JPH06300580A - Control device for tracking vehicle course - Google Patents
Control device for tracking vehicle courseInfo
- Publication number
- JPH06300580A JPH06300580A JP5088915A JP8891593A JPH06300580A JP H06300580 A JPH06300580 A JP H06300580A JP 5088915 A JP5088915 A JP 5088915A JP 8891593 A JP8891593 A JP 8891593A JP H06300580 A JPH06300580 A JP H06300580A
- Authority
- JP
- Japan
- Prior art keywords
- steering angle
- vehicle
- deviation width
- course
- trajectory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012937 correction Methods 0.000 claims description 24
- 238000004364 calculation method Methods 0.000 claims description 21
- 238000013459 approach Methods 0.000 abstract description 2
- 230000001154 acute effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Landscapes
- Image Analysis (AREA)
- Navigation (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Image Processing (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ドライバの運転操作を
補助するために車輛を軌道に沿って追従させる車輛の軌
道追従制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle track follow-up control device for making a vehicle follow a track along a track in order to assist a driver's driving operation.
【0002】[0002]
【従来の技術】近年、ドライバの操舵特性と車輛の操縦
性安定性の予防安全に関する問題が重要な課題になって
おり、ドライバを単調な運転行動から解放し、車輛の自
律走行を可能にする技術開発が進められている。2. Description of the Related Art In recent years, problems concerning preventive safety of steering characteristics of a driver and maneuvering stability of a vehicle have become important issues, and the driver is freed from monotonous driving behavior to enable autonomous driving of the vehicle. Technology development is in progress.
【0003】軌道追従制御は車輛を軌道に沿って安全に
正しく走行させるための基本的な技術である。Track-following control is a basic technique for safely and correctly driving a vehicle along a track.
【0004】一般に、車道は起伏を除けば直線と曲線で
構成されており、曲線路を追従させるには、曲率に応じ
た適正な舵角を常に与えれば良い。Generally, the roadway is composed of straight lines and curves except for undulations, and in order to follow a curved road, it is sufficient to always give a proper steering angle according to the curvature.
【0005】この曲線路に応じた操舵で車輛を追従させ
るモデルとしては、 1)プログラム操舵モデル 車輛の特性と前方のコースのパターン認識とにより、予
め組込まれた操舵パターンを決定し、曲線路に進入する
と同時に上記操舵パターンで舵角を制御する 2)一次予測による前方での誤差補正モデル 図9(a)に示すように、前方の注視距離における車輛1
の延長線Oと目標軌道とのずれ幅dに所定の比例定数
(ゲイン)kを乗算した値を舵角δ(δ=k×d)とし
て舵角制御する 3)二次予測による前方での誤差補正モデル 現在の位置、方向、及び現在の運動状態で、このまま走
行した場合の位置を予測し、この予測位置を、目標とす
る軌道と比較し、このずれを0に近づけるように追従す
るもので、図9(b)に示すように、所定注視距離におけ
るずれ幅εを積分した値に比例定数 kを乗算して舵角
δ(δ=kΣε)を得るなどがある。As a model for following the vehicle by steering according to the curved road, 1) a program steering model, the steering pattern incorporated in advance is determined based on the characteristics of the vehicle and the pattern recognition of the course in front of the vehicle, and the vehicle is guided to the curved road. The steering angle is controlled by the above steering pattern upon entering the vehicle. 2) Forward error correction model based on primary prediction As shown in Fig. 9 (a), the vehicle 1 at the front gaze distance is
The steering angle is controlled as a steering angle δ (δ = k × d) by multiplying the deviation width d between the extension line O and the target trajectory by a predetermined proportional constant (gain) k 3) Error-correction model A model that predicts the current position, direction, and current motion state when the vehicle continues to run, compares the predicted position with the target trajectory, and follows this deviation so that it approaches zero. Then, as shown in FIG. 9B, the steering angle δ (δ = kΣε) may be obtained by multiplying a value obtained by integrating the shift width ε at a predetermined gaze distance by a proportional constant k.
【0006】なお、この各モデルのシュミレーションに
ついては、例えば、自動車技術 自動車と人間工学 特
集(2)Vol.25, No.10, 1971,(P1058〜1064)に詳述さ
れている。The simulation of each model is described in detail, for example, in the Special Issue on Automotive Technology and Automotive Engineering (2) Vol.25, No.10, 1971, (P1058-1064).
【0007】[0007]
【発明が解決しようとする課題】しかし、プログラム操
舵モデルでは、あらゆる形状の路面に対応できるように
設定しなければ最適な追従性能を得ることができず、プ
ログラムが膨大になるばかりか、路面形状の変化が大き
くなるに従って応答性遅れが大きくなってしまう問題が
ある。However, in the program steering model, the optimum follow-up performance cannot be obtained unless the setting is made so that the road surface of any shape can be dealt with. There is a problem that the responsiveness delay becomes larger as the change of γ becomes larger.
【0008】また、一次予測による前方での誤差補正モ
デルでは、ほぼ直線に近い軌道での追従制御性は良い
が、曲率の小さな曲線路を走行する場合には、曲率半径
に応じて異なったゲイン(比例定数)を与えなれば、軌
道を正確に追従することはできない。Further, in the forward error correction model based on the first-order prediction, the tracking controllability on an almost linear trajectory is good, but when traveling on a curved road with a small curvature, the gains differing according to the radius of curvature. If the (proportional constant) is not given, the trajectory cannot be followed accurately.
【0009】一方、二次予測による前方での誤差補正モ
デルによれば、路面の曲率が変化した場合でも、一定の
ゲイン(比例定数)を与えることで良好な追従性能を得
ることができるが、ずれ幅εを積分しているため、ほぼ
直線路に近い大きな曲率の路面走行では車速が大きくな
り易く、この状態では制御が不安定になり易い。さら
に、曲線路であっても、注視距離が遠くにある場合に
は、S字路のように曲率の変化の大きい軌道では、走行
中の路面曲率と、注視している路面の曲率が相違するた
め軌道から外れ易くなる。On the other hand, according to the forward error correction model based on the secondary prediction, even if the curvature of the road surface changes, good tracking performance can be obtained by giving a constant gain (proportional constant). Since the deviation width ε is integrated, the vehicle speed is likely to increase when traveling on a road surface having a large curvature that is almost a straight road, and control is likely to be unstable in this state. In addition, even on a curved road, when the gazing distance is long, on a trajectory having a large curvature change such as an S-shaped road, the curvature of the running road surface is different from the curvature of the gazing road surface. Therefore, it is easy to get out of the orbit.
【0010】本発明は、上記事情に鑑みてなされたもの
で、あらゆる軌道の変化に対応して優れた追従性能を得
ることのできる車輛の軌道追従制御装置を提供すること
を目的としている。The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a vehicle track-following control device capable of obtaining excellent tracking performance in response to any track change.
【0011】[0011]
【課題を解決するための手段】本発明による車輛の軌道
追従制御装置は、車輛前方の延長線と、設定近距離注視
位置の目標軌道及び設定遠距離注視位置の目標軌道との
ずれ幅をそれぞれ算出する一次予測ずれ幅算出手段と、
車輛進行方向の設定近距離注視位置と設定遠距離注視位
置とにおける車輛の予測軌道と上記目標軌道とのずれ幅
をそれぞれ算出する二次予測ずれ幅算出手段と、上記両
ずれ幅算出手段で算出したずれ幅に基づき、少なくとも
軌道が直線または曲率の大きな曲線路か、定常的な曲線
路か、或はそれ以外かを判断して舵角を設定する際のモ
デル式を選択する舵角算出式選択手段と、モデル式が切
換えられたときに一次遅れ補正値を設定する舵角補正手
段と、選択したモデル式に、対応する上記ずれ幅を代入
し、また一次遅れ補正した値で補正して舵角を決定する
舵角決定手段とを備えるものである。A vehicle trajectory tracking control device according to the present invention provides a deviation width between an extension line in front of a vehicle and a target trajectory at a set short-distance gaze position and a target trajectory at a set long-distance gaze position, respectively. Primary prediction deviation width calculating means for calculating,
Calculated by the secondary prediction deviation width calculating means for calculating the deviation width between the predicted trajectory of the vehicle and the target trajectory at the set short distance gaze position and the set long distance gaze position of the vehicle traveling direction, respectively The steering angle calculation formula that selects the model formula when setting the steering angle by determining whether the trajectory is a straight road or a curved road with a large curvature, a steady curved road, or other based on the deviation amount The selecting means, the rudder angle correcting means for setting the first-order lag correction value when the model formula is switched, the corresponding deviation width described above is substituted into the selected model formula, and the first-order lag correction value is corrected. And a rudder angle determining means for determining the rudder angle.
【0012】[0012]
【作 用】本発明では、まず、一次予測ずれ幅算出手段
で、車輛前方の延長線と、設定近距離注視位置に対応す
る目標軌道及び設定遠距離注視位置に対応する目標軌道
とのずれ幅をそれぞれ算出する。[Operation] In the present invention, first, the deviation amount between the extension line in front of the vehicle and the target trajectory corresponding to the set short-distance gazing position and the target trajectory corresponding to the set long-distance gazing position is calculated by the primary prediction deviation width calculating means. Are calculated respectively.
【0013】また、二次予測ずれ幅算出手段では、車輛
進行方向の設定近距離注視位置と設定遠距離注視位置と
における予測軌道と、対応する目標軌道とのずれ幅をそ
れぞれ算出する。Further, the secondary predicted deviation width calculating means calculates the deviation width between the predicted trajectory at the set short distance gaze position and the set long distance gaze position in the vehicle traveling direction and the corresponding target trajectory.
【0014】そして、舵角算出式選択手段で、上記両ず
れ幅算出手段で算出したずれ幅に基づき、少なくとも軌
道が直線または曲率の大きな曲線路か、定常的な曲線路
か、或はそれ以外かを判断して舵角を設定する際のモデ
ル式を選択し、また、舵角補正手段で、上記モデル式が
切換えられたときの急激な変動を防止する一次遅れ補正
値(hosei)を設定する。The rudder angle calculation formula selecting means determines whether at least the track is a straight line or a curved road having a large curvature, a steady curved road, or other than the above based on the deviation calculated by the both deviation calculating means. Select the model formula when setting the steering angle by determining whether or not, and set the first-order lag correction value (hosei) that prevents sudden changes when the above model formula is switched by the steering angle correction means. To do.
【0015】そして、舵角決定手段で、上記舵角算出式
選択手段で選択したモデル式に、対応する上記ずれ幅(d
_L1,d_L2,ε_L1,或はε_L2)を代入し、またはこのずれ
幅(ε_L1)を一次遅れ補正値(hosei)で補正した値(ε_L
1')を代入して舵角(δ)を決定する。Then, the rudder angle deciding means corresponds to the deviation range (d) corresponding to the model formula selected by the rudder angle calculation formula selecting means.
_L1, d_L2, ε_L1, or ε_L2) is substituted, or this deviation width (ε_L1) is corrected by the primary delay correction value (hosei) (ε_L
Substitute 1 ') to determine the steering angle (δ).
【0016】[0016]
【実施例】以下、図面に基づいて本発明の実施例を説明
する。Embodiments of the present invention will be described below with reference to the drawings.
【0017】図1〜図8は本発明の一実施例を示し、図
1は制御手段の機能ブロック図、図2は軌道追従制御装
置のブロック図、図3は車輛に組込んだ軌道追従制御装
置の構成図、図4は舵角制御手順を示すフローチャー
ト、図5は車輛の追従走行状態を示す概略図、図6は軌
道追従制御の概念図、図7は一次予測舵角制御から二次
予測舵角制御へ切り換えた状態を示す概念図、図8は舵
角制御切換え時の舵角制御の変動を示すタイムチャート
である。1 to 8 show an embodiment of the present invention, FIG. 1 is a functional block diagram of a control means, FIG. 2 is a block diagram of a track following control device, and FIG. 3 is a track following control incorporated in a vehicle. 4 is a flow chart showing a steering angle control procedure, FIG. 5 is a schematic diagram showing a vehicle follow-up traveling state, FIG. 6 is a conceptual diagram of track following control, and FIG. 7 is a secondary diagram from primary predicted steering angle control. FIG. 8 is a conceptual diagram showing a state in which the steering angle control is switched to the predicted steering angle control, and FIG. 8 is a time chart showing variations in the steering angle control at the time of switching the steering angle control.
【0018】軌道追従制御装置は、自動車等の車輛1に
搭載されており、この車輛1の上部両側に一定間隔を開
けて前方へ指向された状態で固設されているビデオカメ
ラ2R,2Lと、ステアリングコラム3に固設されてス
テアリングシャフト(図示せず)を介して前輪の転舵角
を制御するステアリングアクチュエータ4と、上記両ビ
デオカメラR,2Lからの画像信号を処理する画像処理
手段5と、上記画像データ及び車速センサ7、舵角セン
サ8で検出した車速データ、舵角データ等に基づいてス
テアリングに対する舵角を設定する制御手段6と、この
制御手段6で設定した舵角に相応する駆動信号を上記ス
テアリグアクチュエータ4へ出力するステアリグコント
ローラ10とで構成されている。上記ビデオカメラ2
R,2LはCCD(電荷結合素子)などの固体撮像素子
を用いて、図5に細線で示すように車輛1の前方の所定
範囲をそれぞれ撮像する。The track following control device is mounted on a vehicle 1 such as an automobile, and video cameras 2R and 2L fixed on both sides of the upper portion of the vehicle 1 at a predetermined interval and oriented forward. A steering actuator 4 fixed to the steering column 3 for controlling the turning angle of the front wheels via a steering shaft (not shown), and an image processing means 5 for processing image signals from the video cameras R and 2L. And a control means 6 for setting a steering angle for steering based on the image data, vehicle speed data detected by the vehicle speed sensor 7 and steering angle sensor 8, steering angle data, etc., and corresponding to the steering angle set by the control means 6. And a steer rig controller 10 that outputs a drive signal to the steer rig actuator 4. Video camera 2
Each of R and 2L uses a solid-state image sensor such as a CCD (charge coupled device) to image a predetermined area in front of the vehicle 1 as indicated by a thin line in FIG.
【0019】また、上記画像処理手段5では、上記両ビ
デオカメラ2R,2Lからの画像信号を処理し、認識す
べき画像(幅員を示す白線、あるいは計測すべき対象物
等)を画像の輝度、彩度、濃度等に基づいて選択し処理
する。Further, the image processing means 5 processes the image signals from the video cameras 2R and 2L to obtain an image to be recognized (a white line indicating a width, or an object to be measured) in the luminance of the image. Select and process based on saturation, density, etc.
【0020】また、上記制御手段1は、距離計算手段M
1、一次予測ずれ幅算出手段M2、二次予測ずれ幅算出手
段M3、舵角算出式選択手段M4、切換え手段M5、舵角
補正手段M6、舵角決定手段M7で構成されている。The control means 1 has a distance calculation means M.
1, a primary prediction deviation width calculating means M2, a secondary prediction deviation width calculating means M3, a steering angle calculation formula selecting means M4, a switching means M5, a steering angle correcting means M6, and a steering angle determining means M7.
【0021】距離計算手段M1では、上記画像処理手段
5からの画像データに基づいて画像上の設定近距離注視
位置L1と設定遠距離注視位置L2及び、走行しようとす
る軌道(以下「目標軌道」)を算出する。この目標軌道
は、例えば走行中の路面の幅員を白線などから認識し、
この幅員の中心を求めることで割出す(図5参照)。In the distance calculation means M1, the set short-distance gaze position L1 and the set long-distance gaze position L2 on the image based on the image data from the image processing means 5 and the trajectory to be traveled (hereinafter referred to as "target trajectory") ) Is calculated. This target track recognizes the width of the running road surface from the white line, for example,
The center of this width is calculated and indexed (see Fig. 5).
【0022】一次予測ずれ幅算出手段M2では、近距離
位置L1及び遠距離位置L2での、車輛1の中心の延長線
Oと上記目標軌道とのずれ幅d_L1,d_L2を算出す
る(図6参照)。The primary prediction deviation width calculating means M2 calculates deviation widths d_L1 and d_L2 between the extension line O of the center of the vehicle 1 and the target track at the short distance position L1 and the long distance position L2 (see FIG. 6). ).
【0023】二次予測ずれ幅算出手段M3では、上記近
距離位置L1 及び遠距離位置L2における目標軌道と、
舵角データ及び車速データ等に基づいて現在の位置、方
向、運動状態等から割出した車輛1の上記近距離位置L
1 及び遠距離位置L2における予測軌道とのずれ幅 ε_
L1,ε_L2を算出する(図6参照)。In the secondary prediction deviation width calculating means M3, the target trajectories at the short distance position L1 and the long distance position L2,
The short-distance position L of the vehicle 1 calculated from the current position, direction, motion state, etc. based on the steering angle data, the vehicle speed data, etc.
Deviation width from predicted trajectory at 1 and long-distance position L2 ε_
Calculate L1 and ε_L2 (see FIG. 6).
【0024】舵角算出式選択手段M4では上記各ずれ幅
d_L1,d_L2,ε_L1,ε_L2に基づいて予め設
定した舵角算出式を選択する。The rudder angle calculation formula selecting means M4 selects a rudder angle calculation formula preset based on each of the deviation widths d_L1, d_L2, ε_L1 and ε_L2.
【0025】この舵角算出式は、この実施例では一次予
測舵角式(δ=k1×d_L1)、近距離二次予測式(δ
=δ+k2×ε_L1)、遠距離二次予測式(δ=δ+k
2×ε_L2)の3種類のモデル式がある。なお、この舵
角算出式の選択手順については後にフローチャート内で
説明する。In this embodiment, the steering angle calculation formulas are the primary prediction steering angle formula (δ = k1 × d_L1) and the short range secondary prediction formula (δ
= Δ + k2 × ε_L1), long-distance quadratic prediction formula (δ = δ + k
There are three types of model formulas, 2 × ε_L2). The procedure for selecting the steering angle calculation formula will be described later in the flowchart.
【0026】切換え手段M5では、上記舵角算出式選択
手段M4で選択した舵角算出式に対応する比例定数(ゲ
イン)k1,k2,k3及び、ずれ幅d_L1,ε_L1,
ε_L2を切換えて取入れる。In the switching means M5, the proportional constants (gains) k1, k2, k3 corresponding to the steering angle calculation formula selected by the steering angle calculation formula selection means M4 and the deviation widths d_L1, ε_L1,
Switch by inserting ε_L2.
【0027】舵角補正手段M6では、上記舵角算出式選
択手段M4で選択したモデル式を参照し、このモデル式
が一次予測舵角式から近距離一次予測舵角式に切換えら
れた直後かを判断し、切換え直後であれば、一次遅れ補
正をして、モデル式切換えによる舵角の急変を緩和す
る。The rudder angle correction means M6 refers to the model formula selected by the rudder angle calculation formula selection means M4, and whether this model formula is changed from the primary predicted rudder angle formula to the short distance primary predicted rudder angle formula. Immediately after switching, first-order delay correction is performed to mitigate a sudden change in steering angle due to model-based switching.
【0028】舵角決定手段M7では、取入れた比例定数
k1とずれ幅d_L1、比例定数k2とずれ幅ε_L1,比
例定数k3とずれ幅ε_L2、或は、一次遅れ補正値ho
seiで補正した補正すれ幅ε_L1’を、選択した舵
角算出式に代入して舵角δを決定する。In the steering angle determining means M7, the proportional constant k1 and the deviation width d_L1, the proportional constant k2 and the deviation width ε_L1, the proportional constant k3 and the deviation width ε_L2, or the first-order lag correction value ho are taken in.
The corrected slip width ε_L1 ′ corrected by sei is substituted into the selected steering angle calculation formula to determine the steering angle δ.
【0029】そして、この舵角δに対応する信号を上記
ステアリングコントローラ10に出力する。Then, a signal corresponding to the steering angle δ is output to the steering controller 10.
【0030】次に、舵角制御手順について、図4のフロ
ーチャートに従って説明する。Next, the steering angle control procedure will be described with reference to the flowchart of FIG.
【0031】このフローチャートでは、算出した各ずれ
幅d_L1,d_L2,ε_L1,ε_L2を所定値と比較
し、ずれ幅が各設定値do1,do2,εo1,εo2よりも大
きいか、小さいかで軌道を追従制御する際に最適な舵角
式を選択する。In this flowchart, each calculated deviation width d_L1, d_L2, ε_L1, ε_L2 is compared with a predetermined value, and the trajectory is followed depending on whether the deviation width is larger or smaller than each set value do1, do2, εo1, εo2. Select the optimum steering angle type for control.
【0032】なお、本実施例では、一次予測舵角式、遠
距離二次予測舵角式、或は近距離二次予測舵角式を以下
の基準で切換えている。In the present embodiment, the primary predictive steering angle formula, the long distance secondary predictive steering angle formula, or the short range secondary predictive steering angle formula is switched according to the following criteria.
【0033】 (1)一次予測舵角式(δ=k1×d_L1) d_L1≦do1,d_L2≦do2且つ、ε_L1≦εo1の
場合であり、直線路、或は緩やかな曲線路と判断され、
一次予測舵角式を用いることで、走行性が安定する。(1) Primary predicted steering angle formula (δ = k1 × d_L1) d_L1 ≦ do1, d_L2 ≦ do2 and ε_L1 ≦ εo1 and it is determined that the road is a straight road or a gentle curved road.
By using the first-order predicted steering angle formula, traveling performance becomes stable.
【0034】 (2)遠距離二次予測舵角式(δ=δ+k3×ε_L2) d_L1>do1,d_L2>do2,ε_L1≦εo1 且つ、
ε_L2≦εo2の場合であり、定常的な曲線路と判断さ
れ、遠距離二次予測舵角式を用い、注視点を遠くに設定
することで、走行安定性をある程度確保した上で曲線路
に対する追従性をよくする。(2) Long-distance secondary prediction steering angle formula (δ = δ + k3 × ε_L2) d_L1> do1, d_L2> do2, ε_L1 ≦ εo1 and
In the case of ε_L2 ≤ εo2, it is determined that the road is a steady curved road, and the long-distance quadratic prediction steering angle formula is used to set the gazing point to a distant position to ensure running stability to some extent and then to the curved road. Improves trackability.
【0035】 (3)近距離二次予測舵角式(δ=δ+k2×ε_L1) (1),(2) 以外のずれ幅を有する曲線路は、直線路から曲
線路、或はS字のように軌道が大きく変化していると考
えられ、注視点を近距離に設定することで走行精度が向
上する。(3) Short-distance secondary prediction steering angle formula (δ = δ + k2 × ε_L1) A curved road having a deviation width other than (1) and (2) is a straight road to a curved road or an S-shaped road. It is considered that the trajectory has changed significantly, and the running accuracy is improved by setting the gazing point at a short distance.
【0036】なお、上記各設定値は、実験などから求め
るもので、例えばdo1=0.25(m),do2=1.0(m),εo1
=0.05(m),εo2=0.5(m)である。The above-mentioned set values are obtained from experiments and the like. For example, do1 = 0.25 (m), do2 = 1.0 (m), εo1
= 0.05 (m) and εo2 = 0.5 (m).
【0037】上記判断基準に基づき、まず、ステップS
101で、現在の軌道追従制御が一次予測舵角式かを判
断する。Based on the above criteria, first, step S
At 101, it is determined whether the current trajectory following control is a primary predictive steering angle type.
【0038】そして、一次予測舵角式の場合、ステップ
S102へ進み、また、一次予測舵角式以外の場合、ス
テップS103へ進む。Then, in the case of the primary predictive steering angle type, the process proceeds to step S102, and in the case of other than the primary predictive steering angle type, the process proceeds to step S103.
【0039】ステップS102へ進むと、舵角式切換え
フラグflgをセットし、ステップS104で一次予測
舵角式(δ=k1×d_L1)に基づいて舵角δを設定す
る。一方、上記ステップS101からステップS103
へ進むと、現在の軌道追従制御が近距離二次予測舵角式
かを判断し、近距離二次予測舵角式の場合、ステップS
105へ進み、また、遠距離二次舵角式の場合、ステッ
プS106へ進む。ステップS105へ進むと、舵角式
切換えフラグflgの値を参照する。この舵角切換えフ
ラグflgは、モデル式が一次予測舵角式から近距離二
次予測舵角式に切換えられた最初のルーチンかを判断す
るもので、flg=1の場合初回ルーチンと判断され
て、ステップS107へ進み、また、flg=0の場
合、ステップS108へ進む。In step S102, the steering angle type switching flag flg is set, and in step S104, the steering angle δ is set based on the primary predicted steering angle formula (δ = k1 × d_L1). On the other hand, the above steps S101 to S103
If it proceeds to, it is judged whether the current trajectory following control is the short range secondary predicted steering angle type, and if it is the short range secondary predicted steering angle type, step S
105, and in the case of the long-distance secondary steering angle type, proceeds to step S106. When the process proceeds to step S105, the value of the steering angle type switching flag flg is referred to. The rudder angle switching flag flg determines whether the model formula is the first routine in which the primary predictive rudder angle formula is switched to the short distance secondary predictive rudder angle formula. When flg = 1, it is determined that the model routine is the first routine. , And proceeds to step S107, and if flg = 0, proceeds to step S108.
【0040】ステップS107へ進むと、舵角補正値h
oseiを、予め算出した近距離位置L1における予測
軌道とのずれ幅ε_L1(図6参照)で設定するととも
に、上記舵角切換えフラグflgをクリアしてステップ
S109へ進む。At step S107, the steering angle correction value h
osei is set in advance by the deviation width ε_L1 (see FIG. 6) from the predicted trajectory at the short distance position L1, and the steering angle switching flag flg is cleared, and the process proceeds to step S109.
【0041】一方、上記ステップS105からステップ
S108へ進むと、上記舵角補正値hseiに設定値a
(0<a<1)を乗算して、この舵角補正値hosei
を演算周期ごとに徐々に減少させていく。On the other hand, when the process proceeds from step S105 to step S108, the steering angle correction value hsei is set to the set value a.
This steering angle correction value hosei is multiplied by (0 <a <1).
Is gradually decreased with each calculation cycle.
【0042】そして、上記ステップS107或はステッ
プS108からステップS109へ進むと、上記ずれ幅
ε_L1から上記補正値hoseiを減算して、補正ず
れ幅ε_L1'を設定し、ステップS110で、この補正
ずれ幅ε_L1'に基づき近距離二次予測舵角式( δ=
δ+k2×ε_L1')を用いて、舵角δを設定する。Then, when the operation proceeds from step S107 or step S108 to step S109, the correction value hosei is subtracted from the deviation width ε_L1 to set the correction deviation width ε_L1 ', and the correction deviation width ε_L1' is set in step S110. Based on ε_L1 ', the short range secondary predicted steering angle formula (δ =
δ + k2 × ε_L1 ′) is used to set the steering angle δ.
【0043】また、上記ステップS103からステップ
S106へ進むと、遠距離二次予測舵角式(δ=δ+k
3×ε_L2)を用いて、舵角δを設定する。Further, when the process proceeds from step S103 to step S106, the long range secondary predicted steering angle formula (δ = δ + k
3 × ε_L2) is used to set the steering angle δ.
【0044】以上の結果、図7に示すように、車輛1が
直線路から曲線路へ進入する際に、本実施例によれば、
二次予測舵角式に切換えられたときの車輛の予測位置A
から目標点Bの軌道へ向うように急激に舵角が変動せ
ず、舵角補正値hoseiによって修正された目標軌道
Cに沿って緩やかに正規の目標軌道Dへ移行されるた
め、図7に一点鎖線で示すようなモデル式が切換えられ
たときの制御ハンチングが発生せず、図の実線で示すよ
うに緩やかに舵角が制御される。その結果、安定した走
行性能が得られる。As a result of the above, according to the present embodiment, when the vehicle 1 enters a curved road from a straight road, as shown in FIG.
Predicted vehicle position A when switched to the secondary predicted steering angle type
7 does not change steeply toward the trajectory from the target point B to the trajectory of the target point B, and gradually shifts to the regular target trajectory D along the target trajectory C corrected by the steering angle correction value hosei. Control hunting does not occur when the model formula as indicated by the one-dot chain line is switched, and the steering angle is gently controlled as shown by the solid line in the figure. As a result, stable running performance can be obtained.
【0045】また、軌道追従制御をする際に、軌道の曲
率に応じて一次予測式と二次予測式、或は二次予測式で
あっても注視点を近距離側と遠距離側とを選択的に採用
するため、軌道の変化に対する追従性が良い。Further, when the trajectory tracking control is performed, a primary prediction formula and a secondary prediction formula depending on the curvature of the trajectory, or even if a secondary prediction formula, the gazing point is divided into the near distance side and the far distance side. Since it is selectively used, it has good followability to changes in the trajectory.
【0046】[0046]
【発明の効果】以上、説明したように本発明によれば、
舵角を設定する際のモデル式を曲線路の変化に応じて切
換えて使用するようにしたので、あらゆる軌道の変化に
対応して精度良く追従走行することができる。As described above, according to the present invention,
Since the model formula for setting the steering angle is switched and used according to the change of the curved road, it is possible to accurately follow the traveling corresponding to the change of any track.
【図1】制御手段の機能ブロック図FIG. 1 is a functional block diagram of control means.
【図2】軌道追従制御装置のブロック図FIG. 2 is a block diagram of a trajectory tracking control device.
【図3】車輛に組込んだ軌道追従制御装置の構成図FIG. 3 is a block diagram of a track following control device incorporated in a vehicle.
【図4】舵角制御手順を示すフローチャートFIG. 4 is a flowchart showing a steering angle control procedure.
【図5】車輛の追従走行状態を示す概略図FIG. 5 is a schematic diagram showing a follow-up traveling state of a vehicle.
【図6】軌道追従制御の概念図FIG. 6 is a conceptual diagram of trajectory tracking control.
【図7】一次予測舵角制御から二次予測舵角制御へ切り
換えた状態を示す概念図FIG. 7 is a conceptual diagram showing a state in which the primary predictive steering angle control is switched to the secondary predictive steering angle control.
【図8】舵角制御切換え時の舵角制御の変動を示すタイ
ムチャートFIG. 8 is a time chart showing fluctuations in the steering angle control when switching the steering angle control.
【図9】従来の軌道追従制御の概念を示す概略図FIG. 9 is a schematic diagram showing the concept of conventional trajectory following control.
1…車輛 d_L1,d_L2,ε_L1,ε_L2…ずれ幅 L1…設定近距離注視位置 L2…設定遠距離注視位置 M2…一次予測ずれ幅算出手段 M3…二次予測ずれ幅算出手段 M4…舵角算出式選択手段 M6…舵角補正手段 M7…舵角決定手段 O…(車輛の)延長線 hosei…一次遅れ補正値 δ…舵角 1 ... Vehicle d_L1, d_L2, ε_L1, ε_L2 ... Deviation width L1 ... Set short-distance gaze position L2 ... Set long-distance gaze position M2 ... Primary predicted deviation width calculation means M3 ... Secondary predicted deviation width calculation means M4 ... Steering angle calculation formula Selection means M6 ... Rudder angle correction means M7 ... Rudder angle determination means O ... (Vehicle) extension line hosei ... First-order lag correction value δ ... Rudder angle
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G06F 15/62 415 9287−5L // B62D 101:00 113:00 137:00 Front page continuation (51) Int.Cl. 5 Identification code Office reference number FI technical display location G06F 15/62 415 9287-5L // B62D 101: 00 113: 00 137: 00
Claims (1)
注視位置(L1)の目標軌道及び設定遠距離注視位置(L2)の
目標軌道とのずれ幅(d_L1,d_L2)をそれぞれ算出する一
次予測ずれ幅算出手段(M2)と、 車輛進行方向の設定近距離注視位置(L1)と設定遠距離注
視位置(L2)とにおける車輛(1)の予測軌道と上記目標軌
道とのずれ幅(ε_L1,ε_L2)をそれぞれ算出する二次予
測ずれ幅算出手段(M3)と、 上記両ずれ幅算出手段(M2,M3)で算出したずれ幅(d_L1,d
_L2,ε_L1,ε_L2)に基づき、少なくとも軌道が直線また
は曲率の大きな曲線路か、定常的な曲線路か、或はそれ
以外かを判断して舵角(δ)を設定する際のモデル式を選
択する舵角算出式選択手段(M4)と、 モデル式が切換えられたときに一次遅れ補正値(hosei)
を設定する舵角補正手段(M6)と、 選択したモデル式に、対応する上記ずれ幅(d_L1,d_L2,
ε_L1,或はε_L2)を代入し、またはこのずれ幅(ε_L1)
を一次遅れ補正値(hosei)で補正した値(ε_L1')を代入
して舵角(δ)を決定する舵角決定手段(M7)とを備えるこ
とを特徴とする車輛の軌道追従制御装置。1. A deviation width (d_L1, d_L2) between the extension line (O) in front of the vehicle (1) and the target trajectory at the set short-distance gaze position (L1) and the target trajectory at the set long-distance gaze position (L2). Primary prediction deviation width calculating means (M2) for calculating respectively, and the predicted trajectory of the vehicle (1) at the set short-distance gaze position (L1) and the set long-distance gaze position (L2) in the vehicle traveling direction and the target trajectory Deviation width (ε_L1, ε_L2) respectively calculated by the secondary prediction deviation width calculation means (M3) and the deviation width calculated by both deviation width calculation means (M2, M3) (d_L1, d
_L2, ε_L1, ε_L2), a model formula for setting the steering angle (δ) by determining whether the trajectory is a straight road or a curved road with a large curvature, a steady curved road, or other Steering angle calculation formula selection means (M4) to be selected and first-order lag correction value (hosei) when the model formula is switched
The rudder angle correction means (M6) for setting the above-mentioned deviation width (d_L1, d_L2,
ε_L1, or ε_L2) is substituted, or this deviation width (ε_L1)
And a steering angle determining means (M7) for determining a steering angle (δ) by substituting a value (ε_L1 ′) corrected by a first-order delay correction value (hosei) with a trajectory tracking control device for a vehicle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5088915A JPH06300580A (en) | 1993-04-15 | 1993-04-15 | Control device for tracking vehicle course |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5088915A JPH06300580A (en) | 1993-04-15 | 1993-04-15 | Control device for tracking vehicle course |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06300580A true JPH06300580A (en) | 1994-10-28 |
Family
ID=13956234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5088915A Pending JPH06300580A (en) | 1993-04-15 | 1993-04-15 | Control device for tracking vehicle course |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06300580A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003016593A (en) * | 2001-06-28 | 2003-01-17 | Fuji Heavy Ind Ltd | Driving support device for vehicles |
JP2005170327A (en) * | 2003-12-15 | 2005-06-30 | Nissan Motor Co Ltd | Automatic steering control device for vehicle |
JP2005335588A (en) * | 2004-05-27 | 2005-12-08 | Nissan Motor Co Ltd | Driver model and assistant functional evaluation device of vehicle behavior control system furnished with the driver model |
JP2010126077A (en) * | 2008-11-28 | 2010-06-10 | Jtekt Corp | Travel supporting device |
JP2012210917A (en) * | 2011-03-23 | 2012-11-01 | Toyota Motor Corp | Vehicle information processing device |
US9050998B2 (en) | 2010-06-11 | 2015-06-09 | Toyota Jidosha Kabushiki Kaisha | Vehicle travel control device |
JP2015202760A (en) * | 2014-04-14 | 2015-11-16 | 日野自動車株式会社 | Steering control apparatus |
JP2017077849A (en) * | 2015-10-22 | 2017-04-27 | 本田技研工業株式会社 | Vehicle travel control device |
JP2018531385A (en) * | 2016-07-21 | 2018-10-25 | バイドゥ・ユーエスエイ・リミテッド・ライアビリティ・カンパニーBaidu USA LLC | Control error correction planning method for operating an autonomous vehicle |
WO2019193811A1 (en) * | 2018-04-03 | 2019-10-10 | ソニー株式会社 | Control device, control method, and program |
WO2020129722A1 (en) * | 2018-12-20 | 2020-06-25 | 株式会社クボタ | Control device for automatic travel work vehicle |
CN114995406A (en) * | 2022-05-23 | 2022-09-02 | 广东嘉腾机器人自动化有限公司 | Single-steering-wheel AGV path following method and system based on pure tracking algorithm |
-
1993
- 1993-04-15 JP JP5088915A patent/JPH06300580A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003016593A (en) * | 2001-06-28 | 2003-01-17 | Fuji Heavy Ind Ltd | Driving support device for vehicles |
JP2005170327A (en) * | 2003-12-15 | 2005-06-30 | Nissan Motor Co Ltd | Automatic steering control device for vehicle |
JP2005335588A (en) * | 2004-05-27 | 2005-12-08 | Nissan Motor Co Ltd | Driver model and assistant functional evaluation device of vehicle behavior control system furnished with the driver model |
JP2010126077A (en) * | 2008-11-28 | 2010-06-10 | Jtekt Corp | Travel supporting device |
US9050998B2 (en) | 2010-06-11 | 2015-06-09 | Toyota Jidosha Kabushiki Kaisha | Vehicle travel control device |
JP2012210917A (en) * | 2011-03-23 | 2012-11-01 | Toyota Motor Corp | Vehicle information processing device |
JP2015202760A (en) * | 2014-04-14 | 2015-11-16 | 日野自動車株式会社 | Steering control apparatus |
JP2017077849A (en) * | 2015-10-22 | 2017-04-27 | 本田技研工業株式会社 | Vehicle travel control device |
JP2018531385A (en) * | 2016-07-21 | 2018-10-25 | バイドゥ・ユーエスエイ・リミテッド・ライアビリティ・カンパニーBaidu USA LLC | Control error correction planning method for operating an autonomous vehicle |
WO2019193811A1 (en) * | 2018-04-03 | 2019-10-10 | ソニー株式会社 | Control device, control method, and program |
WO2020129722A1 (en) * | 2018-12-20 | 2020-06-25 | 株式会社クボタ | Control device for automatic travel work vehicle |
JP2020099226A (en) * | 2018-12-20 | 2020-07-02 | 株式会社クボタ | Controls for autonomous vehicles |
EP3900505A4 (en) * | 2018-12-20 | 2022-09-14 | Kubota Corporation | CONTROL DEVICE FOR SELF-DRIVING WORK VEHICLE |
US11937526B2 (en) | 2018-12-20 | 2024-03-26 | Kubota Corporation | Control device for work vehicle configured to travel autonomously |
CN114995406A (en) * | 2022-05-23 | 2022-09-02 | 广东嘉腾机器人自动化有限公司 | Single-steering-wheel AGV path following method and system based on pure tracking algorithm |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06300581A (en) | Control device for tracking vehicle course | |
CN111731381B (en) | Vehicle lateral adaptive control method, control device and vehicle | |
US5414625A (en) | System and method for providing steering control for autonomous vehicle | |
JP2669031B2 (en) | Autonomous vehicles | |
US9499197B2 (en) | System and method for vehicle steering control | |
CN110262509B (en) | Automatic vehicle driving method and device | |
US8626365B2 (en) | Automatic steering control apparatus and autopilot | |
EP1400391A2 (en) | Vehicle surroundings monitoring apparatus and traveling control system incorporating the apparatus | |
CN113382906B (en) | Vehicle control device and vehicle control method | |
JPH06300580A (en) | Control device for tracking vehicle course | |
WO2007105077A2 (en) | Trajectory tracking control system and method for mobile unit | |
JP2002002519A (en) | Vehicle steering control device | |
JP2669074B2 (en) | Vehicle speed sensitive steering control device for autonomous vehicle | |
JP6384296B2 (en) | Vehicle steering control device and vehicle steering control method | |
JP2003276628A (en) | Automatic steering device | |
CN113885514B (en) | AGV path tracking method and system based on fuzzy control and geometric tracking | |
CN112849152B (en) | Control method, control system and vehicle for rear wheel of vehicle | |
CN116729397A (en) | Vehicle tracking control method and device and vehicle | |
CN110962928A (en) | Method and device for determining steering wheel angle of vehicle | |
JP2003054435A (en) | Rear wheel steering control device | |
EP4541691A1 (en) | Steering control device | |
JP2845035B2 (en) | Operation control device for moving vehicles | |
JP2002337714A (en) | Automatic steering device | |
JP3433057B2 (en) | Vehicle follow-up control device | |
JPH05270420A (en) | Steering angle controller |