JPH0630260B2 - Organic electrolyte battery - Google Patents
Organic electrolyte batteryInfo
- Publication number
- JPH0630260B2 JPH0630260B2 JP60058604A JP5860485A JPH0630260B2 JP H0630260 B2 JPH0630260 B2 JP H0630260B2 JP 60058604 A JP60058604 A JP 60058604A JP 5860485 A JP5860485 A JP 5860485A JP H0630260 B2 JPH0630260 B2 JP H0630260B2
- Authority
- JP
- Japan
- Prior art keywords
- insoluble
- electrolyte battery
- organic electrolyte
- battery
- infusible substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000005486 organic electrolyte Substances 0.000 title claims description 22
- 239000000758 substrate Substances 0.000 claims description 60
- 239000008151 electrolyte solution Substances 0.000 claims description 19
- 150000002500 ions Chemical class 0.000 claims description 18
- 239000011148 porous material Substances 0.000 claims description 17
- 229920000642 polymer Polymers 0.000 claims description 13
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 12
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 11
- 229920003026 Acene Polymers 0.000 claims description 10
- 125000003118 aryl group Chemical group 0.000 claims description 10
- 238000009833 condensation Methods 0.000 claims description 10
- 230000005494 condensation Effects 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- 229910052783 alkali metal Inorganic materials 0.000 claims description 9
- 150000001340 alkali metals Chemical class 0.000 claims description 9
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 9
- 239000003960 organic solvent Substances 0.000 claims description 9
- 239000000047 product Substances 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- 238000004438 BET method Methods 0.000 claims description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- 239000007859 condensation product Substances 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 6
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- PHXQIAWFIIMOKG-UHFFFAOYSA-N NClO Chemical compound NClO PHXQIAWFIIMOKG-UHFFFAOYSA-N 0.000 claims description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 5
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 5
- 238000005868 electrolysis reaction Methods 0.000 claims description 5
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 4
- 229910013684 LiClO 4 Inorganic materials 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 3
- 239000004745 nonwoven fabric Substances 0.000 claims description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical group O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims description 2
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- 229910017008 AsF 6 Inorganic materials 0.000 claims 1
- 229910000733 Li alloy Inorganic materials 0.000 claims 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims 1
- 239000001989 lithium alloy Substances 0.000 claims 1
- 239000010408 film Substances 0.000 description 18
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 12
- 239000002019 doping agent Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 239000007772 electrode material Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000007599 discharging Methods 0.000 description 8
- 229910017053 inorganic salt Inorganic materials 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 239000011592 zinc chloride Substances 0.000 description 6
- 235000005074 zinc chloride Nutrition 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- -1 steam (H 2 O) Substances 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 150000001721 carbon Chemical group 0.000 description 3
- 238000000635 electron micrograph Methods 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 229920001197 polyacetylene Polymers 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003987 resole Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- IPCXNCATNBAPKW-UHFFFAOYSA-N zinc;hydrate Chemical compound O.[Zn] IPCXNCATNBAPKW-UHFFFAOYSA-N 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- MQCPOLNSJCWPGT-UHFFFAOYSA-N 2,2'-Bisphenol F Chemical compound OC1=CC=CC=C1CC1=CC=CC=C1O MQCPOLNSJCWPGT-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical group OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- DKAGJZJALZXOOV-UHFFFAOYSA-N hydrate;hydrochloride Chemical compound O.Cl DKAGJZJALZXOOV-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2361/00—Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
- C08J2361/04—Condensation polymers of aldehydes or ketones with phenols only
- C08J2361/06—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機電解質電池に関する。更に詳しくは半導体
の性能を有する不溶不融性基体を正極および/又は負極
とし、そしてドーピングされうるイオンを生成しうる化
合物を非プロトン性有機溶媒に溶解した溶液を電解液と
する有機電解質電池に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an organic electrolyte battery. More specifically, the present invention relates to an organic electrolyte battery in which an insoluble and infusible substrate having semiconductor properties is used as a positive electrode and / or a negative electrode, and a solution in which a compound capable of generating an ion that can be doped is dissolved in an aprotic organic solvent is used as an electrolytic solution. .
近年、電子機器の小型化、薄形化あるいは軽量化は目覚
ましく、それに伴い電源となる電池の小型化、薄形化、
軽量化の要望が大きい。小型で性能のよい電池として現
在は酸化銀電池が多用されており、又薄形化された乾電
池や、小型軽量な高性能電池として、リチウム電池が開
発され実用化されている。しかしこれらの電池は1次電
池であるため充放電を繰返して長時間使用することはで
きない。一方、高性能な2次電池としてニツケルカドミ
ウム電池が実用化されているが、小型化、薄形化、軽量
化という点で未だ不満足である。In recent years, the miniaturization, thinning, or weight reduction of electronic devices has been remarkable, and along with this, the miniaturization, thinning of batteries that are power sources,
There is a great demand for weight reduction. Currently, silver oxide batteries are widely used as small size and high performance batteries, and lithium batteries have been developed and put into practical use as thin dry batteries and small and lightweight high performance batteries. However, since these batteries are primary batteries, they cannot be used for a long time by repeating charging and discharging. Meanwhile, nickel-cadmium batteries have been put into practical use as high-performance secondary batteries, but they are still unsatisfactory in terms of downsizing, thinning, and weight reduction.
又、大容量の2次電池として従来より鉛蓄電池が種々の
産業分野で用いられているが、この電池の最大の欠点は
重いことである。これは電極として過酸化鉛及び鉛を用
いているため宿命的なものである。近年、電気自動車用
電池として該電池の軽量化及び性能改善が試みられたが
実用するに至らなかつた。しかし蓄電池として大容量で
且つ軽量な2次電池に対する要望は強いものがある。Further, lead-acid batteries have been conventionally used in various industrial fields as large-capacity secondary batteries, but the biggest drawback of these batteries is that they are heavy. This is fatal because lead peroxide and lead are used as electrodes. In recent years, attempts have been made to reduce the weight and improve the performance of batteries for electric vehicles, but they have not been put into practical use. However, there is a strong demand for a large-capacity and lightweight secondary battery as a storage battery.
以上のように現在実用化されている電池は夫々一長一短
があり、それぞれ用途に応じて使い分けされているが、
電池の小型化、薄形化、或は軽量化に対するニーズは大
きい。このようなニーズに答えようとする電池として、
近時、有機半導体である薄膜状ポリアセチレンに電子供
与性物質又は電子受容性物質をドーピングしたものを電
極活物質として用いる電池が研究され、提案されてい
る。該電池は2次電池として高性能で且つ薄形化、軽量
化の可能性を有しているが、大きな欠点がある。それは
有機半導体であるポリアセチレンが極めて不安定な物質
であり空気中の酸素により容易に酸化を受け、又熱によ
り変質することである。従つて電池製造は不活性ガス雰
囲気で行なわなければならず、又ポリアセチレンを電極
に適した形状に製造することにも制約を受ける。As described above, each of the batteries currently put into practical use has advantages and disadvantages, and they are used according to their respective applications.
There is a great need for making batteries smaller, thinner, and lighter. As a battery that tries to answer these needs,
Recently, batteries using an organic semiconductor thin film polyacetylene doped with an electron-donating substance or an electron-accepting substance as an electrode active material have been studied and proposed. The battery has high performance as a secondary battery and has the possibility of being thin and lightweight, but has a serious drawback. That is, polyacetylene, which is an organic semiconductor, is an extremely unstable substance and is easily oxidized by oxygen in the air and is also deteriorated by heat. Therefore, the battery must be manufactured in an inert gas atmosphere, and it is also restricted to manufacture polyacetylene into a shape suitable for an electrode.
また、本願の出願人と同一出願人の出願にかかる先願で
ある特願昭59−24165号は未だ公開されていない
が、同先願の明細書には、炭素、水素および酸素からな
る芳香族系縮合ポリマーの熱処理物であつて、水素原子
/炭素原子の原子比が0.05〜0.5であり、且つB
ET法による比表面積値が600m2/g以上であるポリ
アセン系過格構造を有する不溶不融性基体を正極及び/
又は負極とし、電解により該電極にドーピング可能なイ
オンを生成し得る化合物の非プロトン性有機溶媒溶液を
電解液とすることを特徴とする有機電解質電池が提案さ
れている。Further, Japanese Patent Application No. 59-24165, which is a prior application filed by the same applicant as the applicant of the present application, has not yet been published, but the specification of the same application discloses that an aroma composed of carbon, hydrogen and oxygen. A heat-treated product of a group condensation polymer, wherein the atomic ratio of hydrogen atoms / carbon atoms is 0.05 to 0.5, and B
The insoluble and infusible substrate having a polyacene-based graded structure having a specific surface area value of 600 m 2 / g or more by the ET method is used as a positive electrode and /
Alternatively, an organic electrolyte battery has been proposed which is characterized by using a solution of an aprotic organic solvent of a compound capable of generating ions capable of being doped in the electrode by electrolysis as a negative electrode.
該電池は、高性能で、薄形化、軽量化の可能性も有して
おり、電極活物質の酸化安定性も高く、さらにその成形
も容易であるなど将来有望な2次電池である。ところが
該電池の実用化を進めるにはいくつかの課題が残されて
いた。これらの課題の中で最も重要なのは電池の容量の
向上、換言すればドーピング量を増大させ、取り出し得
るエネルギー密度をより大きくするための改良である。The battery is a promising secondary battery having high performance, possibility of thinning and weight saving, high oxidative stability of electrode active material, and easy molding thereof. However, some problems remain for the practical application of the battery. The most important of these problems is to improve the battery capacity, in other words, to increase the doping amount and the energy density that can be taken out.
本発明の目的は有機電解質電池を提供することにある。An object of the present invention is to provide an organic electrolyte battery.
本発明の他の目的は単位重量当りの容量が大きく、エネ
ルギー密度の高い有機電解質電池を提供することにあ
る。Another object of the present invention is to provide an organic electrolyte battery having a large capacity per unit weight and a high energy density.
本発明のさらに他の目的はポリアセン系骨格構造を持つ
不溶不融性基体から成る有機半導体を、電極活物質とす
る有機電解質電池を提供することにある。Yet another object of the present invention is to provide an organic electrolyte battery using an organic semiconductor composed of an insoluble and infusible substrate having a polyacene skeleton structure as an electrode active material.
本発明のさらに他の目的は小型化、薄形化あるいは軽量
化が可能でありそして製造も容易である経済的な二次電
池である有機電解質電池を提供することにある。Still another object of the present invention is to provide an organic electrolyte battery which is an economical secondary battery which can be miniaturized, thinned or lightened and is easy to manufacture.
本発明のさらに他の目的は起電圧が高く、内部抵抗が小
さく、しかも長期に亘つて充電、放電が可能な二次電池
を提供することにある。Still another object of the present invention is to provide a secondary battery having a high electromotive voltage, a low internal resistance, and capable of being charged and discharged for a long period of time.
本発明のさらに他の目的および利点は以下の説明から明
らかとなろう。Further objects and advantages of the present invention will be apparent from the following description.
〔問題点を解決するための手段および作用〕 本発明によれば、本発明のかかる目的および利点は、 (A) フエノール性水酸基を有する芳香族炭化水素化合
物とアルデヒド類との縮合物である芳香族系縮合ポリマ
ーの熱処理物であつて、 (a) 水素原子/炭素原子の原子比が0.5〜0.05
であるポリアセン系骨格構造を有し、 (b) BET法による比表面積値が少くとも600m2/
gであり、そして (c) 平均孔系10μm以下の連通孔を持つ、 不溶不融性基体を、正極および/または負極とし、 (B) 電解により該電極にドーピングされうるイオンを
生成しうる化合物を、非プロトン性有機溶媒に溶解した
溶液を、電解液とする、 ことを特徴とする有機電解質電池によつて達成される。[Means and Actions for Solving Problems] According to the present invention, such an object and advantage of the present invention are (A) an aromatic compound which is a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. A heat-treated product of a group-type condensation polymer, wherein the atomic ratio of (a) hydrogen atom / carbon atom is 0.5 to 0.05.
And (b) the specific surface area by BET method is at least 600 m 2 /
and (c) an insoluble and infusible substrate having communicating pores having an average pore size of 10 μm or less as a positive electrode and / or a negative electrode, and (B) a compound capable of generating ions that can be doped into the electrode by electrolysis. Is used as an electrolytic solution, and a solution of the above is dissolved in an aprotic organic solvent.
本発明における芳香族系縮合ポリマーは、フエノール性
水酸基を有する芳香族炭化水素化合物とアルデヒド類と
の縮合物である。かかる芳香族炭化水素化合物として
は、例えばフエノール、クレゾール、キシレノールの如
きいわゆるフエノール類が好適であるが、これらに限ら
れない。例えば下記式 ここで、xおよびyはそれぞれ独立に、0、1又は2で
ある、 で表わされるメチレン−ビスフエノール類であることが
でき、あるいはヒドロキシ−ビフエニル類、ヒドロキシ
ナフタレン類であることもできる。これらのうち、実用
的にはフエノール類特にフエノールが好適である。The aromatic condensation polymer in the present invention is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. As such an aromatic hydrocarbon compound, so-called phenols such as phenol, cresol and xylenol are preferable, but not limited to these. For example, the following formula Here, x and y are each independently 0, 1 or 2 and may be a methylene-bisphenol represented by the following, or a hydroxy-biphenyl or a hydroxynaphthalene. Of these, phenols are particularly suitable for practical use.
本発明における芳香族系縮合ポリマーとしては、さらに
フエノール性水酸基を有する芳香族炭化水素化合物の1
部をフエノール性水酸基を有さない芳香族炭化水素化合
物例えばキシレン、トルエン等で置換した変性芳香族系
ポリマー例えばフエノールとキシレンとホルムアルデヒ
ドとの縮合物である変性芳香族系ポリマーを用いること
もできる。またアルデヒドとしてはホルムアルデヒドの
みならず、アセトアルデヒド、フルフラールの如きその
他のアルデヒドも使用することができるが、ホルムアル
デヒドが好適である。フエノールホルムアルデヒド縮合
物としては、ノボラツク型又はレゾール型或はそれらの
複合物のいずれであつてもよい。The aromatic condensation polymer in the present invention further includes 1 of aromatic hydrocarbon compounds having a phenolic hydroxyl group.
It is also possible to use a modified aromatic polymer in which a portion is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, such as xylene or toluene, for example, a modified aromatic polymer which is a condensate of phenol, xylene and formaldehyde. As the aldehyde, not only formaldehyde but also other aldehydes such as acetaldehyde and furfural can be used, but formaldehyde is preferred. The phenol-formaldehyde condensate may be a novolak type, a resol type, or a composite thereof.
本発明における不溶不融性基体は、上記の如き芳香族系
縮合ポリマーの熱処理物であつて例えば次のようにして
製造することができる。The insoluble and infusible substrate in the present invention is a heat-treated product of the above aromatic condensation polymer and can be produced, for example, as follows.
フエノール性水酸基を有する芳香族炭化水素化合物又は
フエノール性水酸基を有する芳香族炭化水素化合物とフ
エノール性水酸基を有さない芳香族炭化水素化合物およ
びアルデヒド類の初期縮合物を準備し、この初期縮合物
と無機塩とを含む水溶液を調製し、この水溶液を適当な
型に流し込み、次いで水分の蒸発を抑止しつつ該水溶液
を加熱して該型内で例えば板状、フイルム状あるいは円
筒状等の形態に硬化し且つ変換し、その後この硬化体を
非酸化性雰囲気中で350〜800℃の温度まで加熱し
熱処理し、次いで得られた熱処理体を洗浄して該熱処理
体に含有される無機塩を除去する。Preparing an initial condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group or an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aromatic hydrocarbon compound not having a phenolic hydroxyl group and an aldehyde, and the initial condensation product An aqueous solution containing an inorganic salt is prepared, and the aqueous solution is poured into a suitable mold, and then the aqueous solution is heated while suppressing evaporation of water to form a plate-shaped, film-shaped, or cylindrical shape in the mold. After curing and conversion, the cured product is heated to a temperature of 350 to 800 ° C. in a non-oxidizing atmosphere to be heat-treated, and then the obtained heat-treated product is washed to remove inorganic salts contained in the heat-treated product. To do.
初期縮合物と共に用いる上記無機塩は後の工程で除去さ
れ硬化体に連通孔を付与するために用いられる孔形成剤
であり、例えば塩化亜鉛、リン酸ナトリウム、水酸化カ
リウムあるいは硫化カリウム等である。これらのうち塩
化亜鉛が特に好ましく用いられる。無機塩は、初期縮合
物の例えば2.5〜10重量倍の量で用いることができ
る。下限より少ない量では連通孔を有する多孔体が得難
くまた上限より多い量では最終的に得られる多孔体の機
械的強度が低下する傾向が大きくなり望ましくない。初
期縮合物と無機塩の水溶液は、使用する無機塩の種類に
よつても異なるが例えば無機塩の0.1〜1重量倍の水
を用いて調製することができる。かくして、例えば10
0,000〜100センチポイズの粘度を有する水溶液
は適当な型に流し込まれ、例えば50〜200℃の温度
に加熱される。この加熱の際、水溶液中の水分の蒸発を
抑止するのが肝要である。すなわち、水溶液中において
初期縮合物は加熱を受けて徐々に硬化し、塩化亜鉛、水
と分離しながら3次元網目構造に成長するものと考えら
れる。The above-mentioned inorganic salt used together with the initial condensate is a pore-forming agent which is removed in a later step and is used for imparting communicating pores to the cured body, and examples thereof include zinc chloride, sodium phosphate, potassium hydroxide or potassium sulfide. . Of these, zinc chloride is particularly preferably used. The inorganic salt can be used in an amount of, for example, 2.5 to 10 times the initial condensation product. If the amount is less than the lower limit, it is difficult to obtain a porous body having communicating pores, and if the amount is more than the upper limit, the mechanical strength of the finally obtained porous body tends to decrease, which is not desirable. The aqueous solution of the initial condensate and the inorganic salt varies depending on the type of the inorganic salt used, but can be prepared using, for example, 0.1 to 1 times the weight of water of the inorganic salt. Thus, for example, 10
The aqueous solution having a viscosity of 10,000 to 100 centipoise is poured into a suitable mold and heated to a temperature of 50 to 200 ° C, for example. At the time of this heating, it is important to suppress evaporation of water in the aqueous solution. That is, it is considered that the initial condensate is gradually hardened by being heated in the aqueous solution and grows into a three-dimensional network structure while being separated from zinc chloride and water.
かくして得られた硬化体は、次いで非酸化性雰囲気(真
空状態も含む)中で350〜800℃の温度、好ましく
は350〜700℃の温度、特に好ましくは400〜6
00℃の温度まで加熱され、熱処理される。The cured product thus obtained is then subjected to a temperature of 350 to 800 ° C., preferably 350 to 700 ° C., particularly preferably 400 to 6 in a non-oxidizing atmosphere (including a vacuum state).
It is heated to a temperature of 00 ° C. and heat-treated.
熱処理の際の好ましい昇温速度は、使用する芳香族系縮
合ポリマー、又はその硬化処理の程度あるいはその形状
等によつて多少相違するが、一般に室温から300℃程
度の温度まで比較的大きな昇温速度とすることが可能で
あり例えば100℃/時間の速度とすることも可能であ
る。300℃以上の温度になると、該芳香族系縮合ポリ
マーの熱分解が開始し、水蒸気(H2O)、水素、メタ
ン、一酸化炭素の如きガスが発生し始めるため、充分に
遅い速度で昇温せしめるのが有利である。The preferable heating rate during the heat treatment varies slightly depending on the aromatic condensation polymer used, the degree of the curing treatment or the shape thereof, etc., but generally a relatively large temperature rise from room temperature to about 300 ° C. It is possible to use a speed, for example, a speed of 100 ° C./hour. At a temperature of 300 ° C. or higher, thermal decomposition of the aromatic condensation polymer starts, and gases such as steam (H 2 O), hydrogen, methane, and carbon monoxide start to be generated, so that the temperature rises at a sufficiently slow rate. It is advantageous to heat.
芳香族系縮合ポリマーのかかる加熱、熱処理は、非酸化
性雰囲気下において行なわれる。非酸化性雰囲気は、例
えば窒素、アルゴン、ヘリウム、ネオン、二酸化炭素等
であり、窒素が好ましく用いられる。かかる非酸化性雰
囲気は静止していても流動していてもさしつかえない。Such heating and heat treatment of the aromatic condensation polymer are performed in a non-oxidizing atmosphere. The non-oxidizing atmosphere is, for example, nitrogen, argon, helium, neon, carbon dioxide or the like, and nitrogen is preferably used. The non-oxidizing atmosphere may be stationary or flowing.
得られた熱処理体を水あるいは希塩酸等によつて十分に
洗浄することによつて、熱処理体中に含まれる無機塩を
除去することができ、その後これを乾燥すると連通孔の
発達したしかも比表面積の大きな多孔性硬化縮合体を得
ることができる。By thoroughly washing the obtained heat-treated body with water or dilute hydrochloric acid, the inorganic salts contained in the heat-treated body can be removed, and then, when this is dried, communication holes have developed and a specific surface area is increased. It is possible to obtain a porous cured condensate having a large size.
かくして、上記加熱、熱処理により、水素原子/炭素原
子の原子比(以下、H/C比という)が0.5〜0.0
5、好ましくは0.35〜0.1のポリアセン系骨格構
造を有し、且つ平均孔径10μm以下の連通孔例えば平
均孔径0.03〜10μmの連通孔を持つ不溶不融性基
体が得られる。また、酸素原子/炭素原子の原子比(O
/Cの比)は通常0.06以下、好ましくは0.03以
下である。また、X線回折(CuKα)によれば、メイン
・ピークの位置は2θで表わして20.5〜23.5゜
の間に存在し、また該メイン・ピークの他に41〜46
゜の間にブロードな他のピークが存在する。また、赤外
線吸収スペクトルによれば、D(=D2000 〜 2940/D
1560 〜 1640)の吸光度比は通常0.5以下、好ましくは
0.3以下である。Thus, by the above heating and heat treatment, the atomic ratio of hydrogen atoms / carbon atoms (hereinafter referred to as H / C ratio) is 0.5 to 0.0.
An insoluble and infusible substrate having a polyacene skeleton structure of 5, preferably 0.35 to 0.1 and a communicating hole having an average pore diameter of 10 μm or less, for example, an average pore diameter of 0.03 to 10 μm can be obtained. Further, the atomic ratio of oxygen atom / carbon atom (O
/ C ratio) is usually 0.06 or less, preferably 0.03 or less. According to X-ray diffraction (CuKα), the position of the main peak is in the range of 20.5 to 23.5 ° represented by 2θ, and 41 to 46 in addition to the main peak.
There is another broad peak between °. Moreover, according to the infrared absorption spectrum, D (= D 2000 to 2940 / D
The absorbance ratio of 1560 to 1640 ) is usually 0.5 or less, preferably 0.3 or less.
すなわち、上記不溶不融性基体は、ポリアセン系のベン
ゼンの多環構造がポリアセン系分子間に均一且つ適度に
発達したものであると理解される。That is, it is understood that the insoluble and infusible substrate has a polyacene-based benzene polycyclic structure uniformly and moderately developed among polyacene-based molecules.
H/C比が0.5を越える場合あるいは0.05より小
さい場合には、該基体を後に示す方法に従つて2次電池
の電極として用いたとき充放電の効率が低下し好ましく
ない。又、該ポリアセン系骨格構造を含有する不溶不融
性基体のBET法による比表面積値は塩化亜鉛等の無機
塩を使用して製造しているため極めて大きな値となり、
本発明では600m2/g以上であるものが用いられる。
600m2/g未満の場合には、例えば該基体を電極とし
た2次電池の充電時における、充電電圧を高くする必要
が生じるためエネルギー密度等が低下し、又電解液の劣
化をさそうため好ましくない。When the H / C ratio is more than 0.5 or less than 0.05, the charge / discharge efficiency decreases when the substrate is used as an electrode of a secondary battery according to the method described later, which is not preferable. Further, the specific surface area value of the insoluble and infusible substrate containing the polyacene skeleton structure by the BET method is extremely large because it is manufactured using an inorganic salt such as zinc chloride,
In the present invention, those having a density of 600 m 2 / g or more are used.
When it is less than 600 m 2 / g, for example, when charging a secondary battery using the substrate as an electrode, it is necessary to increase the charging voltage, which lowers the energy density and is likely to prevent deterioration of the electrolytic solution. Absent.
本発明で用いられる上記不溶不融性基体は上記のとおり
平均孔径10μm以下の連通孔を有する多孔体であり、
そして3次元網目構造をとつているため、電解液が該連
通孔を通じて細部まで自由に出入りし易くなつている。The insoluble and infusible substrate used in the present invention is a porous body having communicating pores having an average pore diameter of 10 μm or less as described above,
Further, since it has a three-dimensional mesh structure, the electrolytic solution can easily flow in and out of details through the communication hole.
上記多孔性不溶不融性基体は上記の如く微細な連通孔を
孔径の揃つたすなわち孔径分布のシヤープな状態で有す
る点によつても特徴的である。The above-mentioned porous insoluble and infusible substrate is also characterized in that it has fine communication holes with uniform pore diameters, that is, in a sharp state of pore diameter distribution as described above.
本発明で用いられる不溶不融性基体は、微細な連通孔を
有する多孔体であるため電解液が細部まで浸入し易い構
造を利点を有するとともに、高い比表面積値を有してい
るため、後述するように電解質イオンをスムースに且つ
大量にドーピングできる利点を有する。そのため、内部
抵抗の小さい、高容量の、高エネルギー密度を有する本
発明の2次電池を実現可能とした。The insoluble and infusible substrate used in the present invention is a porous body having fine communication holes, and thus has an advantage that the electrolyte solution easily penetrates into the details, and also has a high specific surface area value. As described above, there is an advantage that the electrolyte ions can be doped smoothly and in a large amount. Therefore, the secondary battery of the present invention having small internal resistance, high capacity, and high energy density can be realized.
また、上記不溶不融性基体の電気伝導度は通常10-11
〜101Ω-1・cm-1である。そして後述するとおり電解
質イオンをドーピングして電極材として利用する場合に
は伝導度を大巾に増大するため、集電性を兼ねた電極材
となる。The electric conductivity of the insoluble and infusible substrate is usually 10 −11.
It is -10 1 Ω -1 cm -1 . Then, as will be described later, in the case of using it as an electrode material by doping with electrolyte ions, the conductivity is greatly increased, so that the electrode material also has a current collecting property.
上記不溶不融性基体は例えば0.2〜0.6g/cm3の
見掛密度を有する。すなわち、比較的気孔率の高いもの
から比較的気孔率の低いものまで使用できる。その機械
的強度は見掛密度に依存するが、例えば0.2g/cm3
の見掛密度を示すものであつても実用上充分な強度を有
している。不溶不融性基体は例えばフイルム、板、繊
維、布、不織布又はそれらの複合体の形態の如き種々の
形態をとることができるため、電極材として用いたとき
小型電池、薄型電池あるいは軽量電池等を可能とする。
本発明で用いられる上記多孔性不溶不融性基体は600
m2/g以上の大きい比表面積値を有するにもかかわら
ず、現実には空気中に長時間放置しても電気伝導度等の
物性に変化はなく、酸化安定性に優れている。また、耐
熱性、耐薬品性に優れているため電極材として用い、電
池を構成する場合電極の劣化の問題が生じない。The insoluble and infusible substrate has an apparent density of 0.2 to 0.6 g / cm 3 , for example. That is, a material having a relatively high porosity to a material having a relatively low porosity can be used. The mechanical strength depends on the apparent density, but is 0.2 g / cm 3
It has a practically sufficient strength even though it has an apparent density of. Since the insoluble and infusible substrate can take various forms such as a film, a plate, a fiber, a cloth, a non-woven fabric or a composite thereof, when used as an electrode material, a small battery, a thin battery or a lightweight battery, etc. Is possible.
The porous insoluble and infusible substrate used in the present invention is 600
Despite having a large specific surface area value of m 2 / g or more, in reality, even if it is left in the air for a long time, the physical properties such as electric conductivity do not change, and it has excellent oxidation stability. Further, since it has excellent heat resistance and chemical resistance, it does not cause the problem of electrode deterioration when used as an electrode material to construct a battery.
本発明の有機電解質電池は上記のとおり上記の多孔性不
溶不融性基体を、正極及び/又は負極とし、電解により
該電極にドーピングされうるイオンを生成しうる化合物
を非プロトン性有機溶媒に溶解した溶液を電解液とする
有機2次電池である。As described above, the organic electrolyte battery of the present invention uses the above-mentioned porous insoluble and infusible substrate as a positive electrode and / or a negative electrode, and dissolves a compound capable of generating ions that can be doped in the electrode by electrolysis in an aprotic organic solvent. This is an organic secondary battery using the prepared solution as an electrolytic solution.
電極にドーピングされうるイオンを生成しうる化合物と
しては、例えばアルカリ金属又はテトラアルキルアンモ
ニウムのハロゲン化物過塩素酸塩、6フツ化リン酸塩、
6フツ化ヒ酸塩、4フツ化ホウ素酸塩等が挙げられる。
具体的にはLiI、NaI、NH4I、LiClO4、L
iAsF6、LiBF4、KPF6、NaPF6、(n−C
4H9)4NClO4、(C2H5)4NClO4、(C2H5)
4NBF4、(n−C4H9)4NBF4、(n−C4H9)4
NAsF6、(n−C4H9)4NPF6あるいはLiHF2
等が挙げられる。Examples of the compound capable of generating ions that can be doped into the electrode include alkali metal or tetraalkylammonium halide perchlorate, hexafluorophosphate,
Examples thereof include hexafluoroarsenate and tetrafluoroboronate.
Specifically, LiI, NaI, NH 4 I, LiClO 4 , L
iAsF 6 , LiBF 4 , KPF 6 , NaPF 6 , (n-C
4 H 9 ) 4 NClO 4 , (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 )
4 NBF 4 , (n-C 4 H 9 ) 4 NBF 4 , (n-C 4 H 9 ) 4
NAsF 6 , (n-C 4 H 9 ) 4 NPF 6 or LiHF 2
Etc.
前記化合物を溶解する溶媒としては非プロトン性有機溶
媒が用いられる。例えばエチレンカーボネート、プロピ
レンカーボネート、γ−ブチロラクトン、ジメチルホル
ムアミド、ジメチルアセトアミド、ジメチルスルホキシ
ド、アセトニトリル、ジメトキシエタン、テトラヒドロ
フラン、塩化メチレンあるいはスルホラン又はこれらの
混合物が挙げられる。これらのうちから電解質として用
いられる前記化合物の溶解性、電池性能等を考慮して選
択される。An aprotic organic solvent is used as a solvent for dissolving the compound. For example, ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, methylene chloride, sulfolane, or a mixture thereof can be used. It is selected from among these in consideration of the solubility of the compound used as the electrolyte, the battery performance, and the like.
電解液中の前記化合物の濃度は、電解液による内部抵抗
を小さくするため少なくとも0.1モル/以上とする
のが望ましく、通常0.2〜1.5モル/とするのが
より好ましい。The concentration of the compound in the electrolytic solution is preferably at least 0.1 mol / more in order to reduce the internal resistance of the electrolytic solution, and more preferably 0.2 to 1.5 mol / usually.
本発明の電池の電池作用は電極として用いる不溶不融性
基体へのドーピング剤の電気化学的ドーピングと電気化
学的アンドーピングを利用するものである。即ちエネル
ギーが不溶不融性基体へのドーピング剤の電気化学的ド
ーピングにより蓄えられるか、或は外部に放出される電
気化学的アンドーピングにより、電気エネルギーとして
外部に取出されるか或は内部に蓄えられる。The battery function of the battery of the present invention utilizes the electrochemical doping and the electrochemical undoping of the doping agent to the insoluble and infusible substrate used as the electrode. That is, the energy is stored by the electrochemical doping of the doping agent into the insoluble and infusible substrate, or it is extracted as the electrical energy or stored internally by the electrochemical undoping released to the outside. To be
本発明に係る電池は2つのタイプに分けられる。第1の
タイプは正極及び負極の両極に多孔性不溶不融性基体を
用いる電池であり、第2のタイプは正極に多孔性不溶不
融性基体を用い負極にアルカリ金属又はアルカリ土類金
属を用いる電極である。アルカリ金属およびアルカリ土
類金属としては、例えばセシウム、ルビジウム、カリウ
ム、ナトリウム、リチウム、バリウム、ストロンチウ
ム、カルシウムがあげられる。これらのうちリチウムが
最も好ましい。これらの金属は単独であるいは合金とし
て用いることもできる。The batteries according to the present invention are divided into two types. The first type is a battery in which a porous insoluble and infusible substrate is used for both the positive electrode and the negative electrode, and the second type is in which a porous insoluble and infusible substrate is used for the positive electrode and an alkali metal or alkaline earth metal is used for the negative electrode. This is the electrode used. Examples of alkali metals and alkaline earth metals include cesium, rubidium, potassium, sodium, lithium, barium, strontium, and calcium. Of these, lithium is most preferred. These metals can be used alone or as an alloy.
電池内に配置される不溶不融性基体からなる電極の形
状、大きさは目的とする電池の種類により任意に選ぶこ
とができるが、電池反応は電極表面上の電気化学的反応
であるため電極は可能な限り表面積を大きくすることが
有利である。又、該基体より電池外部に電流を取出すた
めの集電体としては不溶不融性基体あるいはドーピング
剤でドーピングされた不溶不融性基体を用いることもで
きるが、ドーピング剤及び電解液に対し耐食性のある他
の導電性物質、例えば炭素、白金、ニツケル、ステンレ
ス等を用いることもできる。The shape and size of the electrode made of an insoluble and infusible substrate placed in the battery can be arbitrarily selected according to the type of the intended battery, but the battery reaction is an electrochemical reaction on the surface of the electrode. It is advantageous to have as large a surface area as possible. Further, an insoluble and infusible substrate or an insoluble and infusible substrate doped with a doping agent can be used as a current collector for extracting a current from the substrate to the outside of the battery, but it has corrosion resistance to the doping agent and the electrolytic solution. Other conductive materials such as carbon, platinum, nickel, stainless steel, etc. can also be used.
次に図により本発明の実施態様を説明する。第1図は本
発明に係る電池の基本構成図である。Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a basic configuration diagram of a battery according to the present invention.
まず、本発明に係る電池の第1のタイプ、即ち正極及び
負極の両極に不溶不融性基体を用いる電池について説明
する。第1図において、1は正極であり、フイルム状あ
るいは板状等である不溶不融性基体であり、2は負極で
あり、同様にフイルム状あるいは板状等である不溶不融
性基体である。これらはいずれもドーピング剤でドーピ
ングされていても、されていなくてもよい。電池を組み
立てた後、外部電源より電圧を印加して、ドーピング剤
をドーピングする。例えば両極ともに未ドーピングの不
溶不融性基体を用いた場合、電池の組み立て後の該電池
の起電圧はOVであり、外部電源により電圧を印加し
て、両極にドーピング剤をドーピングすることにより該
電池は熱電力を有するようになる。3,3′は各電極か
ら外部に電流を取り出したり、電気化学的ドーピング、
即ち充電するために電流を供給するための集電体であ
り、前述した方法により各電極及び外部端子7,7′に
電圧降下を生じないように接続されている。4は電解液
であり、非プロトン性有機溶媒に正負両極にドーピング
されうるイオンを生成しうる前述の化合物が溶解されて
いる。電解液は通常液状であるが漏液を防止するためゲ
ル状又は固体状にして用いることもできる。5は正負両
極の接触を阻止すること及び電解液を保持することを目
的として配置されたセパレータである。該セパレータは
電解液或はドーピング剤やアルカリ金属等の電極活物質
に対し耐久性のある連続気孔を有する電子伝導性のない
多孔体であり、通常ガラス繊維、リエチレン或はポリプ
ロピレン等からなる布、不織布或は多孔体が用いられ
る。セパレータの厚さは電池の内部抵抗を小さくするた
め薄い方が好ましいが、電解液の保持量、流通性、強度
等を勘案して決定される。正負正極及びセパレータは電
池ケース6内に実用上問題が生じないように固定され
る。電極の形状、大きさ等は目的とする電池の形状、性
能により適宜決められる。例えば薄形電池を製造するに
は電極はフイルム状が適し、大容量電池を製造するには
フイルム状或は板状等の電極を多数板正負両極を交互に
積層することにより達成できる。First, a first type of battery according to the present invention, that is, a battery using an insoluble and infusible substrate for both the positive electrode and the negative electrode will be described. In FIG. 1, reference numeral 1 is a positive electrode, which is a film-shaped or plate-shaped insoluble infusible substrate, and 2 is a negative electrode, which is also a film-shaped or plate-shaped insoluble infusible substrate. . Each of these may or may not be doped with a doping agent. After assembling the battery, a voltage is applied from an external power source to dope the doping agent. For example, when an undoped insoluble and infusible substrate is used for both electrodes, the electromotive voltage of the battery after assembly of the battery is OV, and a voltage is applied by an external power source to dope the electrodes with a doping agent. The battery will have thermal power. 3 and 3'extract current from each electrode to the outside, electrochemical doping,
That is, it is a current collector for supplying a current for charging, and is connected to each electrode and the external terminals 7, 7'by the method described above so as not to cause a voltage drop. Reference numeral 4 denotes an electrolytic solution, in which an aprotic organic solvent is dissolved with the above-mentioned compound capable of generating ions that can be doped into both positive and negative electrodes. The electrolytic solution is usually liquid, but it may be used in the form of gel or solid to prevent liquid leakage. Reference numeral 5 is a separator arranged for the purpose of preventing contact between the positive and negative electrodes and holding the electrolytic solution. The separator is a porous body having continuous pores that is durable to an electrolytic solution or an electrode active material such as a doping agent or an alkali metal and has no electron conductivity, and is usually a cloth made of glass fiber, polyethylene or polypropylene, A non-woven fabric or a porous body is used. The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but is determined in consideration of the amount of electrolyte retained, flowability, strength, and the like. The positive and negative positive electrodes and the separator are fixed in the battery case 6 so as not to cause any practical problems. The shape and size of the electrode are appropriately determined according to the shape and performance of the target battery. For example, a film-shaped electrode is suitable for manufacturing a thin battery, and a large-capacity battery can be achieved by laminating a large number of film-shaped or plate-shaped electrodes alternately with both positive and negative electrodes.
次に本発明に係る電池の第2のタイプ、即ち正極にポリ
アセン系骨格構造を有する不溶不融性基体を用い、負極
にアルカリ金属又はアルカリ土類金属を用いる場合につ
いて説明する。第1図を借りて説明するとこの第2のタ
イプの電池では、負極2がアルカリ金属又はアルカリ土
類金属となつている点が第1のタイプの電池と異なるだ
けで、他の1、3〜7は第1のタイプの電池の場合と同
じ意味を持つている。Next, the second type of battery according to the present invention, that is, the case where an insoluble and infusible substrate having a polyacene skeleton structure is used for the positive electrode and an alkali metal or an alkaline earth metal is used for the negative electrode will be described. Explaining with reference to FIG. 1, this second type battery is different from the first type battery only in that the negative electrode 2 is made of an alkali metal or an alkaline earth metal. 7 has the same meaning as in the case of the first type battery.
この第2のタイプの電池の場合、ドーピング機構、即ち
電池の動作機構は更に2つの機構に分けられる。第1の
機構では不溶不融性基体に電子受容性ドーピング剤がド
ーピングされるのが充電に相当し、アンドーピングされ
るのが放電に対応する電池である。例えば電極として未
ドーピング不溶不融性基体及びリチウムを電解液として
LiClO41モル/プロピレンカーボネート溶液を用いた
場合電池組み立て後の起電力は2.5〜3.0Vであ
る。次に外部電源により電圧を印加してCl▲O- 4▼イ
オンを不溶不融性基体にドーピングすると、起電力は
3.5〜4.5Vとなる。第2の機構では多孔性不溶不
融性基体に電子供与性ドーピング剤をドーピングするの
が放電に相当し、アンドーピングするのが充電に対応す
る電池である。例えば上記した電池構成では電池組み立
て後の起電圧は2.5〜3.0Vであり、外部に電流を
放出することにより、不溶不融性基体にリチウムイオン
をドーピングすると、起電力は1.0〜2.5Vとなる
が、外部電源により電圧を印加し、リチウムイオンをア
ンドーピングすると再び起電力は2.5〜3.0Vとな
る。In the case of this second type of cell, the doping mechanism, ie the operating mechanism of the cell, is further divided into two mechanisms. In the first mechanism, the insoluble and infusible substrate is doped with the electron-accepting doping agent for charging, and the undoped one is for discharging. For example, as an electrode, an undoped insoluble infusible substrate and lithium as an electrolytic solution
When 1 mol of LiClO 4 / propylene carbonate solution is used, the electromotive force after battery assembly is 2.5 to 3.0V. Then a voltage is applied by the external power supply Cl ▲ O - Doping to 4 ▼ ions insoluble and infusible base, the electromotive force becomes 3.5~4.5V. In the second mechanism, doping the porous insoluble and infusible substrate with the electron-donating doping agent corresponds to discharging, and undoping corresponds to charging. For example, in the above-mentioned battery configuration, the electromotive voltage after battery assembly is 2.5 to 3.0 V, and when the insoluble and infusible substrate is doped with lithium ions by discharging an electric current to the outside, the electromotive force is 1.0. The voltage is up to 2.5 V, but when a voltage is applied by an external power source and lithium ions are undoped, the electromotive force becomes 2.5 to 3.0 V again.
ドーピング又はアンドーピングは一定電流下でも一定電
圧下でも、また電流及び電圧の変化する条件下のいずれ
で行つてもよいが、不溶不融性基体にドーピングされる
ドーピング剤の量は該基体の炭素原子1個に対するドー
ピングされるイオン数の百分率で0.5〜20%が好ま
しい。Doping or undoping may be performed under a constant current or a constant voltage or under conditions of changing current and voltage. However, the amount of the doping agent to be doped into the insoluble and infusible substrate depends on the carbon of the substrate. The percentage of the number of doped ions with respect to one atom is preferably 0.5 to 20%.
多孔性不溶不融性基体を電極として用いる本発明の電池
は充放電を繰返し動作することのできる2次電池であ
り、その起電圧は該電池の構成によつて異なるが第1の
タイプでは1.0〜3.5V、第2のタイプで第1機構
を利用する場合には3.5〜4.5Vであり、又第2の
タイプで第2機構を利用する場合には2.5〜3.0V
である。又本発明の電池は特に重量当りのエネルギー密
度が大きく、適量のドーピングを行えば不溶不融性基体
の重量を基準として、約500WH/kgの値を有してい
る。又パワー密度については電池の構成により、差はあ
るが鉛蓄電池より、はるかに大きなパワー密度を有して
いる。更に本発明における上記多孔性不溶不融性基体を
電極として使用すると、内部抵抗の小さく、繰返し充放
電の可能な、長期にわたつて電池性能の低下しない2次
電池を製造することができる。The battery of the present invention using a porous insoluble and infusible substrate as an electrode is a secondary battery that can be repeatedly charged and discharged, and its electromotive voltage varies depending on the structure of the battery, but is 1 in the first type. 0 to 3.5 V, 3.5 to 4.5 V when the first mechanism is used in the second type, and 2.5 to 4.5 V when the second mechanism is used in the second type. 3.0V
Is. Further, the battery of the present invention has a particularly large energy density per weight, and has a value of about 500 WH / kg based on the weight of the insoluble and infusible substrate when an appropriate amount of doping is performed. Regarding the power density, the power density is much higher than that of the lead storage battery, although there is a difference depending on the structure of the battery. Further, when the above porous insoluble and infusible substrate in the present invention is used as an electrode, it is possible to manufacture a secondary battery having a small internal resistance, capable of repeated charging and discharging, and having no deterioration in battery performance over a long period of time.
本発明法によつて製造される2次電池は、従来公知の有
機半導体に比較して耐酸化性、耐熱性、成形性及び機械
的強度に優れたポリアセン系骨格構造を含有する多孔性
不溶不融性基体を電極とし、該電極に電子供与性又は電
子受容性物質をドーピングしたものを電極活物質とし、
電解により、該電極にドーピングされうるイオンを生成
しうる化合物を非プロトン性有機溶媒に溶解した溶液を
電解液とする電池であり、小型化、薄形化、軽量化が可
能で、且つ極めて高容量、高出力で長寿命の新規な高性
能の2次電池である。以下実施例により本発明を具体的
に説明する。The secondary battery produced by the method of the present invention is a porous insoluble insoluble polymer containing a polyacene skeleton structure which is superior in oxidation resistance, heat resistance, moldability and mechanical strength as compared with conventionally known organic semiconductors. The fusible substrate is used as an electrode, and the electrode is doped with an electron-donating or electron-accepting substance as an electrode active material.
It is a battery that uses a solution in which a compound capable of generating ions that can be doped in the electrode by electrolysis is dissolved in an aprotic organic solvent as an electrolytic solution, and can be miniaturized, thinned, and lightened, and is extremely high. It is a new high-performance secondary battery with high capacity, high output and long life. The present invention will be specifically described below with reference to examples.
なお、本明細書において、連通孔の平均孔径は次のよう
にして測定されまた定義される。In addition, in the present specification, the average pore diameter of the communicating holes is measured and defined as follows.
試料について、例えば1,000〜10,000倍で電
子顕微鏡写真を撮影する。この写真に任意の直線を引
き、その直線と交叉する孔の数をnとすると、平均孔径
()は下記式により算出される。An electron micrograph of the sample is taken at a magnification of 1,000 to 10,000, for example. If an arbitrary straight line is drawn on this photograph and the number of holes intersecting the straight line is n, the average pore diameter () is calculated by the following formula.
ここで、liは直線が交叉する孔で切断される長さであ
り、 はn個の孔についての該切断される長さの和であり、n
は該直線と交叉する孔の数である、但しnは10以上の
値をとるものとする。 Here, li is a length cut by a hole where straight lines intersect, Is the sum of the cut lengths for n holes, and n
Is the number of holes intersecting the straight line, where n is a value of 10 or more.
実施例 1 (1) 水溶性レゾール(約60%濃度)/塩化亜鉛/水
を重量比で10/25/4の割合で混合した水溶液をフ
イルムアプリケーターでガラス板上に成膜した。次に成
膜した水溶液上にガラス板を被せ水分が蒸発しない様に
した後、約100℃の温度で1時間加熱して硬化させ
た。Example 1 (1) An aqueous solution prepared by mixing water-soluble resol (about 60% concentration) / zinc chloride / water at a weight ratio of 10/25/4 was formed on a glass plate with a film applicator. Next, a glass plate was covered on the formed aqueous solution to prevent water from evaporating, and then heated at a temperature of about 100 ° C. for 1 hour to be cured.
該フエノール樹脂フイルムをシリコニツト電気炉中に入
れ窒素気流下で40℃/時間の速度で昇温して、500
℃まで熱処理を行つた。次に該熱処理物を希塩酸で洗つ
た後、水洗し、その後乾燥することによつてフイルム状
の多孔体を得た。該フイルムの厚みは約200μmであ
り、見掛け密度は約0.35g/cm3であり、機械的強
度に優れたフイルムであつた。次に該フイルムの電気伝
導度を室温で直流4端子法で測定したところ10-4(Ω
・cm)-1であつた。また元素分析を行つたところ、水素
原子/炭素原子の原子比は0.27であつた。X線回折
からのピークの形状はポリアセン系骨格構造に基因する
パターンであり、2θで20〜22゜付近にブロードな
メインピークが存在し、また41〜46゜付近に小さな
ピークが確認された。The phenol resin film was placed in a silicon nitride electric furnace and heated at a rate of 40 ° C./hour under a nitrogen stream to obtain 500
Heat treatment was performed up to ℃. Next, the heat-treated product was washed with dilute hydrochloric acid, washed with water, and then dried to obtain a film-shaped porous body. The thickness of the film was about 200 μm, the apparent density was about 0.35 g / cm 3 , and the film was excellent in mechanical strength. Next, the electric conductivity of the film was measured at room temperature by a direct current four-terminal method and found to be 10 −4 (Ω
・ Cm) -1 Further, when an elemental analysis was performed, the atomic ratio of hydrogen atoms / carbon atoms was 0.27. The shape of the peak from X-ray diffraction is a pattern based on the polyacene skeleton structure, and a broad main peak was present at around 20 to 22 ° at 2θ, and a small peak was confirmed at around 41 to 46 °.
またBET法による比表面積値の測定を行つたところ2
100m2/gと極めて大きな値であつた。Moreover, when the specific surface area value was measured by the BET method, 2
It was a very large value of 100 m 2 / g.
次に該フイルム状半導体の気孔状態を観察するため、フ
イルム断面の電子顕微鏡写真をとつた。第2図に示す。
第2図から明らかなように3次元網目状構造で10μm
以下の微細な連通気孔を有する多孔体であつた。Next, in order to observe the pore state of the film-shaped semiconductor, an electron micrograph of the film cross section was taken. It is shown in FIG.
As is clear from FIG. 2, the three-dimensional mesh structure is 10 μm.
It was a porous body having the following fine ventilation holes.
(2) 次に充分に脱水したプロピレンカーボネートにL
iClO4を溶解させた1.0モル/の溶液を電解液
としリチウム金属を負極とし、上記した多孔性フイルム
基体を正極とした電池を第1図の様に組んだ。集電体と
してはステンレスメツシユを用い、セパレーターとして
はガラス繊維からなるフエルトを用いた。(2) Next, add L to thoroughly dehydrated propylene carbonate.
A battery was assembled as shown in FIG. 1 in which a 1.0 mol / solution of iClO 4 was used as an electrolytic solution, lithium metal was used as a negative electrode, and the above-mentioned porous film substrate was used as a positive electrode. A stainless mesh was used as the current collector, and a felt made of glass fiber was used as the separator.
ドーピング量は多孔性フイルム基体の炭素原子1個当り
のドーピングされるイオンの数で表わすこととしたが、
本発明ではドーピングされるイオンの数は回路を流れた
電流値より求めたものである。The doping amount is represented by the number of doped ions per carbon atom of the porous film substrate.
In the present invention, the number of ions to be doped is obtained from the current value flowing through the circuit.
次に該電池に外部より電圧を印加して、1時間当りのド
ーピング量が1%となるような電流密度でCl▲O- 4▼
イオンを多孔性不溶不融性フイルム基体に約5時間ドー
ピングし、充電した。次に同じ電流密度で放電し、電池
電圧が2.5Vになるまで続けた。Then by applying a voltage from the outside to the battery, the doping amount per hour of 1% and becomes such a current density in Cl ▲ O - 4 ▼
The porous insoluble and infusible film substrate was doped with ions for about 5 hours and charged. Then, the battery was discharged at the same current density and continued until the battery voltage reached 2.5V.
次に上記したのと同じ電流密度で所定量のドーピングを
行い、充電した後同速度で放電し、電圧を2.5Vに戻
した。これらの結果を第3図に示す。8%ドーピングし
た場合、起電圧は約4.5Vで充放電の効率(放電量/
充電量)約80%であり、約150mAH/gの高容量
であつた。ただし、重量基準としては半導体重量を採つ
た。またエネルギー密度は同じ重量基準で計算すると約
500WH/kgとなつた。またこれらのテスト時の電池
の内部抵抗は電極面積が約2cm2と小さいにもかかわら
ず、約20Ωと良好な値であつた。Next, a predetermined amount of doping was performed at the same current density as described above, and after charging, discharging was performed at the same rate, and the voltage was returned to 2.5V. These results are shown in FIG. When 8% is doped, the electromotive voltage is about 4.5 V and the charging / discharging efficiency (discharge amount /
The amount of charge was about 80% and the capacity was about 150 mAH / g. However, the semiconductor weight was taken as the weight standard. The energy density was calculated to be about 500 WH / kg on the basis of the same weight. Further, the internal resistance of the battery during these tests was a good value of about 20Ω even though the electrode area was as small as about 2 cm 2 .
実施例 2〜4 (1)実施例1と同様にして得た約200μ厚のフエノー
ル樹脂フイルムをシリコニツト電気炉にて窒素気流下約
30℃/時間の速度で昇温して第1表に示した種々の所
定温度まで加熱し、熱処理を行つた。その後希塩酸及び
水にて洗浄し、乾燥することによつて多孔性不溶不融性
基体フイルムを得た。得られた多孔性基体フイルムにつ
いて元素分析及びBET法による比表面積値の測定を行
つた。結果はまとめて第1表に示す。Examples 2 to 4 (1) A phenol resin film having a thickness of about 200 μm obtained in the same manner as in Example 1 was heated in a nitrogen electric current furnace at a rate of about 30 ° C./hour in a silicon electric furnace and shown in Table 1. Heat treatment was performed by heating to various predetermined temperatures. Thereafter, the film was washed with dilute hydrochloric acid and water, and dried to obtain a porous insoluble and infusible substrate film. The obtained porous substrate film was subjected to elemental analysis and specific surface area measurement by the BET method. The results are summarized in Table 1.
(2) 次に充分に脱水したプロピレンカーボネートにL
iBF4を溶解させて約1.0モル/の溶液とした。
そしてリチウム金属を陰極として上記した溶液を電解液
とし、多孔性基体フイルムを陽極として電池を組んだ。(2) Next, add L to thoroughly dehydrated propylene carbonate.
iBF 4 was dissolved to give a solution of about 1.0 mol / mol.
Then, a battery was assembled using lithium metal as a cathode, the above solution as an electrolytic solution, and a porous substrate film as an anode.
次に外部電源にて電圧を印加し1時間当りのドーピング
量が1%となる電流密度で6時間充電した。その時の電
圧を第1表に示す。その後、同じ電流密度で放電し、電
圧が電池を組んだ直後の電圧に等しくなるまで続けた。
充電量に対する放電量の割合を電荷効率として第1表に
示す。Next, a voltage was applied from an external power source and charging was performed for 6 hours at a current density at which the doping amount per hour was 1%. The voltage at that time is shown in Table 1. Then, the battery was discharged at the same current density and continued until the voltage became equal to the voltage immediately after the battery was assembled.
The ratio of the discharged amount to the charged amount is shown in Table 1 as the charge efficiency.
実施例 5 (1) 実施例1と同様にして得た約200μm厚のフエ
ノール樹脂フイルムを水洗し、内部に含まれている塩化
亜鉛の一部を除いた。その後、シリコツト電気炉中に入
れ実施例1と同じパターンで熱処理を行い次に洗浄、乾
燥した。 Example 5 (1) A phenol resin film having a thickness of about 200 μm obtained in the same manner as in Example 1 was washed with water to remove a part of zinc chloride contained therein. Then, it was put in a silicon electric furnace, heat-treated in the same pattern as in Example 1, then washed and dried.
該多孔状試料の見掛け密度は約0.40g/cm3であ
り、機械的強度に優れたフイルムであり、電気伝導度は
10-6(Ω・cm)-1であつた。また元素分析を行つたと
ころ水素原子/炭素原子の原子比は0.32でありBE
T法による比表面積値は800m2/gであつた。The apparent density of the porous sample was about 0.40 g / cm 3 , the film was excellent in mechanical strength, and the electric conductivity was 10 −6 (Ω · cm) −1 . In addition, elemental analysis showed that the atomic ratio of hydrogen atoms / carbon atoms was 0.32.
The specific surface area value by the T method was 800 m 2 / g.
(2) 次に該多孔性基体を使つて実施例1と同様な電池
を組んだ。この時点で該電池は2.8Vの電圧を有して
いた。次に1時間当りのドーピング量を1%とする速度
で6時間充電した。起電圧は4.3Vであつた。次に同
じ速度で放電して2.8Vになるまで続けた。約5時間
の放電が可能であつた。(2) Next, a battery similar to that of Example 1 was assembled using the porous substrate. At this point the cell had a voltage of 2.8V. Next, the battery was charged for 6 hours at a rate that the doping amount per hour was 1%. The electromotive voltage was 4.3V. Then discharge at the same rate and continue until 2.8V. It was possible to discharge for about 5 hours.
実施例 6 この実施例6は本発明における第1タイプの電池、即ち
正極及び負極に本発明の多孔性不溶不融性基体を用いる
2次電池に関する。Example 6 Example 6 relates to a battery of the first type of the present invention, that is, a secondary battery using the porous insoluble and infusible substrate of the present invention for the positive electrode and the negative electrode.
正極及び負極に実施例1で用いたと同じ多孔性基体を使
用し、電解液として(C2H5)4NClO4の1モル/プロピ
レンカーボネート溶解を使用して電池を構成し、充放電
テストを行つた。電池を組んだ直後の電圧は0Vであつ
た。次に外部電源により2.5Vの電圧を印加して約1
時間正極にCl▲O- 4▼イオン、負極に(C2H5)4N+イ
オンをドーピングした。電池の起電圧は当然のことなが
ら2.5Vであつた。次に1時間当りのアンドーピング
量が3%となる速度で放電したところ、約1時間で電池
の電圧は0に戻つた。The same porous substrate as used in Example 1 was used for the positive electrode and the negative electrode, and a battery was constructed using 1 mol of (C 2 H 5 ) 4 NClO 4 dissolved in propylene carbonate as an electrolyte, and a charge-discharge test was conducted. I went. The voltage immediately after the battery was assembled was 0V. Next, apply a voltage of 2.5 V from an external power source to about 1
Time to the positive electrode Cl ▲ O - 4 ▼ doped ions, the negative electrode (C 2 H 5) 4 N + ions. The electromotive voltage of the battery was 2.5 V as a matter of course. Next, when the battery was discharged at a rate at which the amount of undoping per hour was 3%, the voltage of the battery returned to 0 in about 1 hour.
次に上記の様な充放電テストを続け、約1000回の繰返し
耐久試験を行つた。電池性能の劣化は認められなかつ
た。Next, the charge / discharge test as described above was continued, and a repeated durability test was performed about 1000 times. No deterioration in battery performance was observed.
第1図は本発明に係る電池の基本構成を示すものであ
り、1正極、2は負極、3,3′は集電体、4は電解
液、5はセパレーター、6は電池ケース、7,7′は外
部端子を表わす。 第2図は本発明において用いられる多孔性不溶不融性基
体フイルムの断面の粒子構造(多孔質構造)の電顕写真
の一例である。写真中、右下に示す棒線の長さは5μで
ある。 第3図は本発明の有機電解質電池の充放電曲線の一例で
ある。縦軸は電池の開路電圧、横軸はドーピング量を表
わす。白丸は充電に相当し黒丸は放電に相当する。は
2%ドーピングの後の放電曲線であり、は4%ドーピ
ングの後の放電曲線、は6%ドーピングの後の放電曲
線、は8%ドーピングの後の放電曲線を表わす。FIG. 1 shows the basic structure of a battery according to the present invention, in which 1 positive electrode, 2 negative electrode, 3 and 3'collector, 4 electrolytic solution, 5 separator, 6 battery case, 7, 7'denotes an external terminal. FIG. 2 is an example of an electron micrograph of the particle structure (porous structure) of the cross section of the porous insoluble and infusible substrate film used in the present invention. In the photograph, the length of the bar line shown in the lower right is 5μ. FIG. 3 is an example of a charge / discharge curve of the organic electrolyte battery of the present invention. The vertical axis represents the open circuit voltage of the battery, and the horizontal axis represents the doping amount. White circles correspond to charging and black circles correspond to discharging. Is the discharge curve after 2% doping, is the discharge curve after 4% doping, is the discharge curve after 6% doping and is the discharge curve after 8% doping.
フロントページの続き (56)参考文献 特開 昭58−209864(JP,A) 特開 昭59−157974(JP,A) 特開 昭60−5011(JP,A) 特開 昭58−35881(JP,A)Continuation of the front page (56) Reference JP-A-58-209864 (JP, A) JP-A-59-157974 (JP, A) JP-A-60-5011 (JP, A) JP-A-58-35881 (JP , A)
Claims (13)
炭化水素化合物とアルデヒド類との縮合物である芳香族
系縮合ポリマーの熱処理物であつて、 (a) 水素原子/炭素原子の原子比が0.5〜0.05
であるポリアセン系骨格構造を有し、 (b) BET法による比表面積値が少くとも600m2/
gであり、そして (c) 平均孔径10μm以下の連通孔を持つ、 不溶不融性基体を、正極および/または負極とし、 (B) 電解により該電極にドーピングされうるイオンを
生成しうる化合物を、非プロトン性有機溶媒に溶解した
溶液を、電解液とする、 ことを特徴とする有機電解質電池。1. A heat-treated product of (A) an aromatic condensation polymer, which is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, and (a) an atomic ratio of hydrogen atom / carbon atom. Is 0.5 to 0.05
And (b) the specific surface area by BET method is at least 600 m 2 /
g, and (c) an insoluble and infusible substrate having communicating pores having an average pore diameter of 10 μm or less is used as a positive electrode and / or a negative electrode, and (B) a compound capable of generating ions that can be doped into the electrode by electrolysis. An organic electrolyte battery characterized in that a solution dissolved in an aprotic organic solvent is used as an electrolytic solution.
ムアルデヒドとの縮合物である特許請求の範囲第1項に
記載の有機電解質電池。2. The organic electrolyte battery according to claim 1, wherein the aromatic condensation polymer is a condensation product of phenol and formaldehyde.
子比が0.35〜0.1である特許請求の範囲第1項に
記載の有機電解質電池。3. The organic electrolyte battery according to claim 1, wherein the atomic ratio of hydrogen atoms / carbon atoms of the insoluble and infusible substrate is 0.35 to 0.1.
値が800〜3000m2/gである特許請求の範囲第1
項に記載の有機電解質電池。4. The specific surface area value of the insoluble and infusible substrate by the BET method is 800 to 3000 m 2 / g.
The organic electrolyte battery according to item.
μmの多数の連通孔を持つ特許請求の範囲第1項に記載
の有機電解質電池。5. The insoluble and infusible substrate has an average pore size of 0.03 to 10
The organic electrolyte battery according to claim 1, which has a large number of communication holes of μm.
子(C)の原子比が0.06以下であるポリアセン系骨
格構造を有する、特許請求の範囲第1項に記載の有機電
解質電池。6. The organic substance according to claim 1, wherein the insoluble and infusible substrate has a polyacene skeleton structure in which an atomic ratio of oxygen atom (O) / carbon atom (C) is 0.06 or less. Electrolyte battery.
次元網目構造を示す特許請求の範囲第1項に記載の有機
電解質電池。7. An insoluble and infusible substrate is formed through a large number of communicating holes.
The organic electrolyte battery according to claim 1, which has a three-dimensional network structure.
カリ金属又はアルカリ土類金属が負極である特許請求の
範囲第1項に記載の有機電解質電池。8. The organic electrolyte battery according to claim 1, wherein the insoluble and infusible substrate is a positive electrode, and the alkali metal or alkaline earth metal is a negative electrode.
がリチウム又はリチウム合金である特許請求の範囲第8
項に記載の有機電解質電池。9. The method according to claim 8, wherein the negative electrode is an alkali metal and the alkali metal is lithium or a lithium alloy.
The organic electrolyte battery according to item.
特許請求の範囲第1項に記載の有機電解質電池。10. The organic electrolyte battery according to claim 1, wherein the insoluble and infusible substrate serves as a positive electrode and a negative electrode.
化合物がLiI、NaI、NH4I、LiClO4、Li
AsF6、LiBF4、KPF6、NaPF6、(C2H5)4
NClO4、(n−C4H9)4NClO4、(C2H5)4N
BF4、(n−C4H9)4NBF4、(n−C4H9)4NA
sF6、(n−C4H9)4PF6又はLiHF2である特許
請求の範囲第1項に記載の有機電解質電池。11. A compound capable of forming an ion that can be doped is LiI, NaI, NH 4 I, LiClO 4 , Li.
AsF 6, LiBF 4, KPF 6 , NaPF 6, (C 2 H 5) 4
NClO 4 , (n-C 4 H 9 ) 4 NClO 4 , (C 2 H 5 ) 4 N
BF 4 , (n-C 4 H 9 ) 4 NBF 4 , (n-C 4 H 9 ) 4 NA
sF 6, (n-C 4 H 9) 4 PF 6 or organic electrolyte cell according to paragraph 1 claims a LiHF 2.
ネート、プロピレンカーボネート、γ−ブチロラクト
ン、ジメチルホルムアミド、ジメチルアセトアミド、ジ
メチルスルホキシド、アセトニトリル、ジメトキシエタ
ン、テトラヒドロフラン、塩化メチレン又はスルホラン
である特許請求の範囲第1項に記載の有機電解質電池。12. The aprotic organic solvent is ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, methylene chloride or sulfolane. The organic electrolyte battery described in 1.
布、不織布又はそれらの複合体の形態にある特許請求の
範囲第1項に記載の有機電解質電池。13. An insoluble and infusible substrate is a film, a plate, a fiber,
The organic electrolyte battery according to claim 1, which is in the form of a cloth, a nonwoven fabric, or a composite thereof.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60058604A JPH0630260B2 (en) | 1985-03-25 | 1985-03-25 | Organic electrolyte battery |
US06/842,335 US4753717A (en) | 1985-03-25 | 1986-03-21 | Porous article having open pores prepared from aromatic condensation polymer and use thereof |
DE3650725T DE3650725T2 (en) | 1985-03-25 | 1986-03-25 | Porous activated carbon made from aromatic condensation polymers and their application in electrodes for electrochemical cells |
DE86104063T DE3689239T2 (en) | 1985-03-25 | 1986-03-25 | Porous article made of aromatic condensation polymers with open pores and its application. |
EP86104063A EP0196055B1 (en) | 1985-03-25 | 1986-03-25 | Porous article having open pores prepared from aromatic condensation polymer and use thereof |
EP92100194A EP0480909B1 (en) | 1985-03-25 | 1986-03-25 | Porous active carbon prepared from aromatic condensation polymer and use thereof in electrodes for electrochemical cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60058604A JPH0630260B2 (en) | 1985-03-25 | 1985-03-25 | Organic electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61218060A JPS61218060A (en) | 1986-09-27 |
JPH0630260B2 true JPH0630260B2 (en) | 1994-04-20 |
Family
ID=13089119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60058604A Expired - Lifetime JPH0630260B2 (en) | 1985-03-25 | 1985-03-25 | Organic electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0630260B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2534490B2 (en) * | 1987-03-06 | 1996-09-18 | 鐘紡株式会社 | Organic electrolyte battery |
JP2588404B2 (en) * | 1987-05-29 | 1997-03-05 | 鐘紡株式会社 | Organic electrolyte battery |
JPS63298982A (en) * | 1987-05-29 | 1988-12-06 | Kanebo Ltd | Organic electrolyte battery using tetrahydrofuran |
CA2197858A1 (en) * | 1995-06-20 | 1997-01-09 | Takushi Ohsaki | Carbon for lithium secondary battery, process for the production thereof, lithium secondary battery, and process for the production thereof |
AU1271602A (en) | 2000-11-17 | 2002-05-27 | Kansai Res Inst Inc | Nonaqueous lithium secondary cell |
US8252716B2 (en) * | 2008-11-04 | 2012-08-28 | Corning Incorporated | Process for making porous activated carbon |
CN111370783B (en) * | 2020-04-08 | 2021-04-20 | 大连理工大学 | A kind of high-performance aqueous chloride ion battery and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58209864A (en) * | 1982-05-31 | 1983-12-06 | Kanebo Ltd | Organic electrolyte battery |
JPH0793148B2 (en) * | 1983-02-24 | 1995-10-09 | 花王株式会社 | Secondary battery |
JPS605011A (en) * | 1983-06-20 | 1985-01-11 | Kanebo Ltd | Preparation of porous material of carbon having high strength |
-
1985
- 1985-03-25 JP JP60058604A patent/JPH0630260B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61218060A (en) | 1986-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4753717A (en) | Porous article having open pores prepared from aromatic condensation polymer and use thereof | |
JPH046072B2 (en) | ||
JPH0324024B2 (en) | ||
JP2532878B2 (en) | Organic electrolyte battery with activated carbon metal oxide composite as positive electrode | |
JPH0630260B2 (en) | Organic electrolyte battery | |
JP2562601B2 (en) | Organic electrolyte battery with activated carbon-aniline composite as positive electrode | |
JP2614725B2 (en) | Organic electrolyte battery with activated carbon metal sulfide composite as cathode | |
JP2534490B2 (en) | Organic electrolyte battery | |
JP2519454B2 (en) | Organic electrolyte battery using nitrogen-containing substrate as electrode | |
JP2519180B2 (en) | Organic electrolyte battery | |
JPS61225761A (en) | Organic electrolyte battery | |
JP2524184B2 (en) | Organic electrolyte battery containing composite electrodes | |
JP2515547B2 (en) | Organic electrolyte battery using aniline composite as positive electrode | |
JP2588404B2 (en) | Organic electrolyte battery | |
JPH0624160B2 (en) | Organic electrolyte battery | |
JPH0624159B2 (en) | Organic electrolyte battery | |
JP2522662B2 (en) | Organic electrolyte battery with polythiophene as positive electrode | |
JPH0658799B2 (en) | Battery electrode manufacturing method | |
JP2616774B2 (en) | Organic electrolyte battery using metal oxide composite as positive electrode | |
JP2614724B2 (en) | Organic electrolyte battery with metal sulfide composite as positive electrode | |
JPH0624158B2 (en) | Organic electrolyte battery | |
JPH0624157B2 (en) | Organic electrolyte battery | |
JPS6177275A (en) | Organic electrolyte battery | |
JP2532879B2 (en) | Method for manufacturing electrode for organic electrolyte battery | |
JP2919848B2 (en) | Organic electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S202 | Request for registration of non-exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R315201 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |