[go: up one dir, main page]

JPH0630345B2 - Plasma thin tube for gas laser tube - Google Patents

Plasma thin tube for gas laser tube

Info

Publication number
JPH0630345B2
JPH0630345B2 JP62092622A JP9262287A JPH0630345B2 JP H0630345 B2 JPH0630345 B2 JP H0630345B2 JP 62092622 A JP62092622 A JP 62092622A JP 9262287 A JP9262287 A JP 9262287A JP H0630345 B2 JPH0630345 B2 JP H0630345B2
Authority
JP
Japan
Prior art keywords
tube
plasma
gas laser
thin tube
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62092622A
Other languages
Japanese (ja)
Other versions
JPS63258086A (en
Inventor
修 小村
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62092622A priority Critical patent/JPH0630345B2/en
Publication of JPS63258086A publication Critical patent/JPS63258086A/en
Publication of JPH0630345B2 publication Critical patent/JPH0630345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスレーザー管に組込んで使用するプラズマ
細管に関する。
TECHNICAL FIELD The present invention relates to a plasma capillary used by being incorporated in a gas laser tube.

〔従来の技術〕[Conventional technology]

ガスレーザーは、He-Ne やAr等のガスのプラズマを生成
させ、この時発生する放電光の特定波長の光を増幅して
取り出すもので、連続発振が可能なことが大きな特徴に
なつており、材料加工や測定等に利用されている。
Gas lasers generate plasma of gas such as He-Ne and Ar, and amplify and extract the light of a certain wavelength of the discharge light generated at this time, and it is characterized by continuous oscillation. It is used for material processing and measurement.

ガスレーザーを発振させるガスレーザー管は、第2図に
示すように、細長い放電路2を長さ方向に貫通して形成
したプラズマ細管1を具え、プラズマ細管1の両端に反
射鏡8及び陰極5又は陽極6を設置した外囲器7を夫々
固定した真空容器になつている。このガスレーザー管内
に0.01〜 0.1torrのAr等のガスを封入し、陰極5と陽極
6の間に電圧を印加して封入ガスのプラズマを生成さ
せ、その際に発生した放電光の特定波長光を反射鏡8の
間を往復させることにより増幅させれ取り出す仕組みに
なつている。
As shown in FIG. 2, a gas laser tube for oscillating a gas laser includes a plasma thin tube 1 formed by penetrating an elongated discharge path 2 in a longitudinal direction, and a reflecting mirror 8 and a cathode 5 at both ends of the plasma thin tube 1. Alternatively, it is a vacuum container in which the envelopes 7 on which the anodes 6 are installed are fixed. A gas such as Ar of 0.01 to 0.1 torr is enclosed in this gas laser tube, a voltage is applied between the cathode 5 and the anode 6 to generate plasma of the enclosed gas, and the specific wavelength light of the discharge light generated at that time is generated. Is reciprocated between the reflecting mirrors 8 to be amplified and taken out.

かかるガスレーザー管で最も重要な構成要素は大放電電
流、大消費電力に耐え得る放電路を形成したプラズマ細
管である。即ち、プラズマの電流密度を上げてレーザー
の出力を向上させる為に、生成したプラズマ径を放電路
2で絞るという重要な役割をプラズマ細管1は有してい
る。従つて、放電路2の両端側の徐々に拡径した両端部
2′から細い中央部に向かつてプラズマを絞る際に放電
路2が高温のプラズマに曝されるので、プラズマ細管1
は、熱伝導率が高く放熱性に優れた電気絶縁性材料で形
成する必要がある。
The most important component of such a gas laser tube is a plasma capillary tube having a discharge path capable of withstanding a large discharge current and large power consumption. That is, the plasma thin tube 1 has an important role of narrowing the generated plasma diameter in the discharge path 2 in order to increase the current density of plasma and improve the output of laser. Therefore, since the discharge passage 2 is exposed to high-temperature plasma when the plasma is narrowed from both ends 2 ′ of the discharge passage 2 which are gradually expanded in diameter toward the narrow central portion, the plasma thin tube 1
Needs to be formed of an electrically insulating material having high thermal conductivity and excellent heat dissipation.

従来のプラズマ細管には、熱伝導が良好なベリリア磁
器、並びに高耐熱材料のグラフアイトやタングステンの
デイスクを一定間隔に並べて石英等の高耐熱性容器に収
納したものが使われていた。しかし、ベリリア磁器は有
毒であるため取扱いが難しく、又グラフアイトやタング
ステンのデイスクを石英容器に収納したものは構造が複
雑で、運搬時等の衝撃に弱い欠点があつた。
Conventionally used plasma thin tubes are beryllia porcelain, which has good thermal conductivity, and high-heat-resistant materials such as graphite and tungsten discs, which are arranged at regular intervals in a high-heat-resistant container such as quartz. However, beryllia porcelain is toxic and difficult to handle, and the one in which graphite and tungsten discs are housed in a quartz container has a complicated structure and is weak against shock during transportation.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は上記した従来の事情に鑑み、構造が簡単で取扱
いやすく、大放電電流及び大消費電力に耐え、しかも出
力安定性に優れたガスレーザー管用プラズマ細管を提供
することを目的とする。
In view of the above-mentioned conventional circumstances, it is an object of the present invention to provide a plasma thin tube for a gas laser tube, which has a simple structure, is easy to handle, can withstand a large discharge current and a large power consumption, and is excellent in output stability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のガスレーザー管用プラズマ細管1は、第1図に
示すように、中央部が同一内径で両端部で内径が両端に
向かつて徐々に拡径した細長い放電路2を長さ方向に貫
通して形成した窒化アルミニウムを主成分とする焼結体
からなる窒化アルミニウム筒体3と、窒化アルミニウム
筒体3の少なくとも内径が拡径した部分を含む放電路の
両端側内面に設けた耐スパツタ性に優れた物質からなる
耐スパツタ性周壁4とを具えている。
As shown in FIG. 1, a plasma thin tube 1 for a gas laser tube of the present invention penetrates in the lengthwise direction an elongated discharge path 2 in which the central portion has the same inner diameter and the inner diameters gradually increase toward both ends at both ends. Aluminum nitride cylinder 3 made of a sintered body containing aluminum nitride as a main component, and the spatter resistance provided on the inner surfaces of both ends of the discharge path including at least a portion of the aluminum nitride cylinder 3 having an enlarged inner diameter. It has a peripheral wall 4 which is made of an excellent material and is resistant to spatter.

窒化アルミニウム筒体3は、AlNを主成分とする焼結体
であり、焼結性を向上させるために添加する第IIa、III
a族元素の酸化物、窒化物又は炭化物等を含有してもよ
い。
The aluminum nitride cylinder 3 is a sintered body containing AlN as a main component, and is added in order to improve sinterability.
It may also contain oxides, nitrides or carbides of Group a elements.

耐スパツタ性周壁4は、タングステン、モリブデン、炭
化硼素、炭化ケイ素、及び第IVa、Va、VIa族元素の炭
化物からなる群より選ばれた少なくとも一種であること
が好ましい。放電路2の両端部に耐スパツタ性周壁4を
形成する方法としては、上記した物質の焼結体等からな
る周壁を埋め込むか、若しくは公知のイオンプレーテイ
ング法やCVD法等により被着させる等の方法を採用す
ることができる。
The spatter-resistant peripheral wall 4 is preferably at least one selected from the group consisting of tungsten, molybdenum, boron carbide, silicon carbide, and carbides of Group IVa, Va, and VIa elements. As a method of forming the spatter-resistant peripheral wall 4 at both ends of the discharge path 2, a peripheral wall made of a sintered body of the above-mentioned substance is embedded, or a known ion plating method or a CVD method is applied. The method of can be adopted.

〔作用〕[Action]

本発明者等は、構造が簡単で取り扱いやすく、大放電電
流及び大消費電力に耐えるプラズマ細管の材料として、
熱伝導率の高い電気絶縁体である窒化アルミニウムを用
いることを検討した。
The inventors of the present invention have a simple structure and are easy to handle, and as a material of a plasma thin tube that can withstand a large discharge current and a large power consumption,
We examined the use of aluminum nitride, which is an electrical insulator with high thermal conductivity.

しかし、放電路2の両端側、特に内径が拡径した両端部
2′がAr等のプラズマによる激しいスパツタリングを
受け、その際に発生したNガスによりプラズマの放電
が不安定になり、その結果レーザー光の発振出力が変動
するという不都合が発見された。
However, both ends of the discharge path 2, particularly both ends 2'having an expanded inner diameter, are subjected to intense sputtering due to plasma such as Ar + , and the N 2 gas generated at that time makes the plasma discharge unstable, As a result, it was discovered that the oscillation output of laser light fluctuates.

そこで本発明のプラズマ細管1は、少なくともプラズマ
によるスパツタリングが特に激しい両端部2′の内径が
拡径した部分を含む放電路2の両端側の内面に、耐スパ
ツタリング性の優れた物質からなる周壁4を形成するこ
とによつてスパツタリングを軽減させたものである。こ
の耐スパツタ性周壁4と云えどもプラズマによつて全く
スパツタリングされない訳ではないが、例えスパツタリ
ングされてもプラズマの放電を不安定にするガス成分が
発生しないので、常に安定した出力のレーザー発振が得
られる。
Therefore, in the plasma thin tube 1 of the present invention, the peripheral wall 4 made of a substance having excellent spattering resistance is formed on the inner surface of both ends of the discharge path 2 including at least the portions where the inner diameters of the both ends 2'where the spattering by plasma is particularly severe are enlarged. By forming the above, the spattering is reduced. Although this spatter-resistant peripheral wall 4 is not completely sputtered by the plasma, even if it is sputtered, no gas component that makes the discharge of the plasma unstable is generated, so that a stable laser oscillation can always be obtained. Be done.

〔実施例〕〔Example〕

実施例1 平均粒径1.0 μmのAlN粉末95重量%と平均粒径0.8 μ
mのY2O3粉末5重量%とを、ナイロンボールを用いたナ
イロンポツトにエタノールと共に挿入し、24時間湿式に
て粉砕混合した。得られたスラリーを乾燥した後、有機
バインダーを加えて押出法によりプラズマ細管の形状に
成形し、脱脂してからN2雰囲気中において1800℃で1
時間焼結した。
Example 1 95% by weight of AlN powder having an average particle size of 1.0 μm and an average particle size of 0.8 μ
5% by weight of Y 2 O 3 powder of m was inserted into a nylon pot using a nylon ball together with ethanol, and pulverized and mixed by wet for 24 hours. After drying the obtained slurry, an organic binder is added to form a thin plasma tube by an extrusion method, and after degreasing, the temperature is set to 1 at 1800 ° C. in an N 2 atmosphere.
Sintered for hours.

得られたAlN筒体の第1図に示すように放電路の内径が
拡径した部分及び同一内径の部分の両端側にタングステ
ン製の耐スパツタリング性周壁を埋め込み、プラズマ細
管を製造した。このプラズマ細管の両端に通常の如く電
極及び反射鏡等を取り付けてレーザー管を組み立てた。
このレーザー管内を10-6torrに真空引きした後、0.1 to
rrのArガスを封入した。
As shown in FIG. 1 of the obtained AlN cylinder, tungsten spattering-resistant peripheral walls were buried in both ends of the portion where the inner diameter of the discharge path was enlarged and the portion where the inner diameter was the same, to manufacture a plasma thin tube. A laser tube was assembled by attaching electrodes, reflecting mirrors and the like to both ends of this plasma thin tube as usual.
After evacuating the inside of this laser tube to 10 -6 torr, 0.1 to
Ar gas of rr was filled.

このレーザー管を300 V、20Aの放電条件で発振させ、
1000時間の連続発振において常に安定した出力でレーザ
ー光を取り出すことができた。
This laser tube is oscillated under a discharge condition of 300 V and 20 A,
It was possible to extract the laser light with a stable output at 1000 hours continuous oscillation.

しかし、放電路の両端部にタングステン製の耐スパツタ
製周壁を有しない以外は上記と同様に製造したAlN筒体
のみからなるプラズマ細管を用いて組み立てたレーザー
管を、上記と同様の放電条件で発振させたところ、放電
電圧が変動して安定した発振が得られなかつた。
However, under the same discharge conditions as above, a laser tube assembled using a plasma thin tube consisting of only an AlN cylinder manufactured in the same manner as above except that it does not have a tungsten spatter-resistant peripheral wall at both ends of the discharge path. When oscillated, the discharge voltage fluctuated and stable oscillation could not be obtained.

実施例2 実施例1と同様に製造したAlN筒体の放電路の拡径した
両端部に、CVD法により厚さ20μmのTiC層を被着さ
せて耐スパツタ性周壁を形成し、プラズマ細管を製造し
た。このプラズマ細管を用いて実施例1と同様にしてAr
ガスを封入したレーザー管を組み立て、実施例1と同一
条件で発振させたところ、1000時間の連続発振において
常に安定出力のレーザー光を取り出すことができた。
Example 2 A TiC layer having a thickness of 20 μm was deposited by a CVD method on both ends of the discharge path of the AlN cylinder manufactured in the same manner as in Example 1 so as to form a spatter-resistant peripheral wall, and a plasma thin tube was formed. Manufactured. Using this plasma thin tube, Ar was carried out in the same manner as in Example 1.
When a laser tube filled with gas was assembled and oscillated under the same conditions as in Example 1, a laser beam with a stable output could always be taken out in continuous oscillation for 1000 hours.

〔発明の効果〕〔The invention's effect〕

本発明によれば、構造が簡単で取扱いやすく、大放電電
流及び大消費電力に耐え、しかも出力安定性に優れたガ
スレーザー管用プラズマ細管を提供することができる。
According to the present invention, it is possible to provide a plasma thin tube for a gas laser tube, which has a simple structure and is easy to handle, can withstand a large discharge current and a large power consumption, and is excellent in output stability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のプラズマ細管の断面図であつて、第2
図はプラズマ細管を組込んだレーザー管の断面図であ
る。 1……プラズマ細管、2……放電路 3……窒化アルミニウム筒体 4……耐スパツタ性周壁、5……陰極 6……陽極、7……外囲器、8……反射鏡
FIG. 1 is a cross-sectional view of the plasma capillary tube of the present invention.
The figure is a cross-sectional view of a laser tube incorporating a plasma capillary. 1 ... Plasma thin tube, 2 ... Discharge path 3 ... Aluminum nitride cylinder 4 ... Spatula-resistant peripheral wall, 5 ... Cathode 6 ... Anode, 7 ... Envelope, 8 ... Reflector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】中央部が同一内径で両端部で内径が両端に
向かつて徐々に拡径した細長い放電路を長さ方向に貫通
して形成した窒化アルミニウムを主成分とする焼結体か
らなる窒化アルミニウム筒体と、窒化アルミニウム筒体
の少なくとも拡径した部分を含む放電路の両端側内面に
設けた耐スパツタ性に優れた物質からなる耐スパツタ性
周壁とを具えたガスレーザー管用プラズマ細管。
1. A sintered body containing aluminum nitride as a main component, which is formed by penetrating in the lengthwise direction an elongated discharge path whose central portion has the same inner diameter and whose inner diameters gradually increase toward both ends at both ends. A plasma thin tube for a gas laser tube, comprising: an aluminum nitride cylinder; and a spatula-resistant peripheral wall made of a material having excellent spatter resistance, which is provided on inner surfaces of both ends of a discharge path including at least an expanded diameter portion of the aluminum nitride cylinder.
【請求項2】耐スパツタ性周壁を構成する耐スパツタ性
に優れた物質が、タングステン、モリブデン、炭化硼
素、炭化ケイ素及び第IVa、Va、VIa族元素の炭化物
からなる群より選ばれた少なくとも1種であることを特
徴とする、特許請求の範囲(1)項記載のガスレーザー管
用プラズマ細管。
2. A material having excellent spatter resistance constituting the spatter resistant peripheral wall is at least one selected from the group consisting of tungsten, molybdenum, boron carbide, silicon carbide and carbides of Group IVa, Va and VIa elements. The plasma thin tube for a gas laser tube according to claim 1, characterized in that it is a seed.
JP62092622A 1987-04-15 1987-04-15 Plasma thin tube for gas laser tube Expired - Fee Related JPH0630345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62092622A JPH0630345B2 (en) 1987-04-15 1987-04-15 Plasma thin tube for gas laser tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62092622A JPH0630345B2 (en) 1987-04-15 1987-04-15 Plasma thin tube for gas laser tube

