JPH06290809A - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JPH06290809A JPH06290809A JP5073191A JP7319193A JPH06290809A JP H06290809 A JPH06290809 A JP H06290809A JP 5073191 A JP5073191 A JP 5073191A JP 7319193 A JP7319193 A JP 7319193A JP H06290809 A JPH06290809 A JP H06290809A
- Authority
- JP
- Japan
- Prior art keywords
- carbonate
- negative electrode
- aqueous electrolyte
- secondary battery
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 24
- 239000002904 solvent Substances 0.000 claims abstract description 53
- 150000005676 cyclic carbonates Chemical class 0.000 claims abstract description 31
- 150000005678 chain carbonates Chemical class 0.000 claims abstract description 28
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 27
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 27
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 15
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 10
- 239000003792 electrolyte Substances 0.000 claims abstract description 8
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims abstract description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 7
- 239000012046 mixed solvent Substances 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 3
- 239000008151 electrolyte solution Substances 0.000 claims description 32
- -1 lithium hexafluorophosphate Chemical compound 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 4
- 239000002931 mesocarbon microbead Substances 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 239000007774 positive electrode material Substances 0.000 claims description 3
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims description 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims description 2
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 claims description 2
- CSXCEQPWXHUSIX-UHFFFAOYSA-N pentan-2-yl hydrogen carbonate Chemical compound CCCC(C)OC(O)=O CSXCEQPWXHUSIX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- 150000003624 transition metals Chemical class 0.000 claims description 2
- 229920000049 Carbon (fiber) Polymers 0.000 claims 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- 229910021383 artificial graphite Inorganic materials 0.000 claims 1
- DFFDSQBEGQFJJU-UHFFFAOYSA-N butyl hydrogen carbonate Chemical compound CCCCOC(O)=O DFFDSQBEGQFJJU-UHFFFAOYSA-N 0.000 claims 1
- 239000004917 carbon fiber Substances 0.000 claims 1
- 238000003763 carbonization Methods 0.000 claims 1
- 239000011335 coal coke Substances 0.000 claims 1
- 238000002050 diffraction method Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 239000011572 manganese Substances 0.000 claims 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims 1
- 239000004005 microsphere Substances 0.000 claims 1
- 229910021382 natural graphite Inorganic materials 0.000 claims 1
- 239000002006 petroleum coke Substances 0.000 claims 1
- 239000002994 raw material Substances 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 3
- 239000010936 titanium Substances 0.000 abstract description 3
- 229910052719 titanium Inorganic materials 0.000 abstract description 3
- 230000014759 maintenance of location Effects 0.000 abstract description 2
- 238000004804 winding Methods 0.000 abstract 1
- 238000000354 decomposition reaction Methods 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 7
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 7
- 239000007773 negative electrode material Substances 0.000 description 6
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 5
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000008014 freezing Effects 0.000 description 5
- 238000007710 freezing Methods 0.000 description 5
- 229910000733 Li alloy Inorganic materials 0.000 description 4
- 229910017053 inorganic salt Inorganic materials 0.000 description 4
- 239000001989 lithium alloy Substances 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 2
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002194 amorphous carbon material Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- CYEDOLFRAIXARV-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound CCCOC(=O)OCC CYEDOLFRAIXARV-UHFFFAOYSA-N 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000005687 symmetric chain carbonates Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は非水電解液二次電池に関
し、さらに詳しくはこの電池のサイクル寿命および低温
における容量特性の改善に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improving the cycle life and capacity characteristics of this battery at low temperatures.
【0002】[0002]
【従来の技術】近年、電子機器のポータブル化,コード
レス化が急速に進んでおり、これらの駆動用電源として
小形・軽量で、高エネルギー密度を有する二次電池への
要望が高い。このような点で非水電解液系の二次電池、
特にリチウム二次電池はとりわけ高電圧・高エネルギー
密度を有する電池として期待が大きい。2. Description of the Related Art In recent years, portable electronic devices and cordless electronic devices have been rapidly developed, and there is a great demand for a small and lightweight secondary battery having high energy density as a power source for driving these electronic devices. In this regard, non-aqueous electrolyte secondary batteries,
In particular, lithium secondary batteries are highly expected as batteries having high voltage and high energy density.
【0003】非水電解液電池を二次電池化する場合、そ
の正極活物質には高容量かつ高電圧のものが望まれる。
この要望を満たすものとしてLiCoO2やLiMn2O
4系の4Vの高電圧を示す材料が挙げられる。When making a non-aqueous electrolyte battery into a secondary battery, it is desired that the positive electrode active material has a high capacity and a high voltage.
LiCoO 2 and LiMn 2 O satisfy the requirements.
A material showing a high voltage of 4V of 4 series is mentioned.
【0004】一方、負極材料としては金属リチウムをは
じめ、リチウム合金やリチウムイオンを吸蔵・放出でき
る炭素材などが検討されている。しかし金属リチウムに
は充放電に伴う樹枝状生成物(デンドライト)による短
絡発生の問題があり、リチウム合金には充放電に伴う膨
脹収縮に起因した電極の崩れなどの問題がある。従っ
て、最近ではこれらの問題の生じない炭素材がリチウム
二次電池の負極材料として有望視されている。On the other hand, as negative electrode materials, metallic lithium, lithium alloys, and carbon materials capable of absorbing and releasing lithium ions have been investigated. However, metallic lithium has a problem of short-circuiting due to dendritic products (dendrites) associated with charge and discharge, and lithium alloy has a problem of electrode collapse due to expansion and contraction associated with charge and discharge. Therefore, recently, carbon materials that do not cause these problems have been regarded as promising as negative electrode materials for lithium secondary batteries.
【0005】一般に、負極材料に金属リチウムを用いた
場合、充電時に負極表面に生成される活性なデンドライ
トが非水溶媒と反応して溶媒の一部に分解反応を引き起
こし、そのことが充電効率を下げることは良く知られて
いる。その解消の方策として特開昭57−170463
号公報では、エチレンカーボネートが充電効率に優れて
いることに着目し、このエチレンカーボネートとプロピ
レンカーボネートとの混合溶媒を用いることが提案され
ている。さらに特開平3−55770号公報では電池の
低温特性を改良するためエチレンカーボネートとジエチ
ルカーボネートとの混合溶媒に2メチルテトラヒドロフ
ラン、1,2−ジメトキシエタン、4メチル1,3−ジ
オキソランなどを混合し、非水電解液の溶媒として用い
ることが提案されている。Generally, when metallic lithium is used as the negative electrode material, active dendrites generated on the negative electrode surface during charging react with a non-aqueous solvent to cause a decomposition reaction in a part of the solvent, which increases charging efficiency. Lowering is well known. As a measure for solving this, Japanese Patent Laid-Open No. 1704646/1982.
In the publication, attention is paid to the fact that ethylene carbonate is excellent in charging efficiency, and it is proposed to use a mixed solvent of ethylene carbonate and propylene carbonate. Further, in JP-A-3-55770, in order to improve low temperature characteristics of a battery, 2-methyltetrahydrofuran, 1,2-dimethoxyethane, 4-methyl-1,3-dioxolane, etc. are mixed in a mixed solvent of ethylene carbonate and diethyl carbonate, It has been proposed to use it as a solvent for non-aqueous electrolytes.
【0006】しかしながら、これらの系を用いても充電
効率は最大でも98〜99%程度にとどまり、依然とし
て充電効率を十分に高めるまでには至っていない。これ
は負極にリチウム合金を用いた場合でも同様である。However, even if these systems are used, the charging efficiency is limited to about 98 to 99% at the maximum, and the charging efficiency is not yet sufficiently increased. This is the same even when a lithium alloy is used for the negative electrode.
【0007】[0007]
【発明が解決しようとする課題】負極材料に炭素材を用
いた場合、充電反応は電解液中のリチウムイオンが炭素
材の層間にインターカレートするという反応であるた
め、リチウムのデンドライトは生成されず、上記のよう
な負極表面での溶媒の分解反応は生じないはずである。
しかし実際には、その充電効率は100%に満たず、負
極にリチウムもしくはリチウム合金を用いた場合と同様
の課題が残る。When a carbon material is used as the negative electrode material, the charging reaction is a reaction in which lithium ions in the electrolytic solution intercalate between the layers of the carbon material, so that dendrite of lithium is produced. Therefore, the decomposition reaction of the solvent on the surface of the negative electrode should not occur.
However, in reality, the charging efficiency is less than 100%, and the same problem as in the case of using lithium or a lithium alloy for the negative electrode remains.
【0008】本発明者等は、この現象はリチウム金属を
負極に用いた場合のような負極表面における溶媒の分解
反応によるものではなく、負極炭素材の層間にリチウム
がインターカレートするときにリチウムのみならずリチ
ウムに配位した溶媒も共に層間に引きこまれ、その際溶
媒の一部に分解反応を引き起こすことによると考えた。The present inventors have not found that this phenomenon is due to the decomposition reaction of the solvent on the surface of the negative electrode as in the case where lithium metal is used for the negative electrode, and does not occur when lithium intercalates between the layers of the negative electrode carbon material. It was thought that this is because not only the solvent coordinated with lithium was also drawn between the layers, causing a decomposition reaction in part of the solvent.
【0009】つまり、分子半径が大きい溶媒は負極炭素
材の層間にスムーズにインターカレートされずに負極材
料の層間の入口で分解されるということである。That is, the solvent having a large molecular radius is not smoothly intercalated between the layers of the negative electrode carbon material and is decomposed at the inlet between the layers of the negative electrode material.
【0010】一般的にリチウム電池の電解液として優れ
た溶媒に求められる要件として、誘電率が大、すなわち
溶質である無機塩を多量に溶解できることが挙げられ
る。プロピレンカーボネート、エチレンカーボネートな
どの環状カーボネート類はこの要件を満たす優れた溶媒
であると言われているが、これらはいずれもその環状構
造ゆえに分子半径が大きく、負極に炭素材を用いた場
合、上述した如く充電時に溶媒の分解反応を伴うという
問題点を持つ。ただし、その際に負極の炭素材として層
間距離が比較的大きい非晶質のものを用いると、溶媒の
分解度合は低下する傾向にある。Generally, a requirement for a good solvent as an electrolyte for a lithium battery is that it has a large dielectric constant, that is, it can dissolve a large amount of an inorganic salt as a solute. Cyclic carbonates such as propylene carbonate and ethylene carbonate are said to be excellent solvents that satisfy this requirement, but these all have a large molecular radius because of their cyclic structure, and when a carbon material is used for the negative electrode, As described above, there is a problem that the decomposition reaction of the solvent accompanies the charging. However, in that case, if an amorphous carbon material having a relatively large interlayer distance is used as the carbon material of the negative electrode, the degree of decomposition of the solvent tends to decrease.
【0011】また、これらの溶媒は高粘性であるため、
単独で用いると電解液の粘度が高く高率での充放電に難
があると共に、低温時の電池容量が小さいという欠点も
持つ。特にエチレンカーボネートは凝固点が36.4℃
と高く、単独で用いることはできない。この欠点を補う
ものとして上述した如く、2メチルテトラヒドロフラ
ン、1,2ジメトキシエタン、4メチル1,3ジオキソ
ラン等のエーテル類を混合するという方法が一般的に取
られている。その反面これらのエーテル類は酸化分解電
圧が低く、二次電池に用いた場合には電池充電時に、そ
の分解反応が起きるためサイクル寿命が短くなる。Further, since these solvents are highly viscous,
When used alone, it has a drawback that the viscosity of the electrolyte is high and charging and discharging at a high rate is difficult, and the battery capacity at low temperature is small. Especially ethylene carbonate has a freezing point of 36.4 ° C.
It is high and cannot be used alone. As a method of compensating for this drawback, as described above, a method of mixing ethers such as 2 methyltetrahydrofuran, 1,2 dimethoxyethane and 4 methyl 1,3 dioxolane is generally used. On the other hand, these ethers have a low oxidative decomposition voltage, and when used in a secondary battery, their decomposition reaction occurs during battery charging, resulting in a short cycle life.
【0012】一方、鎖状カーボネートはその構造上、炭
素材の層間に入り易く、充電時の分解反応は起こりにく
いが、逆にこれらの溶媒は誘電率が比較的低く、溶質で
ある無機塩を溶解しにくいという欠点がある。特に構造
式ROCOOR′中の炭化水素基RとR′が等しい対称
形のカーボネート、たとえばR中の炭素数が1であるジ
メチルカーボネートは、構造的に対称性が良いため融点
0.5℃と高く、その低温特性上リチウム二次電池の溶
媒としては使いがたい。また、炭素数2の炭酸ジエチル
は炭素数が多いだけ構造的自由度が高く融点も低くなる
が、逆に誘電率が低くなり、電解質の溶解度が低くなる
ためやはり溶媒としては使いがたい。On the other hand, due to the structure of the chain carbonate, it is easy to enter between the layers of the carbonaceous material, and the decomposition reaction during charging is unlikely to occur. On the contrary, these solvents have a relatively low dielectric constant, and an inorganic salt that is a solute is formed. It has the drawback of being difficult to dissolve. In particular, a symmetrical carbonate in which the hydrocarbon groups R and R'in the structural formula ROCOOR 'are the same, for example, dimethyl carbonate in which R has 1 carbon atom has a high melting point of 0.5 ° C. because of its structurally good symmetry. Due to its low temperature characteristics, it is difficult to use as a solvent for lithium secondary batteries. Diethyl carbonate having 2 carbon atoms has a high degree of structural freedom and a low melting point as the number of carbon atoms is large, but on the contrary, the dielectric constant is low and the solubility of the electrolyte is low, which makes it difficult to use as a solvent.
【0013】それらの対称形鎖状カーボネートに比べ上
記構造式中のRとR′が異なる非対称形のカーボネー
ト、例えばR,R′中の炭素数がそれぞれ1と2である
エチルメチルカーボネートが優れた溶媒であることは特
開平2−148665号で報告されているが、これを単
独で用いると低温での溶質溶解能力が不十分なため、低
温での放電特性に問題があった。Compared with these symmetric chain carbonates, asymmetric carbonates in which R and R'in the above structural formula are different, for example, ethyl methyl carbonate in which R and R'have 1 and 2 carbon atoms, respectively, are superior. It has been reported in JP-A-2-148665 that it is a solvent, but if it is used alone, the solute-dissolving ability at low temperatures is insufficient, so there was a problem with the discharge characteristics at low temperatures.
【0014】さらに、環状および鎖状カーボネートを混
合して用いた場合は、それぞれを単独で用いた場合に生
じていた上記の問題が解消でき、常温での電池の充放電
特性を改良できることを特開平2−289150号で述
べている。この発明はその中でも非対称形鎖状カーボネ
ートが特に優れたものであることを見い出し、報告する
ものである。Furthermore, when cyclic and chain carbonates are mixed and used, it is possible to solve the above-mentioned problems that occur when each is used alone, and it is possible to improve the charge / discharge characteristics of the battery at room temperature. It is described in Kaihei 2-289150. The present invention finds and reports that the asymmetric chain carbonate is particularly excellent among them.
【0015】本発明は、上記の課題を解決するもので、
長寿命であり、しかも低温での容量保持率にも優れた非
水電解液二次電池を提供することを、主たる目的とした
ものである。The present invention solves the above-mentioned problems.
The main object of the present invention is to provide a non-aqueous electrolyte secondary battery having a long life and an excellent capacity retention rate at low temperatures.
【0016】また、本発明は非水電解液二次電池にとっ
て好ましい非水電解液の溶媒組成を提供することも目的
としている。Another object of the present invention is to provide a solvent composition of the non-aqueous electrolyte solution which is preferable for the non-aqueous electrolyte secondary battery.
【0017】[0017]
【課題を解決するための手段】上記の課題を解決し、先
に述べた目的を達成するため、本発明は一般式ROCO
OR′(ただし、R≠R′、R,R′は炭素数1〜4の
アルキル基)で示される鎖状カーボネートと環状カーボ
ネートとを電解液の溶媒に含むものである。特に鎖状カ
ーボネートの体積/エチレンカーボネートの体積の比率
を1以上9以下とし、その体積の合計を全溶媒中の70
%以上とすることにより、優れた非水電解液二次電池用
の電解液を提供するものである。In order to solve the above problems and achieve the above-mentioned objects, the present invention provides a general formula ROCO.
The solvent of the electrolytic solution contains a chain carbonate represented by OR '(where R ≠ R', R and R'are alkyl groups having 1 to 4 carbon atoms) and a cyclic carbonate. Particularly, the ratio of the volume of chain carbonate / the volume of ethylene carbonate is set to 1 or more and 9 or less, and the total volume is 70% in all solvents.
When it is at least%, an excellent electrolytic solution for a non-aqueous electrolytic solution secondary battery is provided.
【0018】又、その際X線回折法による002面の面
間隔(d002)が3.39Å以下である炭素材料を負極
に用いた場合の環状カーボネートはエチレンカーボネー
トが、3.40Å以上の炭素材料を負極に用いた場合の
環状カーボネートはプロピレンカーボネートが最適な組
合せである。At that time, when a carbon material having a 002 plane spacing (d002) of 3.39Å or less by X-ray diffraction method is used for the negative electrode, the cyclic carbonate is a carbon material of ethylene carbonate of 3.40Å or more. Propylene carbonate is an optimal combination as the cyclic carbonate when is used for the negative electrode.
【0019】[0019]
【作用】電解液中の環状カーボネートは、溶質である無
機塩を多量に溶かすことにより電解液の電導度を上げる
ことに効果があり、鎖状カーボネートは電池の充電時に
リチウムに配位して容易に炭素材の層間に入りうるた
め、溶媒の分解を抑えることができる。[Function] The cyclic carbonate in the electrolytic solution is effective in increasing the conductivity of the electrolytic solution by dissolving a large amount of the inorganic salt that is a solute, and the chain carbonate easily coordinates with lithium during battery charging. In addition, since the carbonaceous material can enter the interlayer, the decomposition of the solvent can be suppressed.
【0020】特に非対称形の鎖状カーボネートを用いる
ことにより、高い電導度と低い融点とを備えた電解液と
することができ、その結果優れた低温特性を発揮する。In particular, by using an asymmetric chain carbonate, an electrolytic solution having a high conductivity and a low melting point can be obtained, and as a result, excellent low temperature characteristics are exhibited.
【0021】[0021]
【実施例】以下、図面とともに本発明の実施例を説明す
る。なお、これらの実施例においては円筒形の電池を構
成してその評価を行った。Embodiments of the present invention will be described below with reference to the drawings. In these examples, a cylindrical battery was constructed and evaluated.
【0022】(実施例1)図1に円筒形電池の縦断面図
を示す。図において1は正極を示し、活物質であるLi
CoO2に導電材としてカーボンブラックを、結着剤と
してポリ四フッ化エチレンの水性ディスパージョンを重
量比で100:3:10の割合で混合したものをアルミ
ニウム箔の両面に塗着,乾燥し、圧延した後所定の大き
さに切断したものである。これには2のチタン製リード
板をスポット溶接している。なお結着剤のポリ四フッ化
エチレンの水性ディスパージョンの混合比率は、その固
形分で計算している。3は負極で、メソカーボンマイク
ロビーズを2800℃で熱処理して黒鉛化したもの(d
002=3.38Å)を主材料とし、これとアクリル系結
着剤とを重量比で100:5の割合で混合したものをニ
ッケル箔の両面に塗着,乾燥し、圧延した後所定の大き
さに切断したものである。これにもその下側に4で示す
ニッケル製の負極リード板をスポット溶接している。5
はポリプロピレン製の微孔性フィルムからなるセパレー
タで、正極1と負極3との間に介在し、全体が渦巻状に
捲回されて極板群を構成している。この極板群の上下の
端にはそれぞれポリプロピレン製の絶縁板6,7を配し
て鉄にニッケルメッキしたケース8に挿入する。そして
正極リード2をチタン製の封口板10に、負極リード4
をケース8の底部にそれぞれスポット溶接した後、所定
量の電解液をケース内に注入し、ガスケット9を介して
電池を封口板10で封口して完成電池とする。この電池
の寸法は直径14mm、高さ50mmである。なお、11は
電池の正極端子であり、負極端子は電池ケース8がこれ
を兼ねている。(Embodiment 1) FIG. 1 shows a vertical sectional view of a cylindrical battery. In the figure, 1 indicates a positive electrode, which is an active material Li.
CoO 2 mixed with carbon black as a conductive material and an aqueous dispersion of polytetrafluoroethylene as a binder in a weight ratio of 100: 3: 10 was applied to both sides of an aluminum foil and dried, After being rolled, it is cut into a predetermined size. To this, 2 titanium lead plates are spot welded. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene as the binder is calculated by its solid content. 3 is a negative electrode, which is obtained by heat-treating mesocarbon microbeads at 2800 ° C. and graphitized (d
002 = 3.38Å) as a main material, and a mixture of this and an acrylic binder in a weight ratio of 100: 5 was applied on both sides of a nickel foil, dried, and rolled to a predetermined size. It is cut into pieces. Also, a nickel negative electrode lead plate shown by 4 is spot-welded to the lower side of this. 5
Is a separator made of a polypropylene microporous film, which is interposed between the positive electrode 1 and the negative electrode 3 and is wholly wound in a spiral to form an electrode plate group. Insulating plates 6 and 7 made of polypropylene are arranged at the upper and lower ends of the electrode plate group, respectively, and inserted into a case 8 made of nickel plated with iron. The positive electrode lead 2 is attached to the titanium sealing plate 10 and the negative electrode lead 4 is attached.
After spot welding to the bottom of the case 8, a predetermined amount of electrolytic solution is injected into the case, and the battery is sealed with the sealing plate 10 through the gasket 9 to complete the battery. The dimensions of this battery are 14 mm in diameter and 50 mm in height. In addition, 11 is a positive electrode terminal of the battery, and the battery case 8 also serves as a negative electrode terminal.
【0023】以下実施例1−1について述べる。 (実施例1−1)電解液の溶媒には環状カーボネートで
あるエチレンカーボネート(以下ECという)と、環状
エーテルであるテトラヒドロフラン(以下THFとい
う)と、鎖状エーテルであるジメトキシエタン(以下D
MEという)と、鎖状カーボネートであるエチルメチル
カーボネート(以下EMCという)を用いて以下に示し
た円筒形電池A〜Eの試作を行った。混合比は体積比で
示している。なお電解液の溶質には六フッ化リン酸リチ
ウムを用い、それぞれ1モル/lの濃度になるように調
整した。以下、全ての実施例において溶質の種類および
濃度は同一にした。Example 1-1 will be described below. (Example 1-1) Ethylene carbonate (hereinafter referred to as EC) which is a cyclic carbonate, tetrahydrofuran (hereinafter referred to as THF) which is a cyclic ether, and dimethoxyethane (hereinafter referred to as D) which is a chain ether are used as the solvent of the electrolytic solution.
Cylindrical batteries A to E shown below were manufactured by using ME) and ethyl methyl carbonate (hereinafter referred to as EMC) which is a chain carbonate. The mixing ratio is shown by volume ratio. Lithium hexafluorophosphate was used as the solute of the electrolytic solution, and the concentration was adjusted to 1 mol / l. Hereinafter, the type and concentration of the solute were the same in all the examples.
【0024】電池A……EC=100 電池B……EC:THF=20:80 電池C……EC:DME=20:80 電池D……EC:EMC=20:80 電池E……EMC=100 評価した電池特性はサイクル寿命特性と低温特性であ
る。Battery A ... EC = 100 Battery B ... EC: THF = 20: 80 Battery C ... EC: DME = 20: 80 Battery D ... EC: EMC = 20: 80 Battery E ... EMC = 100 The battery characteristics evaluated are cycle life characteristics and low temperature characteristics.
【0025】試験条件は、充放電電流100mA,充電終
止電圧4.2V、放電終止電圧3.0Vとし、20℃で
一度充放電を行ない、更に充電した後、温度を−10℃
に変えて放電し、その放電容量の大きさで低温特性を評
価した。その後温度を20℃に戻し、同様の電圧、電流
条件で充放電を繰り返し、放電容量が初期の50%に劣
化した時点で試験を終了し、そのサイクル数をサイクル
寿命とした。以下全ての実施例において同一の条件で試
験を行った。The test conditions were a charge / discharge current of 100 mA, a charge end voltage of 4.2 V, and a discharge end voltage of 3.0 V. Charging / discharging was performed once at 20 ° C., and after further charging, the temperature was −10 ° C.
The discharge temperature was changed to, and the low temperature characteristics were evaluated by the magnitude of the discharge capacity. Thereafter, the temperature was returned to 20 ° C., charging and discharging were repeated under the same voltage and current conditions, the test was terminated when the discharge capacity deteriorated to 50% of the initial value, and the number of cycles was taken as the cycle life. In all the following examples, the tests were conducted under the same conditions.
【0026】電池A〜Eのサイクル寿命特性を図2に示
す。図2よりサイクル寿命特性のよい順にD−E−A−
C−Bとなった。中でもエーテル系溶媒を含むB,Cの
サイクル寿命が短かったが、これは上述した如く充電時
にエーテルであるTHFやDMEが分解するためと考え
られる。次に環状エステルを単独で用いたAのサイクル
寿命が短かった。これは充電時に負極では炭素材の層間
へリチウムイオンがインターカレートする反応が起きる
が、その際リチウムイオンに配位した溶媒分子も共に層
間に引き込まれようとするため、環状構造を持ち分子の
大きい溶媒は一部分解し、その結果サイクル特性が低下
すると考えられる。また、鎖状カーボネート単独系のE
は2番目にサイクル寿命が長かったものの、放電容量は
小さかった。これは溶媒の誘電率が低いために電解液の
電導度が低く、電池の分極が大きくなり、早く放電終止
電圧に達したためと考えられる。Dの環状カーボネート
と鎖状カーボネートの混合系は、環状エステルのもつ溶
質である無機塩を多量に溶かすことにより電解液の電導
度を上げる効果と、鎖状カーボネートのもつ電池の充電
時にリチウムを配位して容易に炭素材の層間に入りうる
ことによる溶媒の分解を抑える効果によりサイクル寿命
が最も長かった。The cycle life characteristics of the batteries A to E are shown in FIG. From FIG. 2, in order of good cycle life characteristics, DEA-A-
It became CB. Among them, the cycle life of B and C containing the ether solvent was short, but it is considered that this is because the ether or THF or DME is decomposed during charging as described above. Next, the cycle life of A in which the cyclic ester was used alone was short. At the time of charging, at the negative electrode, a reaction occurs in which lithium ions intercalate between the layers of the carbon material, but at that time the solvent molecules coordinated with the lithium ions also try to be drawn into the layers, and thus have a cyclic structure and molecular It is considered that the large solvent partially decomposes, resulting in deterioration of cycle characteristics. In addition, chain carbonate alone E
Had the second longest cycle life, but the discharge capacity was small. It is considered that this is because the conductivity of the electrolytic solution was low due to the low dielectric constant of the solvent, the polarization of the battery was large, and the discharge end voltage was reached quickly. The mixed system of cyclic carbonate and chain carbonate of D has the effect of increasing the conductivity of the electrolytic solution by dissolving a large amount of the inorganic salt that is a solute of the cyclic ester, and the lithium carbonate is distributed when the battery of chain carbonate is charged. The cycle life was the longest due to the effect of suppressing the decomposition of the solvent due to the fact that it can easily enter the layers of the carbon material.
【0027】次に図3により低温特性のよい順にB−C
−D−A,Eとなり、AとEは低温では作動しなかっ
た。Aは高凝固点溶媒を単独で用いたため低温で電解液
が凝固して作動せず、Eは低誘電率溶媒を単独で用いた
ため低温での電導度が小さく、従って電池の分極が大と
なり、電流を流すとすぐに放電終止電圧に達したため放
電できなかったと考えられる。Next, referring to FIG. 3, in the order of good low temperature characteristics, BC
-D-A, E, and A and E did not work at low temperature. A is a high freezing point solvent alone, so the electrolyte does not work at low temperature and does not work, and E is a low dielectric constant solvent alone, so it has a low electrical conductivity at low temperature and therefore a large polarization of the battery It is considered that the discharge could not be completed because the discharge end voltage was reached immediately after the flow of the current.
【0028】それに対して環状カーボネートとエーテル
混合系のB,Cは低温でも比較的高電導度を有するため
に良好な低温特性を示した。B,Cに比べてDの環状カ
ーボネートと鎖状カーボネートの混合系は電導度が低
く、エーテル系と比べ粘度が高いため、やや低温特性に
劣るという結果であった。On the other hand, the cyclic carbonate and ether mixed systems B and C showed good low temperature characteristics because they had relatively high electric conductivity even at low temperature. Compared to B and C, the mixed system of the cyclic carbonate and the chain carbonate of D has a lower electric conductivity and a higher viscosity than that of the ether system, so that the low temperature characteristics are slightly inferior.
【0029】以上の結果よりサイクル寿命特性と低温特
性の両特性で優れているのは、環状カーボネートと鎖状
カーボネートの混合系であった。From the above results, it was the mixed system of cyclic carbonate and chain carbonate that was excellent in both cycle life characteristics and low temperature characteristics.
【0030】次に実施例1−2について述べる。 (実施例1−2)電解液の溶媒として実施例1−1で用
いたECとEMCのほか、環状カーボネートであるプロ
ピレンカーボネート(以下PCという)、鎖状カーボネ
ートであるジメチルカーボネート(以下DMCとい
う)、ジエチルカーボネート(以下DECという)、プ
ロピルエチルカーボネート(以下PECという)を組み
合わせて調整した以下に示す6種類の混合溶媒系につい
て、上記円筒形電池の試作を行った。Next, Example 1-2 will be described. (Example 1-2) In addition to EC and EMC used in Example 1-1 as a solvent of an electrolytic solution, propylene carbonate (hereinafter referred to as PC) which is a cyclic carbonate, dimethyl carbonate (hereinafter referred to as DMC) which is a chain carbonate. The above cylindrical battery was prototyped for the following 6 types of mixed solvent systems prepared by combining diethyl carbonate (hereinafter referred to as DEC) and propylethyl carbonate (hereinafter referred to as PEC).
【0031】電池F……EC:DMC=20:80 電池G……EC:EMC=20:80 電池H……EC:DEC=20:80 電池I……EC:PEC=20:80 電池J……PC:DMC=20:80 電池K……PC:EMC=20:80 電池L……PC:DEC=20:80 電池M……PC:PEC=20:80 電池F〜Mのサイクル寿命特性を図4、低温特性を図5
に示す。Battery F ... EC: DMC = 20: 80 Battery G ... EC: EMC = 20: 80 Battery H ... EC: DEC = 20: 80 Battery I ... EC: PEC = 20: 80 Battery J ... PC: DMC = 20: 80 Battery K ... PC: EMC = 20: 80 Battery L ... PC: DEC = 20: 80 Battery M ... PC: PEC = 20: 80 Cycle life characteristics of batteries F to M Figure 4, Figure 5 shows the low temperature characteristics
Shown in.
【0032】図4よりサイクル寿命特性のよい順にF−
G−H−I−J,K,L,Mとなり、J,K,L,Mは
いずれも5サイクルまでに電池に漏液が認められた。こ
れはJournal of Electrochemi
cal Science vol,117 No.2(1
970)でA.N.Dey等によって述べられているよ
うに、黒鉛上でPCの分解反応が起こり、ガス発生した
ため電池が開放(ベント)、漏液し、それ以降充放電が
できなくなったものである。From FIG. 4, F-
G-HI-J-J, K, L, M, and all of J, K, L, M were found to leak into the battery by 5 cycles. This is the Journal of Electrochemi
cal Science vol, 117 No. 2 (1
970). N. As described by Dey et al., The decomposition reaction of PC occurred on graphite and gas was generated, so that the battery was opened (vented) and leaked, and thereafter charge / discharge was impossible.
【0033】また、EC系で比較した場合、大きな差は
見られなかったものの、傾向的には鎖状カーボネートは
分子構造の小さいものほどサイクル寿命特性がよいとい
う結果であった。これは充電時に負極の炭素材層間へリ
チウムイオンとともにインターカレートする際に溶媒分
子が小さいほうが溶媒の分解が起こりにくいためと考え
られる。Further, when compared by the EC system, no large difference was observed, but the tendency was that the chain carbonate having a smaller molecular structure had better cycle life characteristics. This is presumably because the smaller the solvent molecules are when the intercalating with the lithium ions into the carbon material layer of the negative electrode during charging, the more difficult the solvent is to decompose.
【0034】以上の結果から、負極にメソカーボンマイ
クロビーズ(d002=3.38Å)を用いた場合、サイ
クル寿命特性は、環状カーボネートにエチレンカーボネ
ートを用いた場合に良好であり、混合する鎖状カーボネ
ートは分子が小さいほど良好であるということがわかっ
た。From the above results, when mesocarbon microbeads (d002 = 3.38Å) were used for the negative electrode, the cycle life characteristics were good when ethylene carbonate was used for the cyclic carbonate, and the chain carbonate to be mixed was used. Has been found to be better the smaller the molecule.
【0035】次に図5により低温特性のよい順にK−M
−L−G−I−H−J−Fとなり、Fは全く作動しなか
った。これはECとDMCの両方が0℃以上の高凝固点
を有するために−10℃で電解液が凝固したからであ
る。PCとDMCの混合系であるJもその次に悪かっ
た。それに比べて低凝固点のEMC,PEC,DECを
用いたK〜M、あるいはG〜Iは比較的良好な低温特性
を示した。なかでもEMC,PECの非対称系の鎖状カ
ーボネートを用いた場合に特に低温特性が良好であっ
た。環状カーボネートにはECよりもPCを用いた場合
のほうが低温特性は優れており、これは低温における電
解液の粘度がPCを用いたほうが低くなることによると
考えられる。Next, referring to FIG.
-L-G-I-H-J-F and F did not work at all. This is because both EC and DMC have a high freezing point of 0 ° C. or higher, so that the electrolytic solution is solidified at −10 ° C. J, which is a mixed system of PC and DMC, was next bad. In contrast, KM or GI using low freezing point EMC, PEC, and DEC exhibited relatively good low-temperature characteristics. In particular, the low-temperature characteristics were particularly good when EMC and PEC asymmetric chain carbonates were used. When PC is used as the cyclic carbonate, the low temperature characteristics are superior to when EC is used, and it is considered that this is because the viscosity of the electrolytic solution at low temperature is lower when PC is used.
【0036】以上の結果から負極にメソカーボンマイク
ロビーズ(d002=3.38Å)を用いた場合、サイク
ル寿命特性、−10℃における低温特性の両方におい
て、ECと非対称系の鎖状カーボネートの混合系が良好
であり、特にECとEMCとの混合系が良好であった。From the above results, when mesocarbon microbeads (d002 = 3.38Å) were used for the negative electrode, both the cycle life characteristics and the low temperature characteristics at −10 ° C. exhibited a mixed system of EC and an asymmetric chain carbonate. Was good, and especially the mixed system of EC and EMC was good.
【0037】次に実施例1−3について述べる。 (実施例1−3)電解液の溶媒として実施例1−2で最
もよい特性を示したECとEMCとを用いて、以下に示
す6種類の混合溶媒系について上記円筒形電池の試作を
行った。Next, Examples 1-3 will be described. (Example 1-3) Using the EC and EMC that showed the best characteristics in Example 1-2 as the solvent for the electrolytic solution, the above cylindrical battery was prototyped for the following six mixed solvent systems. It was
【0038】電池N……EC:EMC= 5:95 電池O……EC:EMC=10:90 電池P……EC:EMC=20:80 電池Q……EC:EMC=30:70 電池R……EC:EMC=40:60 電池S……EC:EMC=50:50 電池T……EC:EMC=60:40 電池N〜Tのサイクル寿命特性を図6、低温特性を図7
にそれぞれ示す。Battery N ... EC: EMC = 5: 95 Battery O ... EC: EMC = 10: 90 Battery P ... EC: EMC = 20: 80 Battery Q ... EC: EMC = 30: 70 Battery R ... ... EC: EMC = 40: 60 Battery S ... EC: EMC = 50: 50 Battery T ... EC: EMC = 60: 40 Battery N to T cycle life characteristics are shown in FIG. 6 and low temperature characteristics are shown in FIG.
Are shown respectively.
【0039】図6よりサイクル寿命特性のよい順にO−
P−Q−R−S−N−Tとなった。Tの寿命が短いのは
溶媒分子が大きく、充電時に分解しやすいECの比率が
大のためで、またNの寿命が短いのはECの比率が小さ
いために溶質溶解能力が不足し、それにともなって電解
液の電導度が低下し、電池内で充放電反応が均一におこ
らずに反応深度の深い部分のサイクルに伴う容量劣化が
大きくなり、電池全体としての容量劣化も大きくなった
と考えられる。それ以外のO〜Sの電池では溶媒分子が
小さく、充電時に分解しにくいと考えられるEMCの比
率が大きいほどサイクル寿命特性が良好であるという結
果であった。From FIG. 6, O-
It became P-Q-R-S-N-T. The life of T is short because the solvent molecules are large and the ratio of EC that is easily decomposed during charging is large, and the life of N is short because the ratio of EC is small and the solute dissolving ability is insufficient. It is considered that the conductivity of the electrolyte was lowered, the charge / discharge reaction did not occur uniformly in the battery, and the capacity deterioration due to the cycle of the portion having a deep reaction depth increased, and the capacity deterioration of the battery as a whole also increased. In other batteries of O to S, the solvent molecules were small, and the larger the ratio of EMC, which is considered to be less likely to be decomposed during charging, was, the better the cycle life characteristics were.
【0040】次に図7より低温特性のよい順にP−O−
Q−R−S−N,Tとなり、NとTは全く作動しなかっ
た。Tが作動しなかったのは高凝固点溶媒のECの比率
が大であるために低温で電解液が凝固したためである。
一方Nが作動しなかったのはECの比率が小さいために
溶質溶解能力が不足し、それにともなう電解液の電導度
の低下のためと考えられる。それ以外のO〜Sの電池で
は電導度が高い組成ほど低温特性がよかった。Next, as shown in FIG. 7, P-O-
Q-R-S-N, T, and N and T did not work at all. The reason why T did not work was that the proportion of EC in the high freezing point solvent was large, so that the electrolytic solution solidified at a low temperature.
On the other hand, it is considered that the reason why N did not work was that the solute dissolving ability was insufficient due to the small proportion of EC, and the electrical conductivity of the electrolytic solution was reduced accordingly. In the other batteries of O to S, the composition having higher conductivity had better low temperature characteristics.
【0041】以上の結果からECとEMCとの混合比率
はEC/EMCの値が1以上9以下の範囲が適している
ことがわかった。From the above results, it was found that the mixing ratio of EC and EMC is preferably such that the value of EC / EMC is 1 or more and 9 or less.
【0042】次に負極の炭素材の結晶性と、最適な環状
カーボネートの種類について検討を行った。Next, the crystallinity of the carbon material of the negative electrode and the optimum kind of cyclic carbonate were examined.
【0043】負極には気相成長炭素繊維(VGCF)を
用い、その焼成温度を1400〜2800℃の範囲で変
えることによってX線回折法による002面の面間隔
(d002)値を変えた5種類の負極について、EC+E
MC,PC+EMCの2種類の電解液の適合の良否を検
討した。Vapor grown carbon fiber (VGCF) was used for the negative electrode, and the firing temperature was changed in the range of 1400 to 2800 ° C. to change the interplanar spacing (d002) value of the 002 plane by the X-ray diffraction method. EC + E for the negative electrode of
The suitability of two types of electrolytic solutions, MC and PC + EMC, was examined.
【0044】以下、その実施例2について述べる。 (実施例2)負極材料と、電解液中の溶媒が異なる以外
は実施例1と全く同一条件で電池を作成した。電池の試
作内容を以下の(表1)に示す。溶媒の混合比はいずれ
も体積比で20:80とした。The second embodiment will be described below. (Example 2) A battery was prepared under exactly the same conditions as in Example 1 except that the negative electrode material and the solvent in the electrolytic solution were different. The contents of the trial manufacture of the battery are shown in (Table 1) below. The mixing ratio of the solvents was 20:80 by volume.
【0045】[0045]
【表1】 [Table 1]
【0046】電池a〜jのサイクル寿命特性を図8、各
電池の10サイクル目の放電容量を図9にそれぞれ示
す。FIG. 8 shows the cycle life characteristics of the batteries a to j, and FIG. 9 shows the discharge capacity at the 10th cycle of each battery.
【0047】図8よりf,gを除く電池はいずれもサイ
クル寿命が長かったが、fとgは5サイクル目までに電
池に漏液が認められた。これより負極のX線回折法によ
る002面の面間隔(d002)値が3.39Å以下の場
合、電解液の溶媒にPCを用いるとガス発生するが、
3.43Å以上の場合はガス発生せずに良好なサイクル
寿命特性が得られることがわかった。電池hのサイクル
寿命がやや短いのはPCの一部がガス発生を生じている
ためと考えられる。From FIG. 8, all the batteries except f and g had a long cycle life, but with f and g, leakage was recognized in the battery by the 5th cycle. From this, when the interplanar spacing (d002) value of the 002 surface by the X-ray diffraction method of the negative electrode is 3.39 Å or less, gas is generated when PC is used as the solvent of the electrolytic solution
It has been found that when the pressure is 3.43 Å or more, good cycle life characteristics can be obtained without generating gas. It is considered that the reason why the cycle life of the battery h is slightly short is that a part of the PC generates gas.
【0048】また、大きな違いはないが、電池のサイク
ル寿命は負極のd002値が大きいほど長い傾向がある。
これは炭素層間が大きいほど溶媒の分解が起こりにくい
ためと考えられる。Although there is no big difference, the cycle life of the battery tends to be longer as the d002 value of the negative electrode is larger.
It is considered that this is because the larger the carbon layer is, the less likely the solvent is decomposed.
【0049】一方、図9より電池の放電容量は負極のd
002値が小さいほど、すなわち負極の結晶性が高いほど
大きく、電解液に用いる環状カーボネートがECよりも
PCであるほうが大きいことがわかった。On the other hand, from FIG. 9, the discharge capacity of the battery is d of the negative electrode.
It was found that the smaller the value of 002, that is, the higher the crystallinity of the negative electrode, the larger the value is, and that the cyclic carbonate used in the electrolytic solution is PC rather than EC.
【0050】以上の結果から負極の炭素材のX線回折法
による002面の面間隔(d002)値が3.39Å以下
の場合には電解液の溶媒としての環状カーボネートにE
Cを用い、3.40Å以上の場合はPCを用いることに
より、優れたサイクル寿命特性及び容量特性を得ること
ができる。From the above results, when the value of the spacing (d002) of the 002 plane of the carbon material of the negative electrode by the X-ray diffraction method is 3.39Å or less, the cyclic carbonate as the solvent of the electrolytic solution becomes E.
By using C and using PC in the case of 3.40 Å or more, excellent cycle life characteristics and capacity characteristics can be obtained.
【0051】なお、実施例では正極活物質にリチウムと
コバルトの複合酸化物を用いたが、他のたとえばリチウ
ムとニッケルの複合酸化物、リチウムとマンガンの複合
酸化物、リチウムと鉄の複合酸化物などのリチウム含有
酸化物、もしくは上記複合酸化物のそれぞれコバルト、
ニッケル、マンガン、鉄を他の遷移金属で一部置換した
ものでもほぼ同様の結果が得られた。Although the composite oxide of lithium and cobalt was used as the positive electrode active material in the examples, other composite oxides of lithium and nickel, composite oxides of lithium and manganese, and composite oxides of lithium and iron were used. Lithium-containing oxides such as, or cobalt of each of the above composite oxides,
Similar results were obtained with nickel, manganese, and iron partially replaced with other transition metals.
【0052】また、電解液の溶質には六フッ化リン酸リ
チウムを用いたが、他のリチウム含有塩、例えばホウフ
ッ化リチウム、過塩素酸リチウム、トリフルオロメタン
スルホン酸リチウム、六フッ化ヒ酸リチウムなどを用い
てもほぼ同様の結果が得られた。Although lithium hexafluorophosphate was used as the solute of the electrolytic solution, other lithium-containing salts such as lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, and lithium hexafluoroarsenate were used. Almost similar results were obtained by using
【0053】また、非対称形の鎖状カーボネートとして
エチルメチルカーボネートとプロピルエチルカーボネー
トを用いたが、他の例えばプロピルメチルカーボネート
でもほぼ同様の結果が得られた。ただし、その構造式R
OCOOR′におけるRとR′中の炭素数が5以上にな
ると誘電率が低下するため、好ましくは炭素数が4以下
のものが望ましい。Although ethyl methyl carbonate and propyl ethyl carbonate were used as the asymmetric chain carbonates, other similar results were obtained with propyl methyl carbonate, for example. However, its structural formula R
When the carbon number in R and R'in OCOOR 'becomes 5 or more, the dielectric constant decreases, so that the carbon number is preferably 4 or less.
【0054】また、環状カーボネートと鎖状カーボネー
トとの体積の和は、電池の良好なサイクル特性のために
は溶媒の主成分をなすことが必要で、上記の和が溶媒全
体積の70%以上を占めることが望ましい。Further, the sum of the volumes of the cyclic carbonate and the chain carbonate needs to be a main component of the solvent for good cycle characteristics of the battery, and the above sum is 70% or more of the total volume of the solvent. It is desirable to occupy.
【0055】[0055]
【発明の効果】以上の説明で明らかなように、本発明に
よれば電解液の溶媒に環状カーボネートと非対称形鎖状
カーボネートとの2成分系混合溶媒を用い、鎖状カーボ
ネート/環状カーボネートの体積比率を1以上9以下と
し、その体積の合計(和)が全溶媒体積の70%以上を
占めることにより、サイクル寿命特性、低温特性に優れ
た非水電解液二次電池を提供することができる。As is apparent from the above description, according to the present invention, the binary carbonate mixed solvent of the cyclic carbonate and the asymmetric chain carbonate is used as the solvent of the electrolytic solution, and the volume of the chain carbonate / cyclic carbonate is increased. When the ratio is 1 or more and 9 or less and the total volume (sum) occupies 70% or more of the total solvent volume, it is possible to provide a non-aqueous electrolyte secondary battery having excellent cycle life characteristics and low temperature characteristics. .
【0056】又、その際X線回折法による002面の面
間隔(d002)が3.39Å以下である炭素材料を負極
を用いた場合の環状カーボネートにはエチレンカーボネ
ートが、3.40Å以上の炭素材料を用いた場合の環状
カーボネートにはプロピレンカーボネートが最適な組合
せである。At that time, when a carbon material having a 002 plane spacing (d002) of 3.39Å or less by the X-ray diffraction method is used for the negative electrode, the cyclic carbonate contains ethylene carbonate of 3.40Å or more. Propylene carbonate is the optimal combination of cyclic carbonates when materials are used.
【図1】本発明の実施例における円筒形電池の縦断面図FIG. 1 is a vertical sectional view of a cylindrical battery according to an embodiment of the present invention.
【図2】実施例1−1における電池の20℃でのサイク
ル寿命を示す図FIG. 2 is a diagram showing the cycle life of the battery in Example 1-1 at 20 ° C.
【図3】実施例1−1における電池の−10℃での放電
電圧の推移を示す図FIG. 3 is a graph showing changes in the discharge voltage at −10 ° C. of the battery in Example 1-1.
【図4】実施例1−2における電池の20℃でのサイク
ル寿命を示す図FIG. 4 is a diagram showing the cycle life of the battery in Example 1-2 at 20 ° C.
【図5】実施例1−2における電池の−10℃での放電
電圧の推移を示す図FIG. 5 is a graph showing changes in the discharge voltage at −10 ° C. of the battery in Example 1-2.
【図6】実施例1−3における電池の20℃でのサイク
ル寿命を示す図FIG. 6 is a diagram showing the cycle life of the battery in Example 1-3 at 20 ° C.
【図7】実施例1−3における電池の−10℃での放電
電圧の推移を示す図FIG. 7 is a graph showing changes in discharge voltage at −10 ° C. of the battery in Example 1-3.
【図8】実施例2における電池の20℃でのサイクル寿
命を示す図FIG. 8 is a diagram showing the cycle life of the battery in Example 2 at 20 ° C.
【図9】実施例2における電池の10サイクル目の放電
容量を示す図9 is a diagram showing the discharge capacity at the 10th cycle of the battery in Example 2. FIG.
1 正極 2 正極リード板 3 負極 4 負極リード板 5 セパレータ 6 上部絶縁板 7 下部絶縁板 8 ケース 9 ガスケット 10 封口板 11 正極端子 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode lead plate 3 Negative electrode 4 Negative electrode lead plate 5 Separator 6 Upper insulating plate 7 Lower insulating plate 8 Case 9 Gasket 10 Sealing plate 11 Positive electrode terminal
Claims (11)
材からなる負極と、非水電解液と、リチウム含有酸化物
からなる正極とを備え、上記非水電解液はその溶媒に、
一般式ROCOOR′(ただし、R≠R′、R,R′は
炭素数1〜4のアルキル基)で示される非対称形鎖状カ
ーボネートと環状カーボネートとの混合溶媒を含むこと
を特徴とする非水電解液二次電池。1. A negative electrode made of a carbon material capable of inserting and extracting lithium ions, a non-aqueous electrolytic solution, and a positive electrode made of a lithium-containing oxide. The non-aqueous electrolytic solution is used as a solvent for the non-aqueous electrolytic solution.
A non-aqueous liquid containing a mixed solvent of an asymmetric chain carbonate and a cyclic carbonate represented by the general formula ROCOOR '(where R ≠ R', R and R'are alkyl groups having 1 to 4 carbon atoms). Electrolyte secondary battery.
ーボネートが、エチルメチルカーボネート,プロピルメ
チルカーボネートおよびプロピルエチルカーボネートか
らなる群のうちのいずれかである請求項1に記載の非水
電解液二次電池。2. The non-aqueous electrolyte solution according to claim 1, wherein the asymmetric chain carbonate which is a solvent component of the electrolyte solution is one of the group consisting of ethylmethyl carbonate, propylmethyl carbonate and propylethyl carbonate. Secondary battery.
ーボネートの体積/環状カーボネートの体積の比率が1
以上9以下であり、この非対称形鎖状カーボネートと環
状カーボネートとの体積の合計が全溶媒中の70%以上
を占めている請求項1または2に記載の非水電解液二次
電池。3. The volume ratio of the asymmetric chain carbonate / volume of the cyclic carbonate, which is the solvent component of the electrolytic solution, is 1
The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the total volume of the asymmetric chain carbonate and the cyclic carbonate accounts for 70% or more of the total solvent.
酸リチウム,ホウフッ化リチウム,過塩素酸リチウムお
よびトリフルオロメタンスルホン酸リチウムからなる群
のうち少なくとも一つを含む請求項1〜3のいずれかに
記載の非水電解液二次電池。4. The non-aqueous electrolyte contains at least one of the group consisting of lithium hexafluorophosphate, lithium borofluoride, lithium perchlorate and lithium trifluoromethanesulfonate as a solute. The non-aqueous electrolyte secondary battery according to any one of 1.
酸化物、リチウムとニッケルの複合酸化物、リチウムと
マンガンの複合酸化物、リチウムと鉄の複合酸化物、お
よび上記各複合酸化物のそれぞれコバルト、ニッケル、
マンガン、鉄を他の遷移金属で一部置換したものからな
る群のうちのいずれかである請求項1〜4のいずれかに
記載の非水電解液二次電池。5. The positive electrode active material is a composite oxide of lithium and cobalt, a composite oxide of lithium and nickel, a composite oxide of lithium and manganese, a composite oxide of lithium and iron, and cobalt of each of the above composite oxides. ,nickel,
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, which is any one of the group consisting of manganese and iron partially substituted with other transition metals.
コークス、炭素繊維をそれぞれ2000℃以上の温度で
熱処理したもの、人造黒鉛、天然黒鉛からなる群より選
ばれた単独、もしくは2種以上の混合物であり、かつ電
解液の溶媒成分である環状カーボネートがエチレンカー
ボネートである請求項1〜5のいずれかに記載の非水電
解液二次電池。6. The carbonaceous material of the negative electrode is one selected from the group consisting of coal coke, petroleum coke, and carbon fiber heat-treated at a temperature of 2000 ° C. or higher, artificial graphite, natural graphite, or two or more kinds. The non-aqueous electrolyte secondary battery according to claim 1, wherein the cyclic carbonate that is a mixture and is a solvent component of the electrolyte is ethylene carbonate.
よる002面の面間隔(d002)が3.39Å以下であ
る請求項6に記載の非水電解液二次電池。7. The non-aqueous electrolyte secondary battery according to claim 6, wherein the carbonaceous material of the negative electrode has a 002 plane spacing (d002) of 3.39 Å or less according to the X-ray diffraction method.
る002面の面間隔(d002)が3.36Å以上3.3
9Å以下である請求項6または7に記載の非水電解液二
次電池。8. The negative electrode carbonaceous material has an interplanar spacing (d002) of 002 planes of 3.36 Å or more by X-ray diffractometry 3.3 or more.
The non-aqueous electrolyte secondary battery according to claim 6, which has a height of 9 Å or less.
程において生成するメソフェーズ小球体を原料としたメ
ソカーボンマイクロビーズを2000℃以上の温度で熱
処理して黒鉛化したものであり、かつX線広角回折法に
よる002面の面間隔(d002)が3.36Å以上3.
38Å以下である請求項8に記載の非水電解液二次電
池。9. The carbonaceous material of the negative electrode is mesocarbon microbeads made of mesophase microspheres produced in the carbonization process of pitch as a raw material and heat-treated at a temperature of 2000 ° C. or higher to be graphitized, and X The 002 plane spacing (d002) measured by the line wide-angle diffraction method is 3.36 Å or more.
The non-aqueous electrolyte secondary battery according to claim 8, which has a volume ratio of 38 Å or less.
による002面の面間隔(d002)が3.40Å以上で
あり、かつ電解液の溶媒成分である環状カーボネートが
プロピレンカーボネートである請求項1〜5のいずれか
に記載の非水電解液二次電池。10. The carbonaceous material of the negative electrode has an interplanar spacing (d002) of 002 planes of 3.40Å or more by an X-ray diffraction method, and a cyclic carbonate which is a solvent component of the electrolytic solution is propylene carbonate. Item 6. A non-aqueous electrolyte secondary battery according to any one of items 1 to 5.
による002面の面間隔(d002)が3.43Å以上で
あり、かつ電解液の溶媒成分である環状カーボネートが
プロピレンカーボネートである請求項1〜5のいずれか
に記載の非水電解液二次電池。11. The negative electrode carbonaceous material has an 002 plane spacing (d002) of 3.43 Å or more as determined by an X-ray diffraction method, and a cyclic carbonate which is a solvent component of the electrolytic solution is propylene carbonate. Item 6. A non-aqueous electrolyte secondary battery according to any one of items 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5073191A JPH06290809A (en) | 1993-03-31 | 1993-03-31 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5073191A JPH06290809A (en) | 1993-03-31 | 1993-03-31 | Non-aqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06290809A true JPH06290809A (en) | 1994-10-18 |
Family
ID=13511007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5073191A Pending JPH06290809A (en) | 1993-03-31 | 1993-03-31 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06290809A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0714607A (en) * | 1993-04-28 | 1995-01-17 | Sony Corp | Non-aqueous electrolyte secondary battery |
EP0782207A1 (en) * | 1995-12-25 | 1997-07-02 | SHARP Corporation | Nonaqueous type secondary battery |
US5861224A (en) * | 1997-07-15 | 1999-01-19 | Valence Technology, Inc. | Electrolyte solvent for lithium ion electrochemical cell |
US5962720A (en) * | 1997-05-29 | 1999-10-05 | Wilson Greatbatch Ltd. | Method of synthesizing unsymmetric organic carbonates and preparing nonaqueous electrolytes for alkali ion electrochemical cells |
JP2000156244A (en) * | 1998-11-18 | 2000-06-06 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
EP2068387A1 (en) | 2004-08-03 | 2009-06-10 | 3M Innovative Properties Company | Non-Aqueous Electrolytic Solution For Electrochemical Energy Devices |
-
1993
- 1993-03-31 JP JP5073191A patent/JPH06290809A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0714607A (en) * | 1993-04-28 | 1995-01-17 | Sony Corp | Non-aqueous electrolyte secondary battery |
EP0782207A1 (en) * | 1995-12-25 | 1997-07-02 | SHARP Corporation | Nonaqueous type secondary battery |
US6040092A (en) * | 1995-12-25 | 2000-03-21 | Sharp Kabushiki Kaisha | Nonaqueous secondary battery |
US5962720A (en) * | 1997-05-29 | 1999-10-05 | Wilson Greatbatch Ltd. | Method of synthesizing unsymmetric organic carbonates and preparing nonaqueous electrolytes for alkali ion electrochemical cells |
US6057062A (en) * | 1997-05-29 | 2000-05-02 | Wilson Greatbatch Ltd. | Method for preparing nonaqueous electrolytes for alkali ion electrochemical cells containing unsymmetric organic carbonates |
US5861224A (en) * | 1997-07-15 | 1999-01-19 | Valence Technology, Inc. | Electrolyte solvent for lithium ion electrochemical cell |
JP2000156244A (en) * | 1998-11-18 | 2000-06-06 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
EP2068387A1 (en) | 2004-08-03 | 2009-06-10 | 3M Innovative Properties Company | Non-Aqueous Electrolytic Solution For Electrochemical Energy Devices |
EP2068388A1 (en) | 2004-08-03 | 2009-06-10 | 3M Innovative Properties Company | Non-Aqueous Electrolytic Solution For Electrochemical Energy Devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5474862A (en) | Nonaqueous electrolyte secondary batteries | |
EP2151882B1 (en) | Electrolyte and Lithium Ion Secondary Battery Including the Same | |
US9088036B2 (en) | Rechargeable lithium battery | |
EP0495613A2 (en) | Lithium secondary battery and carbonaceous material useful therein | |
JP4423277B2 (en) | Lithium secondary battery | |
JP4138208B2 (en) | Electrolytic solution for lithium secondary battery and lithium secondary battery using the same | |
CN101188313A (en) | Electrolyte solution for rechargeable lithium battery and rechargeable lithium battery including same | |
KR20110054619A (en) | Cathode mixture for lithium secondary battery and lithium secondary battery using same | |
US5484669A (en) | Nonaqueous electrolyte secondary batteries | |
JP2009105069A (en) | ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME | |
JP2022551058A (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
JP3199426B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH11260400A (en) | Nonaqueous electrolyte secondary battery | |
JP2004014351A (en) | Nonaqueous electrolyte secondary battery | |
US9153842B2 (en) | Rechargeable lithium battery including positive electrode including activated carbon and electrolyte containing propylene carbonate | |
JP4798741B2 (en) | Non-aqueous secondary battery | |
JPH0574487A (en) | Nonaqueous electrolyte secondary battery | |
US20050074670A1 (en) | Lithium ion secondary cell | |
JPH06215761A (en) | Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it | |
US6541162B1 (en) | Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising the same | |
JPH06290809A (en) | Non-aqueous electrolyte secondary battery | |
JP3480764B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2924329B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH087922A (en) | Organic electrolytic secondary cell | |
JP3082116B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |