換算vol%) 1次粒径(nm) 16−1 91 5 3 1 0.2 15 16−2 91 5 3 1 0.2 30 16−3* 91 5 3 1 0.2 300 17−1 89 5 4 2 0.3 15 17−2 89 5 4 2 0.3 50 17−3* 89 5 4 2 0.3 200 18−1 89 6 4 1 1.0 100 18−2* 89 6 4 1 1.0 500 (注)表中の*を付した試料は比較例である。[Table 8] Si3NFour Y2O3 Al2O3 MgO TiO2 TiO2 Sample fee (wt%) (wt%) (wt%) (wt%) (TiN equivalent vol%) Primary particle size (nm) 16-1 91 5 3 1 0.2 15 16-2 91 5 3 1 0.2 30 16-3 * 91 5 3 1 0.2 300 17-1 89 5 4 2 0.3 15 17-2 89 5 4 2 0.3 50 17-3 * 89 5 4 2 0.3 200 18-1 89 6 4 1 1.0 100 18-2 * 89 6 4 1 1.0 500 (Note) Samples marked with * in the table are comparative examples.

【0035】得られた各焼結体について、実施例1と同
様に相対密度、α:β比、α結晶である柱状結晶の短軸
及び長軸の平均粒径、β結晶である等軸状結晶の平均粒
径、分散粒子の平均粒径を測定すると共に、室温での3
点曲げ強度とワイブル係数を測定し、これらの結果を表
9及び表10に示した。
For each of the obtained sintered bodies, the relative density, the α: β ratio, the average grain sizes of the minor and major axes of the columnar crystals that are α crystals, and the equiaxed shape that is β crystals, as in Example 1. Measure the average particle size of crystals and dispersed particles, and
The point bending strength and Weibull coefficient were measured, and these results are shown in Tables 9 and 10.

【0036】[0036]

【表9】 相対密度 等軸結晶 柱 状 結 晶 粒 径 分散粒子試 料 (%) α:β比 粒径(nm) 短軸(nm) 長軸(μm) 粒径(nm) 16−1 99.4 11:89 350 250 2.0 15 16−2 99.3 16:84 300 200 2.0 20 16−3* 97.5 21:79 300 250 1.5 300 17−1 99.5 14:86 250 200 2.0 15 17−2 99.1 15:85 250 200 1.8 50 17−3* 96.2 16:84 320 250 1.5 250 18−1 99.3 14:86 330 250 2.0 100 18−2* 98.2 16:84 400 350 1.5 500 (注)表中の*を付した試料は比較例である。[Table 9] Relative density Equiaxed crystal column-like crystal grains Size dispersed particles Sample (%) α: β Specific particle size (nm) Minor axis (nm) Major axis (μm) Particle size (nm) 16-1 99.4 11:89 350 250 2.0 15 16-2 99.3 16:84 300 200 2.0 20 16-3 * 97.5 21:79 300 250 1.5 300 17-1 99.5 14:86 250 200 2.0 15 17-2 99.1 15:85 250 200 1.8 50 17-3 * 96.2 16:84 320 250 1.5 250 18-1 99.3 14:86 330 250 2.0 100 18-2 * 98.2 16:84 400 350 1.5 500 (Note) Samples marked with * in the table are for comparison. Here is an example.

【0037】[0037]

【表10】 曲げ強度 ワイブル試 料 (kg/mm2) 係 数 16−1 192 22 16−2 171 20 16−3* 123 8 17−1 189 23.6 17−2 196 25.3 17−3* 143 12 18−1 161 21 18−2* 139 16.2 (注)表中の*を付した試料は比較例である。[Table 10] Bending strength Weibull sample (kg / mm 2 ) coefficient 16-1 192 22 16-2 171 20 16-3 * 123 8 17-1 189 23.6 17-2 196 25.3 17-3 * 143 12 18 -1 161 21 18-2 * 139 16.2 (Note) Samples marked with * in the table are comparative examples.

【0038】上記の結果から、TiN分散粒子の原料粉
末として1次粒径の大きなTiO2粉末を使用すると、
得られる焼結体中の分散粒子の平均粒径が大きくなり、
分散粒子の平均粒径が0.1μmを越えると曲げ強度が
低下し、且つワイブル係数も低下して強度にバラツキが
生じることが判る。
From the above results, when TiO 2 powder having a large primary particle size is used as the raw material powder for the TiN dispersed particles,
The average particle size of the dispersed particles in the obtained sintered body becomes large,
It can be seen that when the average particle diameter of the dispersed particles exceeds 0.1 μm, the bending strength is lowered and the Weibull coefficient is also lowered, resulting in variations in strength.