Publications (2)

Publication Number Publication Date
JPS63258086A JPS63258086A (en) 1988-10-25
JPH0630345B2 true JPH0630345B2 (en) 1994-04-20

Family

ID=14059536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62092622A Expired - Fee Related JPH0630345B2 (en) 1987-04-15 1987-04-15 Plasma thin tube for gas laser tube

Country Status (1)

Country Link
JP (1) JPH0630345B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274387A (en) * 1995-03-30 1996-10-18 Nec Corp Ion laser tube
WO2015115624A1 (en) 2014-01-30 2015-08-06 京セラ株式会社 Cylinder, plasma device, gas laser device, and method for manufacturing cylinder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245855U (en) * 1985-09-06 1987-03-19
JPS6272188A (en) * 1985-09-26 1987-04-02 Toshiba Corp Laser tube

Also Published As

Publication number Publication date
JPS63258086A (en) 1988-10-25

Similar Documents

Publication Publication Date Title
US4467240A (en) Ion beam source
US5247535A (en) Apparatus for preionization of gas in a pulsed gas laser
JPH07118258B2 (en) Dispenser cathode with emitting surface parallel to ion flow
JP2002522881A (en) Long life electrode for high pressure discharge lamp
US4739439A (en) Overvoltage arrester
HU189015B (en) High-pressure sodium discharge lamp with improved tungsten electrode
EP0013201A1 (en) Directly heated cathode and high frequency electron tube comprising such a cathode
JPH0630345B2 (en) Plasma thin tube for gas laser tube
US20020007792A1 (en) Cathode electrode for plasma sources and plasma source of a vacuum coating device, in particular for the application of coating layers on optical substrates
US4761792A (en) Laser apparatus
US4680770A (en) Dual beam gas ion laser
EP0908917B1 (en) Secondary emission coating for photomultiplier tubes
Fukuda et al. A metal-ceramic He-Cd II laser with sectioned hollow cathodes and output power characteristics of simultaneous oscillations
JPS6355987A (en) Laser device
JP3561594B2 (en) Discharge tube and electrode for discharge tube
Tsuda et al. Practical small-scale hollow-cathode CW metal-ion lasers
EP0543676B1 (en) Ion-laser tube
US3569769A (en) Cathode with elongated heat dissipating and supporting member
JPH11288689A (en) Electrode for discharge tube
JPH05128963A (en) Electron gun
Collier et al. Cu II laser with a new hollow cathode design: the'tulip'HCD
EP0578226B1 (en) Ion laser tube
JPH01305582A (en) Plasma capillary for air cooling type gas laser tube
JPH04237174A (en) Ion laser tube
JP2813214B2 (en) Flash X-ray tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees