[go: up one dir, main page]

JPH0630247B2 - Method for manufacturing non-aqueous solvent secondary battery - Google Patents

Method for manufacturing non-aqueous solvent secondary battery

Info

Publication number
JPH0630247B2
JPH0630247B2 JP61126647A JP12664786A JPH0630247B2 JP H0630247 B2 JPH0630247 B2 JP H0630247B2 JP 61126647 A JP61126647 A JP 61126647A JP 12664786 A JP12664786 A JP 12664786A JP H0630247 B2 JPH0630247 B2 JP H0630247B2
Authority
JP
Japan
Prior art keywords
aqueous solvent
secondary battery
lithium
solvent secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61126647A
Other languages
Japanese (ja)
Other versions
JPS62283571A (en
Inventor
克治 池田
圀昭 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP61126647A priority Critical patent/JPH0630247B2/en
Publication of JPS62283571A publication Critical patent/JPS62283571A/en
Publication of JPH0630247B2 publication Critical patent/JPH0630247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は負極の製造方法を改良した非水溶媒二次電池の
製造方法に関する。
The present invention relates to a method for manufacturing a non-aqueous solvent secondary battery, which is an improved method for manufacturing a negative electrode.

[従来の技術] 近年、リチウムを負極活物質として用いる非水溶媒二次
電池は高いエネルギーを有するものとして注目されてい
る。かかる非水溶媒二次電池としては、従来より正極活
物質としてリチウムと層間化合物を形成するTiS
等の遷移金属カルコゲン化合物を用いたものが
製品化されている。
[Prior Art] In recent years, non-aqueous solvent secondary batteries using lithium as a negative electrode active material have been attracting attention as having high energy. As such a non-aqueous solvent secondary battery, TiS 2 , which forms an intercalation compound with lithium as a positive electrode active material,
Those using a transition metal chalcogen compound such as V 2 O 5 have been commercialized.

[発明が解決しようとする問題点] しかしながら、上述した非水溶媒二次電池では負極にリ
チウム金属を用いているため、放電時にイオンとなって
溶出したリチウムが充電時に金属リチウムとして負極に
電析する際、デンドライトが形成され、その高活性さに
より非水溶媒電解液の分解を誘発し、充放電サイクルを
低下させる。また、デンドライトが更に成長し、セパレ
ータを通過して正極に達すると、正極、負極を短絡さ
せ、著しい容量低下を招く問題があった。
[Problems to be Solved by the Invention] However, in the above-mentioned non-aqueous solvent secondary battery, since lithium metal is used for the negative electrode, lithium that has been eluted as ions during discharge is deposited on the negative electrode as metallic lithium during charging. In doing so, dendrites are formed, and their high activity induces the decomposition of the non-aqueous solvent electrolyte, which reduces the charge / discharge cycle. Further, when the dendrite further grows and passes through the separator and reaches the positive electrode, there is a problem that the positive electrode and the negative electrode are short-circuited, resulting in a remarkable decrease in capacity.

本発明は、上記従来の問題点を解決するためになされた
もので、容量劣化を著しく抑制できると共に特に重負荷
における充放電サイクル寿命を向上した非水溶媒二次電
池の製造方法を提供しようとするものである。
The present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to provide a method for manufacturing a non-aqueous solvent secondary battery that can significantly suppress capacity deterioration and that has improved charge / discharge cycle life particularly under heavy load. To do.

[問題点を解決するための手段] 本発明は、遷移金属カルコゲン化合物を主構成材とする
正極と、前記正極にセパレータを介して対向配置され、
リチウムを含浸した有機物焼成体からなる負極とを具備
した非水溶媒二次電池の製造方法において、有機物焼成
体をカソード、金属リチウムをアノードとし、これらを
リチウムを含む電解液中に浸漬して逐次電流密度を上げ
ながら電解処理を行うことによりリチウムが前記セパレ
ータ側ほど濃度が高くなるように含浸された負極を作製
する工程を具備したことを特徴とする非水溶媒二次電池
の製造方法である。
[Means for Solving Problems] In the present invention, a positive electrode containing a transition metal chalcogen compound as a main constituent material and a positive electrode that are opposed to the positive electrode via a separator,
In a method for producing a non-aqueous solvent secondary battery comprising a negative electrode made of an organic fired body impregnated with lithium, the organic fired body is used as a cathode and metallic lithium is used as an anode, and these are successively immersed in an electrolyte solution containing lithium. A method for producing a non-aqueous solvent secondary battery, comprising a step of producing a negative electrode in which lithium is impregnated so that the concentration becomes higher toward the separator side by performing electrolytic treatment while increasing current density. .

上記遷移金属カルコゲン化合物としては、例えばバナジ
ウム酸化物、モリブデン酸化物あるいはバナジウム酸化
物とタングステン酸化物との固溶体等を挙げることがで
きる。
Examples of the transition metal chalcogen compound include vanadium oxide, molybdenum oxide, and solid solutions of vanadium oxide and tungsten oxide.

上記有機物焼成体は、例えばエポキシ樹脂、フェノール
樹脂、アクリル樹脂、ハロゲン化ビニル樹脂、ポリイミ
ド、ポリアミド等の合成樹脂を非酸化性雰囲気下で所定
温度にて炭素化することにより得られるものである。な
お、本発明の方法により製造された非水溶媒二次電池は
上記遷移金属カルコゲン化合物にカーボンブラック、ア
セチレンブラック等の導電剤粉末及びポリテトラフルオ
ロエチレン等の結着剤粉末を混合し、所望の形状に成形
し、これをニッケル、ステンレス等の導電材からなる網
体、エキスパンドに圧着して正極とし、この正極に前記
有機物焼成体をセパレータを介して対向配置し、更に非
水溶媒電解液と組合わせることによって構成される。電
解液としては、LiClO、LiPF、LiB
、LiCl、LiA等のリチウム塩、その他
一般にLi系電池において使用される既知の電解質と、
プロピレンカーボネート、1,2−ジメトキシエタン、
γ−ブチロラクトン、ジオキソラン、エチレンカーボネ
ート、2−メチルテトラヒドロフラン等の非プロトン性
有機溶媒との混合物が使用される。
The organic material fired body is obtained by carbonizing a synthetic resin such as an epoxy resin, a phenol resin, an acrylic resin, a vinyl halide resin, a polyimide or a polyamide at a predetermined temperature in a non-oxidizing atmosphere. Incidentally, the non-aqueous solvent secondary battery produced by the method of the present invention, the transition metal chalcogen compound is mixed with a conductive agent powder such as carbon black and acetylene black and a binder powder such as polytetrafluoroethylene, the desired mixture. Shaped into a shape, nickel, a net made of a conductive material such as stainless steel, and pressure-bonded to the expand to a positive electrode, the organic material fired body is placed opposite to this positive electrode via a separator, and further a non-aqueous solvent electrolyte Composed by combining. As the electrolytic solution, LiClO 4 , LiPF 6 , LiB
Lithium salts such as F 4 , LiCl, and LiA S F 6 , and other known electrolytes generally used in Li-based batteries,
Propylene carbonate, 1,2-dimethoxyethane,
Mixtures with aprotic organic solvents such as γ-butyrolactone, dioxolane, ethylene carbonate, 2-methyltetrahydrofuran are used.

[作用] 本発明によれば、合成樹脂を炭素化した有機物焼成体を
カソード、金属リチウムをアノードとし、これらをリチ
ウムを含む電解液中に浸漬して逐次電流密度を上げなが
ら電解処理を行うことによりリチウムがセパレータ側ほ
ど濃度が高くなるように含浸された負極を作製すると、
前記有機物焼成体の表面に残留させることなく、その空
隙全てにリチウムを効率良く含浸させることができる。
従って、前記負極を組込んだ二次電池は、デンドライト
の形成を防止することができるため、放電容量を向上で
き、かつ内部短絡が生じるのを防止することができる。
このため、重負荷における充放電サイクル寿命を向上す
ることができる。
[Operation] According to the present invention, an organic fired body obtained by carbonizing a synthetic resin is used as a cathode and metallic lithium is used as an anode, and these are immersed in an electrolytic solution containing lithium to perform electrolytic treatment while successively increasing the current density. When a negative electrode in which lithium is impregnated so that the concentration becomes higher on the separator side is produced,
It is possible to efficiently impregnate all the voids with lithium without leaving the surface on the surface of the organic material fired body.
Therefore, since the secondary battery incorporating the negative electrode can prevent the formation of dendrites, the discharge capacity can be improved and the internal short circuit can be prevented.
Therefore, the charge / discharge cycle life under heavy load can be improved.

[発明の実施例] 以下、本発明の製造方法をボタン型非水溶媒二次電池に
適用した例について第1図を参照して詳細に説明する。
[Examples of the Invention] Hereinafter, an example in which the manufacturing method of the present invention is applied to a button type non-aqueous solvent secondary battery will be described in detail with reference to FIG.

実施例 第1図中の1は、ステンレス製正極容器であり、この容
器1底面にはステンレス網よりなる正極集電体2がスポ
ット溶接されている。この正極集電体2には、V
+5モル%WOからなる固溶体を主成分とする正極活
物質とアセチレンブラックとポリテトロフルオロエチレ
ンとが重量比で70:25:5の正極合剤3が圧着され
ている。この正極合剤3上には、多孔質ポリプロピレン
製薄膜からなるセパレータ4及び後述する方法に作製さ
れたリチウムを該セパレータ4側ほど濃度を高くした有
機物焼成体からなる負極5が載置されている。そして、
前記容器1の開口部にパッキング6を介してステンレス
製負極容器7を設けることにより、前記各容器1、7内
に前記正極合剤3、セパレータ4及び負極5を密閉して
いる。前記容器1、7内には、プロピレンカーボネート
にLiClOを1モル/lの濃度で溶解した電解液が
収容されている。
Example 1 in FIG. 1 is a positive electrode container made of stainless steel, and a positive electrode current collector 2 made of stainless steel net is spot-welded to the bottom surface of the container 1. The positive electrode current collector 2 contains V 2 O 5
A positive electrode mixture 3 in which the positive electrode active material containing a solid solution of +5 mol% WO 3 as a main component, acetylene black, and polytetrofluoroethylene in a weight ratio of 70: 25: 5 is pressure-bonded. On this positive electrode mixture 3, a separator 4 made of a thin film made of porous polypropylene and a negative electrode 5 made of an organic material fired body in which the concentration of lithium produced by the method described later is increased toward the separator 4 side are placed. . And
By providing a stainless steel negative electrode container 7 in the opening of the container 1 via a packing 6, the positive electrode mixture 3, the separator 4 and the negative electrode 5 are sealed in the respective containers 1 and 7. An electrolytic solution in which LiClO 4 is dissolved in propylene carbonate at a concentration of 1 mol / l is contained in the containers 1 and 7.

前記負極5は、次のような方法により製造した。The negative electrode 5 was manufactured by the following method.

まず、フェノール樹脂をN雰囲気中、1100℃で数
時間炭素化して有機物焼成体とし、この焼成体を加圧成
形して直径9mm、厚さ0.5mmの成形体とした後、この
成形体をカソード、金属リチウムをアノードとし、これ
らを互いに対向してプロピレンカーボネートにLiCl
を1モル/lの濃度で溶解した電解溶液に浸漬し
た。つづいて、前記カソード、アノード間に電流密度を
0.5mA/cm2→1.0mA/cm2→2.0mA/cm2
の順で各々8時間通電してアノードと対向する有機物焼
成体の表面ほどリチウム濃度の高い有機物焼成体を作製
した。なお、かかる電解においてアノードと対向する有
機物焼成体の表面が前記セパレータ側に配置される。
First, a phenol resin is carbonized in an N 2 atmosphere at 1100 ° C. for several hours to form an organic fired body, and the fired body is pressure-molded into a molded body having a diameter of 9 mm and a thickness of 0.5 mm. As a cathode and metallic lithium as an anode.
It was immersed in an electrolytic solution in which O 4 was dissolved at a concentration of 1 mol / l. Subsequently, the current density between the cathode and the anode is 0.5 mA / cm 2 → 1.0 mA / cm 2 → 2.0 mA / cm 2
In this order, the electricity was applied for 8 hours each to produce an organic material fired body having a higher lithium concentration on the surface of the organic material fired body facing the anode. In this electrolysis, the surface of the fired organic material facing the anode is arranged on the separator side.

比較例 負極として、金属リチウムシートを用いた以外、実施例
と同様な構造のボタン型非水溶媒二次電池を組立てた。
Comparative Example A button type non-aqueous solvent secondary battery having the same structure as that of the example was assembled except that a metal lithium sheet was used as the negative electrode.

しかして、本実施例及び比較例のボタン型非水溶媒二次
電池について10kΩの定負荷で3Vから2Vまだ放電
を行ない、再び3Vまで充電する工程を1サイクルと
し、各サイクル毎の容量変化を調べる充放電サイクル特
性評価試験を行なったところ、第2図に示す特性図を得
た。なお、第2図において、横軸はサイクル数を示し、
縦軸は各サイクルにおける初期容量に対する放電容量劣
化率(%)を示す。図中のAは、本実施例の電池におけ
る特性線を、Bは比較例の同特性線を夫々示す。この第
2図より明らかなように、本発明の方法で製造された非
水溶媒二次電池は従来の方法で製造された同電池(比較
例)に比べて放電容量劣化率を低減でき、重負荷におけ
る充放電サイクル寿命を著しく向上できることがわか
る。
Then, the button type non-aqueous solvent secondary batteries of the present example and the comparative example are discharged from 3 V to 2 V under a constant load of 10 kΩ and charged to 3 V again as one cycle, and the capacity change in each cycle is changed. A charge / discharge cycle characteristic evaluation test was conducted to obtain the characteristic diagram shown in FIG. In addition, in FIG. 2, the horizontal axis represents the number of cycles,
The vertical axis represents the discharge capacity deterioration rate (%) with respect to the initial capacity in each cycle. In the figure, A shows the characteristic line of the battery of this example, and B shows the same characteristic line of the comparative example. As is clear from FIG. 2, the non-aqueous solvent secondary battery manufactured by the method of the present invention can reduce the discharge capacity deterioration rate as compared with the same battery manufactured by the conventional method (Comparative Example). It can be seen that the charge / discharge cycle life under load can be significantly improved.

なお、上記実施例ではボタン型構造の二次電池に適用し
た場合について説明したが、これに限定されない。例え
ば円筒形、扁平形、角形等の非水溶媒二次電池にも同様
に適用できる。
In addition, although the case where the present invention is applied to the secondary battery having the button type structure has been described in the above embodiment, the present invention is not limited to this. For example, it can be similarly applied to a non-aqueous solvent secondary battery having a cylindrical shape, a flat shape, a prismatic shape, or the like.

[発明の効果] 以上詳述した如く、本発明によれば容量劣化を著しく抑
制できると共に特に重負荷における充放電サイクル寿命
を向上した非水溶媒二次電池の製造方法を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a method for manufacturing a non-aqueous solvent secondary battery that can significantly suppress capacity deterioration and, particularly, has improved charge / discharge cycle life under heavy load.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すボタン型非水溶媒二次
電池の断面図、第2図は本実施例及び比較例の非水溶媒
二次電池における充放電サイクル数と放電容量劣化率と
の関係を示す特性図である。 1……正極容器、3……正極合剤、4……セパレータ、
5……負極、7……負極容器。
FIG. 1 is a cross-sectional view of a button type non-aqueous solvent secondary battery showing one embodiment of the present invention, and FIG. 2 is a charge / discharge cycle number and discharge capacity deterioration in the non-aqueous solvent secondary batteries of this embodiment and a comparative example. It is a characteristic view which shows the relationship with a rate. 1 ... Positive electrode container, 3 ... Positive electrode mixture, 4 ... Separator,
5 ... Negative electrode, 7 ... Negative electrode container.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】遷移金属カルコゲン化合物を主構成材とす
る正極と、前記正極にセパレータを介して対向配置さ
れ、リチウムを含浸した有機物焼成体からなる負極とを
具備した非水溶媒二次電池の製造方法において、有機物
焼成体をカソード、金属リチウムをアノードとし、これ
らをリチウムを含む電解液中に浸漬して逐次電流密度を
上げながら電解処理を行うことによりリチウムが前記セ
パレータ側ほど濃度が高くなるように含浸された負極を
作製する工程を具備したことを特徴とする非水溶媒二次
電池の製造方法。
1. A non-aqueous solvent secondary battery comprising a positive electrode containing a transition metal chalcogen compound as a main constituent, and a negative electrode made of a fired organic material impregnated with lithium and facing each other with a separator interposed therebetween. In the manufacturing method, the organic sintered material is used as a cathode, metallic lithium is used as an anode, and these are immersed in an electrolytic solution containing lithium to perform electrolytic treatment while successively increasing the current density, so that the concentration of lithium becomes higher on the separator side. A method for producing a non-aqueous solvent secondary battery, comprising the step of producing a negative electrode impregnated as described above.
JP61126647A 1986-05-31 1986-05-31 Method for manufacturing non-aqueous solvent secondary battery Expired - Lifetime JPH0630247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61126647A JPH0630247B2 (en) 1986-05-31 1986-05-31 Method for manufacturing non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61126647A JPH0630247B2 (en) 1986-05-31 1986-05-31 Method for manufacturing non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPS62283571A JPS62283571A (en) 1987-12-09
JPH0630247B2 true JPH0630247B2 (en) 1994-04-20

Family

ID=14940379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61126647A Expired - Lifetime JPH0630247B2 (en) 1986-05-31 1986-05-31 Method for manufacturing non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH0630247B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19922948B4 (en) * 1998-05-15 2005-08-18 Nec Corp. Electric double layer capacitor with short circuit function
USRE43573E1 (en) 1997-02-24 2012-08-14 Genesis Microchip (Delaware) Inc. Method and system for displaying an analog image by a digital display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4308915B2 (en) * 1997-02-12 2009-08-05 スカイラブ テクノロジーズ グループ,インコーポレイテッド Polyimide battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789483B2 (en) * 1984-05-07 1995-09-27 三洋化成工業株式会社 Secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43573E1 (en) 1997-02-24 2012-08-14 Genesis Microchip (Delaware) Inc. Method and system for displaying an analog image by a digital display device
DE19922948B4 (en) * 1998-05-15 2005-08-18 Nec Corp. Electric double layer capacitor with short circuit function

Also Published As

Publication number Publication date
JPS62283571A (en) 1987-12-09

Similar Documents

Publication Publication Date Title
EP0689260B1 (en) Rechargeable electrochemical cell
US8313860B2 (en) Lithium cell and method of forming same
JP2002124300A (en) Lithium-ion secondary electrochemical cell with multiple electrode plates with different discharge rate ranges
JPH10223259A (en) Lithium secondary battery and method of manufacturing the same
JPH08250117A (en) Carbon material for lithium secondary battery negative electrode and method for producing the same
JP3435731B2 (en) Non-aqueous electrolyte secondary battery
JPH08171936A (en) Lithium secondary battery
JPH0630247B2 (en) Method for manufacturing non-aqueous solvent secondary battery
JP3211259B2 (en) Non-aqueous electrolyte secondary battery
JP3403858B2 (en) Organic electrolyte battery
JPH09134720A (en) Lithium secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JP3795614B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JPH09245798A (en) Lithium secondary battery
JP3434557B2 (en) Non-aqueous solvent secondary battery
JPH1083837A (en) Lithium secondary battery
JPS62290075A (en) Nonaqueous solvent secondary battery
JP3179459B2 (en) Non-aqueous electrolyte secondary battery
JP3403857B2 (en) Organic electrolyte battery
JP2542812B2 (en) Non-aqueous electrolyte secondary battery
JPH0646579B2 (en) Method for producing negative electrode body for non-aqueous solvent secondary battery
JPH0563915B2 (en)
JP2000067863A (en) Nonaqueous electrolyte secondary battery
JP2639935B2 (en) Non-aqueous electrolyte secondary battery
JPH07142092A (en) Nonaqueous solvent secondary battery