【0039】実施例4 実施例1と同じ各原料粉末を用いたがTiO2粉末のみ
1次粒径を変化させ、下記表11(試料4、試料8、試
料11は実施例1と同一配合)に示す割合で配合した。
得られた各粉末を実施例1と同様に成形し、各成形体を
1気圧のN2ガス雰囲気中において1500℃で4時間
1次焼結し、引き続いて1000気圧のN2ガス雰囲気
中において1575℃で1時間の2次焼結を実施した。
Example 4 The same raw material powders as in Example 1 were used, but only the TiO 2 powder was changed in the primary particle size, and the following Table 11 (Sample 4, Sample 8 and Sample 11 had the same composition as Example 1) was used. It was compounded in the ratio shown in.
Each of the obtained powders was molded in the same manner as in Example 1, each molded body was subjected to primary sintering at 1500 ° C. for 4 hours in a N 2 gas atmosphere at 1 atm, and subsequently in a N 2 gas atmosphere at 1000 atm. Secondary sintering was performed at 1575 ° C. for 1 hour.

【0040】[0040]

【表11】 Si3423 Al23 MgO TiO2 TiO2 試料 (wt%) (wt%) (wt%) (wt%) (TiN換算vol%) 1次粒径(nm) 4 91 5 3 1 2.0 15 19 91 5 3 1 0.2 100 8* 91 5 3 1 0 − 11* 91 5 3 1 10.0 30 (注)表中の*を付した試料は比較例である。[Table 11] Si3NFour Y2O3 Al2O3 MgO TiO2 TiO2 sample (wt%) (wt%) (wt%) (wt%) (TiN equivalent vol%) Primary particle size (nm)  4 91 5 3 1 2.0 15 19 91 5 3 1 0.2 100 8 * 91 5 3 1 0 − 11 * 91 5 3 1 10.0 30 (Note) Samples marked with * in the table are comparative examples.

【0041】得られた各焼結体から切削チップを作製
し、下記表12に示す条件で切削試験に供した。それぞ
れの試験結果を表13に示した。尚、表13のチップ寿
命の判定は、逃げ面摩耗幅が0.3mmとなるまでの切
削時間をもって行った。
A cutting tip was produced from each of the obtained sintered bodies and subjected to a cutting test under the conditions shown in Table 12 below. The results of each test are shown in Table 13. The chip life shown in Table 13 was determined by the cutting time until the flank wear width was 0.3 mm.

【0042】[0042]

【表12】 [Table 12]

【0043】[0043]

【表13】 [Table 13]

【0044】上記の結果から、本発明の窒化ケイ素系焼
結体は切削工具として、連続切削及び断続切削のいずれ
においても優れた切削性能を有していることが理解され
る。
From the above results, it is understood that the silicon nitride sintered body of the present invention has excellent cutting performance as a cutting tool in both continuous cutting and intermittent cutting.

【0045】実施例5 分散粒子の原料粉末として下記表14に示す各酸化物粉
末を使用し、他の原料粉末は実施例1と同じ粉末を用い
て、表14に示す割合で配合した。得られた各粉末を1
気圧のN2ガス雰囲気中において1500℃で4時間1
次焼結し、引き続いて1000気圧のN2ガス雰囲気中
において1600℃で1時間の2次焼結を実施した。
尚、添加酸化物の体積は、他の組織全体を1としたとき
の窒化物に換算した値である。
Example 5 The oxide powders shown in Table 14 below were used as the raw material powders for the dispersed particles, and the same powders as in Example 1 were used as the other raw material powders in the proportions shown in Table 14. 1 for each powder obtained
4 hours at 1500 ° C in N 2 gas atmosphere at atmospheric pressure
Next sintering was carried out, and then secondary sintering was carried out at 1600 ° C. for 1 hour in a 1000 atm N 2 gas atmosphere.
The volume of the added oxide is a value converted into a nitride when the entire other structure is 1.

【0046】[0046]

【表14】 [Table 14]

【0047】得られた各焼結体について、実施例1と同
様に相対密度、α:β比、α結晶である柱状結晶の短軸
及び長軸の平均粒径、β結晶である等軸状結晶の平均粒
径、分散粒子の平均粒径を測定すると共に、室温での3
点曲げ強度とワイブル係数を測定し、これらの結果を表
15及び表16に示した。
For each of the obtained sintered bodies, the relative density, the α: β ratio, the average grain sizes of the minor axis and the major axis of the columnar crystals that are α crystals, and the equiaxed shape that is β crystals, as in Example 1. Measure the average particle size of crystals and dispersed particles, and
The point bending strength and the Weibull coefficient were measured, and these results are shown in Tables 15 and 16.

【0048】[0048]

【表15】 相対密度 等軸結晶 柱 状 結 晶 粒 径 分散粒子試料 (%) α:β比 粒径(nm) 短軸(nm) 長軸(μm) 粒径(nm) 20 99.5 7:93 300 250 2.0 50 21 99.3 8:92 300 200 1.5 100 22 99.4 10:90 300 250 1.8 100 23 99.3 5:95 300 250 1.5 100[Table 15] Relative Density Equiaxed Crystal Column-Shaped Crystal Grain Size Dispersed Particle Sample (%) α: β Specific Particle Size (nm) Minor Axis (nm) Major Axis (μm) Particle Size (nm) 20 99.5 7:93 300 250 2.0 50 21 99.3 8: 92 300 200 1.5 100 22 99.4 10: 90 300 250 1.8 100 23 99.3 5: 95 300 250 1.5 100

【0049】[0049]

【表16】 [Table 16]

【0050】[0050]

【発明の効果】本発明によれば、室温における3点曲げ
強度が平均160kg/mm2以上の優れた機械的強度
を有し、しかも強度のバラツキが少なく信頼性の高い窒
化ケイ素系焼結体を提供することができる。又、この窒
化ケイ素系焼結体は、生産性に優れ且つコスト面でも非
常に有利である。
EFFECTS OF THE INVENTION According to the present invention, a silicon nitride-based sintered body having excellent mechanical strength with an average of three-point bending strength of 160 kg / mm 2 or more at room temperature and less variation in strength and high reliability. Can be provided. Further, this silicon nitride-based sintered body has excellent productivity and is very advantageous in terms of cost.

【0051】かかる本発明の窒化ケイ素系焼結体は、特
に室温における強度が要求される分野において従来の金
属材料に代わる機械構造用材料として期待されるほか、
切削工具用材料としても極めて有用である。
The silicon nitride-based sintered body of the present invention is expected as a material for a mechanical structure, which replaces a conventional metal material, particularly in a field where strength at room temperature is required.
It is also extremely useful as a material for cutting tools.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 晃 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Yamakawa 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si34及び/又はサイアロンの柱状結
晶粒及び等軸状結晶粒と、これらの結晶粒の間に存在す
る粒界相と、粒界相中に分散した分散粒子とから構成さ
れ、前記柱状結晶粒の平均短軸径が0.3μm以下及び
平均長軸径が5μm以下であり、等軸状結晶粒の平均粒
径が0.5μm以下であり、分散粒子の平均粒径が0.1
μm以下であって、分散粒子の体積が他の焼結体組織の
全体積を1としたとき0.05体積%以上であることを
特徴とする窒化ケイ素系焼結体。
1. From a columnar crystal grain and an equiaxed crystal grain of Si 3 N 4 and / or sialon, a grain boundary phase existing between these crystal grains, and dispersed particles dispersed in the grain boundary phase. The columnar crystal grains have an average minor axis diameter of 0.3 μm or less and an average major axis diameter of 5 μm or less, and the equiaxed crystal grains have an average grain size of 0.5 μm or less, and an average grain size of dispersed particles. Diameter is 0.1
A silicon nitride-based sintered body characterized in that the volume of dispersed particles is at most 0.05% by volume when the total volume of other sintered body structures is 1.
【請求項2】 分散粒子が、Ti、Zr、Hf、V又は
Crの化合物であることを特徴とする、請求項1に記載
の窒化ケイ素系焼結体。
2. The silicon nitride based sintered body according to claim 1, wherein the dispersed particles are a compound of Ti, Zr, Hf, V or Cr.
【請求項3】 分散粒子がTiの化合物であって、その
体積が他の焼結体組織の全体積を1としたときTiNに
換算して0.05〜4体積%であることを特徴とする、
請求項2に記載の窒化ケイ素系焼結体。
3. The dispersed particles are a compound of Ti, and the volume thereof is 0.05 to 4% by volume in terms of TiN when the total volume of other sintered body structures is 1. To do
The silicon nitride-based sintered body according to claim 2.
【請求項4】 JIS R 1601に準拠する室温での
3点曲げ強度が160kg/mm2以上であることを特
徴とする、請求項1ないし3のいずれかに記載の窒化ケ
イ素系焼結体。
4. The silicon nitride based sintered body according to claim 1, which has a three-point bending strength of 160 kg / mm 2 or more at room temperature according to JIS R 1601.
JP11785193A 1993-03-17 1993-04-21 Silicon nitride based sintered body Expired - Fee Related JP3395247B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11785193A JP3395247B2 (en) 1993-04-21 1993-04-21 Silicon nitride based sintered body
US08/138,346 US5424256A (en) 1993-03-17 1993-10-18 Silicon nitride sintered body
DE69317254T DE69317254T2 (en) 1993-03-17 1993-10-21 Silicon nitride sintered body
SG1996005175A SG43189A1 (en) 1993-03-17 1993-10-21 Silicon nitride sintered body
EP93117039A EP0615963B1 (en) 1993-03-17 1993-10-21 Silicon nitride sintered body
KR1019930026821A KR970001266B1 (en) 1993-03-17 1993-12-08 Sintered Silicon Nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11785193A JP3395247B2 (en) 1993-04-21 1993-04-21 Silicon nitride based sintered body

Publications (2)

Publication Number Publication Date
JPH06305837A true JPH06305837A (en) 1994-11-01
JP3395247B2 JP3395247B2 (en) 2003-04-07

Family

ID=14721860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11785193A Expired - Fee Related JP3395247B2 (en) 1993-03-17 1993-04-21 Silicon nitride based sintered body

Country Status (1)

Country Link
JP (1) JP3395247B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908797A (en) * 1995-07-18 1999-06-01 Ngk Spark Plug Co., Ltd. Silicon nitride based sintered material and method for producing same
JP2001064080A (en) * 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2001328869A (en) * 2000-03-16 2001-11-27 Toshiba Corp Abrasion-resistant member and method for producing the same
JP2002293639A (en) * 2001-03-29 2002-10-09 Kyocera Corp Silicon nitride sintered body
US6589448B2 (en) * 2000-04-12 2003-07-08 Ngk Spark Plug Co., Ltd. Ceramic ball for bearing and ceramic ball bearing using the same
JP2010001203A (en) * 2008-05-19 2010-01-07 Ngk Spark Plug Co Ltd Silicon nitride sintered compact, silicon nitride cutting tool, and method for manufacturing silicon nitride sintered compact
JP2011132126A (en) * 2000-03-16 2011-07-07 Toshiba Corp Wear-resistant member
WO2016092016A1 (en) * 2014-12-12 2016-06-16 Ceramtec Gmbh Α/ss-sialon having improved sintering activity and high edge strength

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908797A (en) * 1995-07-18 1999-06-01 Ngk Spark Plug Co., Ltd. Silicon nitride based sintered material and method for producing same
JP2001064080A (en) * 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2001328869A (en) * 2000-03-16 2001-11-27 Toshiba Corp Abrasion-resistant member and method for producing the same
JP2011132126A (en) * 2000-03-16 2011-07-07 Toshiba Corp Wear-resistant member
US6589448B2 (en) * 2000-04-12 2003-07-08 Ngk Spark Plug Co., Ltd. Ceramic ball for bearing and ceramic ball bearing using the same
JP2002293639A (en) * 2001-03-29 2002-10-09 Kyocera Corp Silicon nitride sintered body
JP4671524B2 (en) * 2001-03-29 2011-04-20 京セラ株式会社 Method for producing silicon nitride sintered body
JP2010001203A (en) * 2008-05-19 2010-01-07 Ngk Spark Plug Co Ltd Silicon nitride sintered compact, silicon nitride cutting tool, and method for manufacturing silicon nitride sintered compact
WO2016092016A1 (en) * 2014-12-12 2016-06-16 Ceramtec Gmbh Α/ss-sialon having improved sintering activity and high edge strength
US10239794B2 (en) 2014-12-12 2019-03-26 Ceramtec Gmbh α/β-sialon having improved sintering activity and high edge strength

Also Published As

Publication number Publication date
JP3395247B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
EP0589411B1 (en) Silicon nitride sintered body and process for producing the same
EP0589997B1 (en) High toughness-high strength sintered silicon nitride
WO1998023554A1 (en) IN-SITU TOUGHENED ALPHA PRIME-SiAlON-BASED CERAMICS
JPH0680470A (en) Method for manufacturing silicon nitride sintered body
KR970001266B1 (en) Sintered Silicon Nitride
US5204297A (en) Silicon nitride sintered body and process for producing the same
JPH06305837A (en) Sintered silicon nitride
EP0497355B1 (en) Method for preparing silicon nitride based ceramics
EP0631997B1 (en) Silicon nitride based sintered body and method for producing the same
US5759933A (en) Gas pressure sintered silicon nitride having high strength and stress rupture resistance
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
US5637540A (en) Sintered silicon nitride of high toughness, strength and reliability
CA2078169C (en) Silicon nitride sintered body
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
US5672553A (en) Superplastic silicon nitride sintered body
JP2003267787A (en) beta'-SIALON-BASED CERAMIC TOOL AND ITS PRODUCTION METHOD
JP2597774B2 (en) Silicon nitride based sintered body and method for producing the same
JPH06271358A (en) Silicon nitride-based sintered body
JPH0840776A (en) Sintered substance based on si3n4/bn and their production
JPH0379308B2 (en)
WO1993021129A1 (en) Sintered silicon nitride of high toughness, strength and reliability
EP0383431B1 (en) Process for producing high density silicon carbide sintered bodies
JPH0523921A (en) Silicon nitride sintered body for cutting tools
JPS61295271A (en) Titanium compound base high hardness sintered body
JPH0558739A (en) Silicon nitride based sintered body and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees