JPH0629024A - Solid electrolyte fuel cell - Google Patents
Solid electrolyte fuel cellInfo
- Publication number
- JPH0629024A JPH0629024A JP4204220A JP20422092A JPH0629024A JP H0629024 A JPH0629024 A JP H0629024A JP 4204220 A JP4204220 A JP 4204220A JP 20422092 A JP20422092 A JP 20422092A JP H0629024 A JPH0629024 A JP H0629024A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- solid electrolyte
- ysz
- fuel
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、固体電解質燃料電池に
関するものであり、特にはイットリア安定化ジルコニア
を固体電解質とする円筒形或いは平板形固体電解質燃料
電池において空気電極或いは燃料電極を特定の耐熱性合
金製又はサーメット製とした、或いは基体管或いは基体
板を当該合金製又はサーメット製としそして該基体管或
いは基体板自体を空気電極或いは燃料電極と兼用したこ
とを特徴とする固体電解質燃料電池に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte fuel cell, and more particularly to a cylindrical or flat plate solid electrolyte fuel cell using yttria-stabilized zirconia as a solid electrolyte, in which the air electrode or the fuel electrode has a specific heat resistance. To a solid electrolyte fuel cell, characterized in that the base tube or base plate is made of an alloy or cermet, or the base tube or base plate is made of the alloy or cermet, and the base tube or base plate itself is also used as an air electrode or a fuel electrode. It is a thing.
【0002】[0002]
【従来の技術】固体電解質燃料電池は、他の燃料電池に
比較して発電効率が高く(約60%)経済性が良いこ
と、排熱温度が高く、複合サイクル発電等効率的な利用
が可能であること、電池材料がすべて固体であり、腐食
や蒸発の恐れがなく安定した性能と長い寿命が期待でき
ること等の理由のために、将来の電気事業用電源として
開発が進められている。2. Description of the Related Art Solid electrolyte fuel cells have higher power generation efficiency (about 60%) and are more economical than other fuel cells, and have a high exhaust heat temperature, which enables efficient use such as combined cycle power generation. Since all the battery materials are solid and stable performance and long life can be expected without fear of corrosion and evaporation, they are being developed as a power source for future electric utilities.
【0003】固体電解質燃料電池は、固体電解質をガス
透過性の良い電極板で挟んだ構造を基本とするものであ
り、固体電解質としては、室温から高温まで蛍石型立方
晶の結晶構造が保持されそして化学的にも安定な複合酸
化物であるイットリア安定化ジルコニア(YSZ)が使
用されている。イットリア安定化ジルコニア(YSZ)
は、(Y2 O3 )x (ZrO2 )1-x である(x=8〜
10モルである)組成を有する。YSZは4価のジルコ
ニウム酸化物中に3価のイットリウム酸化物を固溶して
いるため、結晶内に酸化物イオン空孔を生じており、高
温になるとこの空孔は結晶内を自由に移動する。両面に
気体透過性の電極を付け、両面に酸素濃度差を与える
と、高濃度側(カソード、一般に空気電極と呼ばれる)
から酸素はO2-となってYSZ内に入り、濃度差によっ
て低酸素側(アノード、一般に燃料電極と呼ばれる)に
移動して電子を運ぶ。アノードに到達したO2-イオンは
電子を放出し燃料と反応する。放出された電子は外部電
気回路を流れ、負荷に仕事をする。アノード(燃料電
極)は燃料と酸素との反応を促進し、電子を負荷に供給
する役割を果たし、他方カソード(空気電極)は酸素と
電子をO2-イオンとしてYSZに供給する役割を果たし
ている。A solid electrolyte fuel cell is based on a structure in which a solid electrolyte is sandwiched between electrode plates having good gas permeability. As the solid electrolyte, a fluorite type cubic crystal structure is maintained from room temperature to high temperature. And yttria-stabilized zirconia (YSZ), which is a chemically stable composite oxide, has been used. Yttria-stabilized zirconia (YSZ)
Is (Y 2 O 3 ) x (ZrO 2 ) 1-x (x = 8 to
Has a composition of 10 moles). Since YSZ has a solution of trivalent yttrium oxide in tetravalent zirconium oxide, it has oxide ion vacancies in the crystal. At high temperature, these vacancies move freely in the crystal. To do. When gas permeable electrodes are attached to both sides and oxygen concentration difference is given to both sides, high concentration side (cathode, generally called air electrode)
From this, oxygen becomes O 2− and enters YSZ, and moves to the low oxygen side (anode, generally called a fuel electrode) by a concentration difference and carries electrons. The O 2− ions reaching the anode release electrons and react with the fuel. The emitted electrons flow through an external electric circuit and work on the load. The anode (fuel electrode) promotes the reaction between the fuel and oxygen and plays a role of supplying electrons to the load, while the cathode (air electrode) plays a role of supplying oxygen and electrons to YSZ as O 2− ions. .
【0004】固体電解質燃料電池には、現在、円筒形と
平板形とがあり、図6には円筒形固体電解質燃料電池の
動作原理が示されている。円筒形固体電解質燃料電池2
0が電気炉22を外周に装備する保護管24内部に挿入
され、電池の内部通路には燃料ガス(或いは酸素源ガ
ス)が通され、そして電池周囲には酸素源ガス(或いは
燃料ガス)が通される。酸素ガス源は通常空気である。
電池の長さに沿って複数の直列接続される発電部26が
隔置して形成され、これら発電部から発生する電気を集
電極28を通して回収して発電が為される。電流計3
0、電圧計32及び負荷34が図示の通り接続されてい
る。At present, there are a solid electrolyte fuel cell of a cylindrical type and a flat plate type, and FIG. 6 shows the operating principle of the cylindrical solid electrolyte fuel cell. Cylindrical solid electrolyte fuel cell 2
0 is inserted into the protective tube 24 equipped with the electric furnace 22 on the outer periphery, the fuel gas (or oxygen source gas) is passed through the internal passage of the cell, and the oxygen source gas (or fuel gas) is passed around the cell. Passed through. The source of oxygen gas is usually air.
A plurality of power generation units 26 connected in series are formed at intervals along the length of the battery, and electricity generated from these power generation units is collected through the collector electrode 28 to generate power. Ammeter 3
0, voltmeter 32 and load 34 are connected as shown.
【0005】図7は、図6の固体電解質燃料電池20の
一部の部分断面拡大図である。固体電解質燃料電池は基
体管36を有し、その長さに沿って複数の発電部26が
示され、その一つが断面で示されている。発電部26
は、燃料電極38、電解質40及び空気電極42から構
成される。電池を気密状態に維持するために第1気密層
44及び第2気密層46が設けられている。FIG. 7 is an enlarged partial sectional view of a part of the solid oxide fuel cell 20 of FIG. The solid electrolyte fuel cell has a base tube 36, and a plurality of power generation sections 26 are shown along the length thereof, one of which is shown in cross section. Power generation unit 26
Is composed of a fuel electrode 38, an electrolyte 40 and an air electrode 42. A first airtight layer 44 and a second airtight layer 46 are provided to keep the battery airtight.
【0006】図8は図7のA−A線に沿う断面図であ
る。発電部26が、基体管36と、その上に積層された
燃料電極38、電解質40及び空気電極42とから構成
される様相が示される。FIG. 8 is a sectional view taken along the line AA of FIG. The mode that the power generation part 26 is comprised from the base | substrate tube 36 and the fuel electrode 38, the electrolyte 40, and the air electrode 42 which were laminated | stacked on it is shown.
【0007】平板形固体電解質燃料電池は、図9に示す
ように、固体電解質を間に挟んだ2つの電極から構成さ
れる平板状の電池単セル48を複数枚セパレータ50を
介在させて集積し、燃料ガス或いは酸素源ガスを一つ置
きに流すことにより上記と同じ作用を得るものである。
或いは図10に示すように、ガス通路を有する基体板
(セパレータ)52の上面に電極−固体電解質−電極層
積層体54を積層して成る単セル構造体56を集積した
構造をとることもできる。As shown in FIG. 9, a flat plate type solid electrolyte fuel cell is constructed by integrating a plurality of flat plate-shaped battery unit cells 48 each composed of two electrodes sandwiching a solid electrolyte with a separator 50 interposed therebetween. By supplying the fuel gas or the oxygen source gas alternately, the same effect as described above can be obtained.
Alternatively, as shown in FIG. 10, a single cell structure 56 in which an electrode-solid electrolyte-electrode layer laminated body 54 is laminated on the upper surface of a base plate (separator) 52 having a gas passage may be integrated. .
【0008】従来の固体電解質燃料電池は、Al2 O3
またはカルシア安定化ジルコニウム(CSZ)から作製
した多孔質基体管或いは基体板に、ランタン系ペロブス
カイト型複合酸化物(LaCoO3 、LaMnO3 また
はLaSrMnO3 )から作製した多孔質空気電極、Y
SZ固体電解質及びNiOから作製した多孔質燃料電極
をこの順序で若しくは多孔質燃料電極、YSZ固体電解
質及び多孔質空気電極の順序で積層して構成されてい
た。固体電解質はその性能確保の必要上現在のところY
SZに確定されている。他の基体管(板)並びに電極部
品要素の材質は、YSZとの整合性を考慮しつつ、意図
する機能に向けて選択されたものである。これら材料は
完全に満足しうるものではないことは認識されていた
が、現状では最良の材料とされてきた。これらは溶射法
(アセチレンフレーム溶射、プラズマ溶射等)、電気化
学蒸着法(CVD/EVD)並びに押出成型−スラリー
法により多孔質基体管或いは基体板上に成膜された。The conventional solid electrolyte fuel cell has Al 2 O 3
Alternatively, a porous base tube or base plate made of calcia-stabilized zirconium (CSZ) is provided with a porous air electrode made of a lanthanum-based perovskite complex oxide (LaCoO 3 , LaMnO 3 or LaSrMnO 3 ), Y
The porous fuel electrode made of the SZ solid electrolyte and NiO was laminated in this order or in the order of the porous fuel electrode, the YSZ solid electrolyte and the porous air electrode. The solid electrolyte is currently Y due to the need to secure its performance.
It is confirmed as SZ. The materials of the other base tube (plate) and the electrode component element are selected for the intended function while considering the compatibility with YSZ. It was recognized that these materials were not entirely satisfactory, but at present they have been regarded as the best materials. These were formed on a porous substrate tube or substrate plate by a thermal spraying method (acetylene flame spraying, plasma spraying, etc.), an electrochemical vapor deposition method (CVD / EVD), and an extrusion-slurry method.
【0009】[0009]
【発明が解決しようとする課題】上記の構成において、
特に空気電極の電気抵抗が高くまた燃料電池の作動中、
固体電解質YSZと多孔質燃料電極との間でまた固体電
解質YSZと多孔質空気電極との間で高温作動域におい
てイオン電子伝導が起きる。この時、両者の熱膨張の差
により積層境界面における溶着面の不連続部に熱応力が
発生し、マイクロクラックや剥離を生じる。このため、
電気抵抗が増加し、電池出力損失の大きな要因となっ
た。更には、空気電極の電池動作特性の安定性を損な
い、電池の長寿命化に問題があった。例えば、従来用い
られたLaCoO3 は、発電作動温度約1000℃で組
織構成元素であるLa及びCoが選択的に蒸発し、化学
構造が変化し、導電性が低下する欠点があった。燃料電
池の製作に当っては、大出力を得るために素子を多数直
並列接続して使用することから、簡易な工程で短時間で
作製できること、材料費が安いこと、ガス透過性の良い
そして固体電解質YSZと密着性の良い電極膜を作るこ
とができること等を配慮せねばならない。In the above configuration,
Especially, the electric resistance of the air electrode is high and the fuel cell is operating.
Ionic electron conduction occurs in the high temperature operating region between the solid electrolyte YSZ and the porous fuel electrode and between the solid electrolyte YSZ and the porous air electrode. At this time, due to the difference in thermal expansion between the two, thermal stress is generated in the discontinuous portion of the welded surface in the laminated boundary surface, resulting in microcracks and peeling. For this reason,
Electric resistance increased, which was a major factor in battery output loss. Furthermore, the stability of the battery operating characteristics of the air electrode is impaired, and there is a problem in extending the life of the battery. For example, conventionally used LaCoO 3 has a drawback that La and Co which are structural constituent elements are selectively evaporated at a power generation operating temperature of about 1000 ° C., the chemical structure is changed, and the conductivity is lowered. In manufacturing a fuel cell, a large number of elements are connected in series and parallel in order to obtain a large output, so that it can be manufactured by a simple process in a short time, the material cost is low, and the gas permeability is good. It must be taken into consideration that an electrode film having good adhesion to the solid electrolyte YSZ can be formed.
【0010】本発明の課題は、高温状態の発電において
電極、特に空気電極の電気抵抗を減少せしめまた熱履歴
による各層のマイクロクラックや剥離の発生を軽減し、
電池の高出力化、長寿命化、高信頼性を図るとともに、
電池構成を従来より簡易化することである。An object of the present invention is to reduce the electrical resistance of electrodes, particularly air electrodes, during power generation at high temperatures, and to reduce the occurrence of microcracks and peeling of each layer due to thermal history.
In addition to achieving high output, long life and high reliability of the battery,
It is to simplify the battery configuration as compared with the conventional one.
【0011】[0011]
【課題を解決するための手段】上記課題の解決に向けて
検討を重ねた結果、本発明者は、従来別種の材料で作製
されていた空気電極と燃料電極とを同系材料で作製する
ことを想定し、各種材料を試みた結果、(NiCrA
l)系、(NiCrFe)系及び(NiCrFeAl)
系並びに(NiCrAl+YSZ)系、(NiCrFe
+YSZ)系及び(NiCrFeAl+YSZ)系の群
から選択される耐熱性合金又はサーメットの採用により
実現可能であることを見出した。この知見に基づいて、
本発明は、イットリア安定化ジルコニアを固体電解質と
しそして該固体電解質と接面する空気電極及び燃料電極
を備える固体電解質燃料電池において、前記空気電極及
び燃料電極を多孔質の、(NiCrAl)系、(NiC
rFe)系及び(NiCrFeAl)系耐熱性合金並び
に(NiCrAl+YSZ)系、(NiCrFe+YS
Z)系及び(NiCrFeAl+YSZ)系サーメット
の群から選択される耐熱性合金製又はサーメット製とし
たことを特徴とする固体電解質燃料電池を提供する。As a result of repeated studies aimed at solving the above problems, the present inventor has found that the air electrode and the fuel electrode, which were conventionally made of different materials, are made of the same material. As a result of trying various materials, assuming (NiCrA
1) system, (NiCrFe) system and (NiCrFeAl)
System and (NiCrAl + YSZ) system, (NiCrFe
+ YSZ) system and (NiCrFeAl + YSZ) system have been found to be feasible by adopting a heat resistant alloy or cermet selected from the group. Based on this finding,
The present invention provides a solid electrolyte fuel cell comprising yttria-stabilized zirconia as a solid electrolyte and an air electrode and a fuel electrode in contact with the solid electrolyte, wherein the air electrode and the fuel electrode are porous, (NiCrAl) system, NiC
rFe) -based and (NiCrFeAl) -based heat-resistant alloys and (NiCrAl + YSZ) -based, (NiCrFe + YS)
A solid electrolyte fuel cell characterized by being made of a heat resistant alloy or cermet selected from the group of Z) type and (NiCrFeAl + YSZ) type cermets.
【0012】更に、基体管或いは基体板を上記の材料製
とし、基体板自体を空気電極或いは燃料電極と兼用さ
せ、電池構成を大幅に簡易化することも可能であること
が判明した。この知見に基づいて、本発明はまた、イッ
トリア安定化ジルコニアを固体電解質としそして該固体
電解質と接面する空気電極及び燃料電極を基体管或いは
基体板上に備える固体電解質燃料電池において、前記基
体管或いは基体板を多孔質の、(NiCrAl)系、
(NiCrFe)系及び(NiCrFeAl)系耐熱性
合金並びに(NiCrAl+YSZ)系、(NiCrF
e+YSZ)系及び(NiCrFeAl+YSZ)系サ
ーメットの群から選択される耐熱性合金製又はサーメッ
ト製とし、そして該基体管或いは基体板自体を前記基体
管或いは基体板に隣り合う空気電極或いは燃料電極と兼
用しそして他方の空気電極或いは燃料電極を同系材料製
としたことを特徴とする固体電解質燃料電池を提供する
ものである。Further, it has been found that the base tube or the base plate may be made of the above-mentioned material, and the base plate itself may also serve as the air electrode or the fuel electrode, thereby greatly simplifying the cell structure. Based on this finding, the present invention also provides a solid electrolyte fuel cell comprising a yttria-stabilized zirconia as a solid electrolyte, and an air electrode and a fuel electrode in contact with the solid electrolyte on a base tube or a base plate. Alternatively, the base plate may be a porous (NiCrAl) -based
(NiCrFe) type and (NiCrFeAl) type heat resistant alloys and (NiCrAl + YSZ) type, (NiCrF)
e + YSZ) -based and (NiCrFeAl + YSZ) -based cermet made of a heat-resistant alloy or cermet, and the base tube or base plate itself is also used as an air electrode or fuel electrode adjacent to the base pipe or base plate. Further, the other air electrode or fuel electrode is made of the same material, and a solid electrolyte fuel cell is provided.
【0013】固体電解質並びに空気電極及び燃料電極が
溶射膜、特に固体電解質はプラズマ溶射膜そして各電極
はフレーム溶射膜であることが好ましい。It is preferable that the solid electrolyte and the air electrode and the fuel electrode are sprayed films, especially the solid electrolyte is a plasma sprayed film, and each electrode is a flame sprayed film.
【0014】[0014]
【作用】空気電極及び燃料電極、更には基体管或いは基
体板を多孔質の、(NiCrAl)系、(NiCrF
e)系及び(NiCrFeAl)系並びに(NiCrA
l+YSZ)系、(NiCrFe+YSZ)系及び(N
iCrFeAl+YSZ)系の群から選択される耐久性
の優れた且つ良好な電導性の耐熱性合金製又はサーメッ
ト製とすることにより、空気電極と燃料電極、更には基
体管或いは基体板を同系材料で作製可能とし、固体電解
質YSZとの整合性を従来より向上せしめつつ、電池構
成の簡易化を実現する。例えば、従来から燃料電極とし
て用いられている多孔質NiO2 は燃料電極としては利
用できても、空気電極としては使用に耐えないものであ
る。The air electrode and the fuel electrode, and further the base tube or the base plate are porous (NiCrAl) type, (NiCrF) type.
e) system and (NiCrFeAl) system and (NiCrA)
1 + YSZ) system, (NiCrFe + YSZ) system and (N
(iCrFeAl + YSZ) group made of a heat-resistant alloy or cermet with excellent durability and good electrical conductivity, selected from the group This makes it possible to improve the compatibility with the solid electrolyte YSZ and to simplify the battery structure. For example, porous NiO 2 conventionally used as a fuel electrode can be used as a fuel electrode but cannot be used as an air electrode.
【0015】詳しくは、本発明で用いる上記多孔質耐熱
性合金は、電池の動作温度1000℃において例えば1
00μmの溶射膜厚で約1.6kS/cmであるのに対
して、従来の空気電極に用いられてきた例えばLaCo
O3 セラミックは電池の動作温度1000℃において約
600S/cmであるので、電極電気抵抗が大幅に改善
され、従って内部抵抗の減少により発電効率が向上す
る。熱膨張係数に関しても、例えばLaCoO3 の場合
20×10-6K-1であるのに対して、例えばNiCrA
lY+YSZは14〜15×10-6K-1であり、電解質
YSZの熱膨張係数である10×10-6K-1に一層近
く、電解質YSZとの熱膨張の整合性が一段と向上す
る。しかも、本発明にかかわる主材料は金属質なので、
展性が良く、このため積層膜の付着強度は向上し、マイ
クロクラックや剥離が生じ難くなる。従来用いられたL
aCoO3 は、発電作動温度約1000℃で組織構成元
素であるLa及びCoが選択的に蒸発し、化学構造が変
化し、導電性が低下する欠点があったが、本発明材料は
耐熱性合金又はセラミックであり、高温でも安定した高
導電性を示すので、こうした問題を生じない。More specifically, the porous heat-resistant alloy used in the present invention has, for example, 1 at an operating temperature of a battery of 1000.degree.
It has a coating thickness of about 1.6 kS / cm at a sprayed film thickness of 00 μm, while it has been used for a conventional air electrode, for example, LaCo.
Since the O 3 ceramic has about 600 S / cm at the battery operating temperature of 1000 ° C., the electric resistance of the electrodes is significantly improved, and thus the power generation efficiency is improved by the decrease of the internal resistance. Regarding the coefficient of thermal expansion, for example, in the case of LaCoO 3 , it is 20 × 10 −6 K −1 , whereas, for example, NiCrA is used.
lY + YSZ is 14 to 15 × 10 −6 K −1, which is closer to the thermal expansion coefficient of 10 × 10 −6 K −1 of the electrolyte YSZ, and the consistency of thermal expansion with the electrolyte YSZ is further improved. Moreover, since the main material involved in the present invention is metallic,
Good malleability, which improves the adhesive strength of the laminated film and makes microcracks and peeling less likely to occur. Conventionally used L
Although aCoO 3 has a defect that La and Co, which are structural constituent elements, are selectively evaporated at a power generation operating temperature of about 1000 ° C., the chemical structure is changed, and the conductivity is lowered, but the material of the present invention is a heat resistant alloy. Or, since it is a ceramic and shows stable and high conductivity even at high temperature, such a problem does not occur.
【0016】[0016]
【実施例】図1は、円筒形固体電解質電池の断面を示し
た図8の一部の拡大図である(円筒であるが、直線的に
示す)。基体管2と、その上に積層された燃料電極(或
いは空気電極)4、固体電解質(YSZ)6及び空気電
極(或いは燃料電極)8を示す。図2は、図9に示した
平板形固体電解質電池の電池単セルを構成する燃料電極
(或いは空気電極)4、固体電解質(YSZ)6及び空
気電極(或いは燃料電極)8を示す。図3は、図10の
電池単セル構造体を示す。セパレータの機能を有する基
体板10上に燃料電極(或いは空気電極)4、固体電解
質(YSZ)6及び空気電極(或いは燃料電極)8が積
層されている。本発明に従えば、これら電極4及び8
は、多孔質の、(NiCrAl)系、(NiCrFe)
系及び(NiCrFeAl)系耐熱合金並びに(NiC
rAl+YSZ)系、(NiCrFe+YSZ)系及び
(NiCrFeAl+YSZ)系サーメットの群から選
択される耐熱性合金又はサーメット製とされる。これ等
の耐熱性合金やサーメットは、耐久性及び展性に優れ、
電気抵抗が小さく、固体電解質(YSZ)との熱整合性
を改善する。EXAMPLE FIG. 1 is an enlarged view of a part of FIG. 8 showing a cross section of a cylindrical solid electrolyte battery (a cylinder is shown linearly). A base tube 2 and a fuel electrode (or an air electrode) 4, a solid electrolyte (YSZ) 6 and an air electrode (or a fuel electrode) 8 stacked on the base tube 2 are shown. FIG. 2 shows a fuel electrode (or an air electrode) 4, a solid electrolyte (YSZ) 6 and an air electrode (or a fuel electrode) 8 which constitute the battery unit cell of the flat plate type solid electrolyte battery shown in FIG. FIG. 3 shows the battery unit cell structure of FIG. A fuel electrode (or air electrode) 4, a solid electrolyte (YSZ) 6 and an air electrode (or fuel electrode) 8 are laminated on a base plate 10 having a separator function. According to the invention, these electrodes 4 and 8
Is a porous (NiCrAl) system, (NiCrFe)
Series and (NiCrFeAl) series heat resistant alloys and (NiC
It is made of a heat resistant alloy or cermet selected from the group of rAl + YSZ) type, (NiCrFe + YSZ) type and (NiCrFeAl + YSZ) type cermets. These heat-resistant alloys and cermets have excellent durability and malleability,
It has low electric resistance and improves the thermal compatibility with the solid electrolyte (YSZ).
【0017】本発明において、NiCrAl系とは、N
i=64〜69重量%、Cr=21〜23重量%及びA
l=9〜11重量%から構成されるものとして定義さ
れ、1重量%前後の少量の添加物を含むことが出来る。
また、NiCrFe系は、Ni>72重量%、Cr=1
4〜17重量%及びFe=6〜10重量%より構成され
るものとして定義される。同様に、NiCrFeAl系
とは、Ni=58〜63重量%、Cr=21〜25重量
%、Fe=10〜20重量%及びAl=1〜1.7重量
%より構成されるものとして定義される。NiCrAl
+YSZ系とは、Ni=64〜69重量%、Cr=21
〜23重量%及びAl=9〜11重量%から構成される
NiCrAl合金に10〜50重量%のYSZを添加し
た複合材料(サーメット)として定義される。NiCr
Fe+YSZ系とは、Ni>72重量%、Cr=14〜
17重量%及びFe=6〜10重量%より構成されるN
iCrFe合金に10〜50重量%のYSZを添加した
複合材料(サーメット)として定義される。同様に、N
iCrFeAl+YSZ系とは、Ni=58〜63重量
%、Cr=21〜25重量%、Fe=10〜20重量%
及びAl=1〜1.7重量%より構成されるNiCrF
eAl合金に10〜50重量%のYSZを添加した複合
材料(サーメット)として定義される。これらも、1重
量%前後の少量の添加物を含むことが出来る。In the present invention, NiCrAl-based means N
i = 64-69% by weight, Cr = 21-23% by weight and A
1 = 9 to 11% by weight, defined as being composed of 1 to about 1% by weight, and a small amount of additives can be included.
Further, the NiCrFe system has Ni> 72 wt% and Cr = 1.
It is defined as consisting of 4 to 17% by weight and Fe = 6 to 10% by weight. Similarly, the NiCrFeAl system is defined as being composed of Ni = 58 to 63% by weight, Cr = 21 to 25% by weight, Fe = 10 to 20% by weight and Al = 1 to 1.7% by weight. . NiCrAl
+ YSZ system means Ni = 64 to 69% by weight, Cr = 21
It is defined as a composite material (cermet) in which 10 to 50% by weight of YSZ is added to a NiCrAl alloy composed of ˜23% by weight and Al = 9 to 11% by weight. NiCr
Fe + YSZ system means Ni> 72 wt%, Cr = 14-
N composed of 17% by weight and Fe = 6 to 10% by weight
It is defined as a composite material (cermet) in which 10 to 50% by weight of YSZ is added to an iCrFe alloy. Similarly, N
iCrFeAl + YSZ system means Ni = 58-63% by weight, Cr = 21-25% by weight, Fe = 10-20% by weight
And NiCrF composed of Al = 1 to 1.7% by weight
It is defined as a composite material (cermet) in which 10 to 50% by weight of YSZ is added to an eAl alloy. These can also contain small amounts of additives, around 1% by weight.
【0018】電極−電解質−電極の積層構造は、溶射法
(アセチレンフレーム溶射、プラズマ溶射等)、電気化
学蒸着法(CVD/EVD)並びに押出成型−スラリー
法により作製することができる。固体電解質はガスの透
過をほぼ完全に阻止できる能力が必要であり、この一番
好ましい方法はプラズマ溶射法である。電極は十分大き
なガス透過特性を必要とし、これにはフレーム溶射法が
適している。いずれの溶射法も、材料粒子を溶解して母
材(基体管、基体板)に吹きつけて成膜するが、材料粒
子の粒度、溶射条件を制御することにより、所望の緻密
度や気孔率を有する膜を生成することができる。The electrode-electrolyte-electrode laminated structure can be prepared by a thermal spraying method (acetylene flame spraying, plasma spraying, etc.), an electrochemical vapor deposition method (CVD / EVD) and an extrusion molding-slurry method. The solid electrolyte needs to have the ability to almost completely prevent gas permeation, and the most preferable method is plasma spraying. The electrodes need to have sufficiently large gas permeation characteristics that flame spraying is suitable. In any of the thermal spraying methods, material particles are melted and sprayed onto a base material (base tube, base plate) to form a film, but by controlling the particle size of the material particles and the spraying conditions, the desired density and porosity can be obtained. Can be produced.
【0019】プラズマ溶射の施工例について説明する。
円筒型の固体電解質燃料電池を製作するためには、以下
の手順で製作する。基体管を回転装置に取り付ける。図
7に示す電池パターンを成膜するために、成膜する部分
以外の部分にマスキングを行なう(ここで云うマスキン
グとは金属製の板で溶射成膜したくない部分を覆い隠す
ことである。その覆い隠す部分の大きさに応じて、つい
たて形状のものを溶射銃と溶射体との間に立てたり、銅
製のテープ形状のものを直接管側に巻き付け、固定して
覆う。両方の組合せも使用されうる。)。マスキングが
終ったら、基体管を回転させ、溶射銃を基体管の軸方向
に沿って送り、吹き付けを行なって成膜する。成膜後、
マスキング取付け位置を次の成膜パターンにずらして、
同様に繰り返した積層し、電池を製作する。A construction example of plasma spraying will be described.
In order to manufacture a cylindrical solid electrolyte fuel cell, it is manufactured by the following procedure. Attach the substrate tube to the rotator. In order to form the battery pattern shown in FIG. 7, masking is performed on a portion other than the portion to be formed (masking here is to cover a portion of the metal plate that is not desired to be sprayed and formed). Depending on the size of the part to be covered up, a vertical shape is erected between the spray gun and the spray body, or a copper tape shape is wound directly around the pipe side and fixed and covered. Can be used.). After masking is completed, the substrate tube is rotated, the spray gun is fed along the axial direction of the substrate tube, and sprayed to form a film. After film formation,
Move the masking attachment position to the next film formation pattern,
A battery is manufactured by stacking layers in the same manner.
【0020】円筒縦縞型セルスタック構造の材料の組合
せ例を表1に示す。Table 1 shows an example of a combination of materials of the cylindrical vertical stripe type cell stack structure.
【0021】[0021]
【表1】 [Table 1]
【0022】図4は、図1の基体管2を上述した材料か
ら作製し、しかも電極4と兼用した構成を示す。従っ
て、この場合には、電池は、基体管兼電極12と、その
上に成膜された固体電解質(YSZ)6及び空気電極
(或いは燃料電極)8とから構成される。図5は、図3
のセパレータの機能を有する基体板10を上述した材料
から構成し、しかも電極4と兼用した構成を示す。従っ
て、ここでは、電池は、基体板(セパレータ)兼電極1
4とその上に積層された固体電解質(YSZ)6及び空
気電極(或いは燃料電極)8とから構成される。図4及
び図5の構成を採用することにより、積層数が減少し、
しかも固体電解質(YSZ)以外同系乃至同一材料を使
用できるので、組立が大幅に簡易化されることは明らか
である。FIG. 4 shows a structure in which the base tube 2 of FIG. 1 is made of the above-mentioned material and is also used as the electrode 4. Therefore, in this case, the battery is composed of the base tube / electrode 12 and the solid electrolyte (YSZ) 6 and the air electrode (or fuel electrode) 8 formed thereon. FIG. 5 shows FIG.
A structure is shown in which the base plate 10 having the function of the separator is made of the above-mentioned material and also serves as the electrode 4. Therefore, here, the battery is the base plate (separator) and electrode 1
4 and a solid electrolyte (YSZ) 6 and an air electrode (or a fuel electrode) 8 laminated on the electrode 4. By adopting the configuration of FIG. 4 and FIG. 5, the number of laminated layers is reduced,
Moreover, since it is possible to use the same or the same material other than the solid electrolyte (YSZ), it is obvious that the assembly is greatly simplified.
【0023】(実施例1)図6に概要を示した試験設備
において、長さ500mmの固体電解質電池に巾15m
mの発電部を3箇所形成した。基体管としては、21m
m直径のCSZ製多孔管を使用した。発電部に、フレー
ム溶射法により燃料電極としてのNiCrAl膜、プラ
ズマ溶射法により固体電解質YSZ膜そしてフレーム溶
射法により空気電極としてのNiCrAl+30重量%
YSZ膜を順次積層した。プラズマ及びフレーム溶射条
件は次の表2の条件の通りとした:(Example 1) In the test facility outlined in FIG. 6, a solid electrolyte battery having a length of 500 mm and a width of 15 m was used.
m power generation parts were formed at three locations. 21m for the base tube
A CSZ perforated tube of m diameter was used. NiCrAl film as fuel electrode by flame spraying method, solid electrolyte YSZ film by plasma spraying method, and NiCrAl + 30% by weight as air electrode by flame spraying method in power generation part
YSZ films were sequentially stacked. The plasma and flame spraying conditions were as shown in Table 2 below:
【0024】[0024]
【表2】 [Table 2]
【0025】これを実際に作動させて、積層膜の状態を
調べたが、クラックや剥離は生じていなかった。電池性
能を評価した結果、単セルの出力電流密度300mmA
において出力電圧が0.7V以上と優れたものであっ
た。When this was actually operated and the state of the laminated film was examined, cracks and peeling did not occur. As a result of evaluating the battery performance, the output current density of a single cell is 300 mmA.
The output voltage was 0.7 V or more, which was excellent.
【0026】(実施例2)実施例1において、基体管を
NiCrAl+30重量%YSZから作製し、その上に
同様にして固体電解質YSZ膜及び空気電極としてのN
iCrAlY膜を順次積層した。同様の優れた性能が得
られた。(Example 2) In Example 1, a substrate tube was made of NiCrAl + 30 wt% YSZ, and a solid electrolyte YSZ film and an N electrode as an air electrode were similarly formed thereon.
iCrAlY films were sequentially laminated. Similar excellent performance was obtained.
【0027】[0027]
【発明の効果】本発明で使用する耐熱性合金は燃料電極
及び空気電極いずれの電極としても耐久性、電気電導
性、固体電解質(YSZ)との整合性に優れ、また基体
管(板)と電極とを兼ねて利用できるので、積層構造及
びその施工が簡易と成り、製作が容易となる。熱歪を受
ける要因が減少し、電池の長寿命化、信頼性の向上、高
出力化を実現する。燃料電極と空気電極を同系材料とす
ることにより、溶射の製造工程を簡略化すると共に、セ
ルスタック構造をより単純化して構成出来る。INDUSTRIAL APPLICABILITY The heat-resistant alloy used in the present invention has excellent durability, electric conductivity, and compatibility with the solid electrolyte (YSZ) both as a fuel electrode and an air electrode, and also has excellent compatibility with the base tube (plate). Since it can be used also as an electrode, the laminated structure and its construction are simplified, and the production is facilitated. Factors that are subject to thermal strain are reduced, which results in longer battery life, improved reliability, and higher output. By using the same material for the fuel electrode and the air electrode, the manufacturing process of thermal spraying can be simplified and the cell stack structure can be further simplified.
【図1】円筒形固体電解質電池の断面図である。FIG. 1 is a cross-sectional view of a cylindrical solid electrolyte battery.
【図2】平板形固体電解質電池の電池単セルの断面図で
ある。FIG. 2 is a cross-sectional view of a battery single cell of a flat plate type solid electrolyte battery.
【図3】平板形固体電解質電池の電池単セル構造体の断
面図である。FIG. 3 is a cross-sectional view of a battery single cell structure of a flat plate solid electrolyte battery.
【図4】図1の基体管を電極の一方と兼用した構成を示
す断面図である。FIG. 4 is a cross-sectional view showing a configuration in which the substrate tube of FIG. 1 also serves as one of the electrodes.
【図5】図3の基体板(セパレータ)を電極の一方と兼
用した構成を示す示す断面図である。5 is a cross-sectional view showing a configuration in which the base plate (separator) of FIG. 3 also serves as one of the electrodes.
【図6】円筒形固体電解質燃料電池の動作原理を説明す
る説明図である。FIG. 6 is an explanatory diagram illustrating the operating principle of a cylindrical solid electrolyte fuel cell.
【図7】図6の円筒形固体電解質燃料電池の一部の部分
断面を示す拡大図である。FIG. 7 is an enlarged view showing a partial cross section of a part of the cylindrical solid oxide fuel cell of FIG.
【図8】図7のA−A線に沿う断面図である。8 is a cross-sectional view taken along the line AA of FIG.
【図9】平板形固体電解質燃料電池の一例の斜視図であ
る。FIG. 9 is a perspective view of an example of a flat plate solid oxide fuel cell.
【図10】平板形固体電解質燃料電池の別の例の斜視図
である。FIG. 10 is a perspective view of another example of a flat plate solid oxide fuel cell.
2 基体管 4 燃料電極(或いは空気電極) 6 固体電解質(YSZ) 8 空気電極(或いは燃料電極) 10 基体板 12 基体管兼電極 14 基体板兼電極 20 円筒形固体電解質燃料電池 22 電気炉 24 保護管 26 発電部 28 集電極 30 電流計 32 電圧計 34 負荷 36 基体管 38 燃料電極 40 固体電解質(YSZ) 42 空気電極 44 第1気密層 46 第2気密層 48 電池単セル 50 セパレータ 52 基体板 54 電池単セル積層体 56 電池単セル構造体 2 base tube 4 fuel electrode (or air electrode) 6 solid electrolyte (YSZ) 8 air electrode (or fuel electrode) 10 base plate 12 base tube / electrode 14 base plate / electrode 20 cylindrical solid electrolyte fuel cell 22 electric furnace 24 protection Tube 26 Power generation section 28 Collector electrode 30 Ammeter 32 Voltmeter 34 Load 36 Base tube 38 Fuel electrode 40 Solid electrolyte (YSZ) 42 Air electrode 44 First airtight layer 46 Second airtight layer 48 Battery unit cell 50 Separator 52 Base plate 54 Battery single cell stack 56 Battery single cell structure
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内山 太 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 塚本 孝一 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 加賀 保男 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 堀内 秀雄 兵庫県尼崎市長洲西通1−3−26日本コー ティング工業株式会社内 (72)発明者 金澤 基 埼玉県浦和市文蔵5−7−4日本コーティ ング工業株式会社東京工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Futoshi Uchiyama 1-4 Umezono, Tsukuba-shi, Ibaraki Electronic Technology Research Institute, Industrial Technology Institute (72) Koichi Tsukamoto 1-4-1 Umezono, Tsukuba-shi, Ibaraki (72) Inventor, Yasuo Kaga, 1-4 Umezono, Tsukuba City, Ibaraki Prefecture (72) Inventor, Electronic Technology Research Institute (72) Hideo Horiuchi 1-3, Nagasu Nishidori, Amagasaki, Hyogo Prefecture −26 In Japan Coating Industry Co., Ltd. (72) Inventor Moto Kanazawa 5-7-4 Bunkura, Urawa City, Saitama Prefecture Japan Coating Industry Co., Ltd. Tokyo Plant
Claims (3)
質としそして該固体電解質と接面する空気電極及び燃料
電極を備える固体電解質燃料電池において、前記空気電
極及び燃料電極を多孔質の、(NiCrAl)系、(N
iCrFe)系及び(NiCrFeAl)系耐熱性合金
並びに(NiCrAl+YSZ)系、(NiCrFe+
YSZ)系及び(NiCrFeAl+YSZ)系サーメ
ットの群から選択される耐熱性合金製又はサーメット製
としたことを特徴とする固体電解質燃料電池。1. A solid electrolyte fuel cell comprising yttria-stabilized zirconia as a solid electrolyte and comprising an air electrode and a fuel electrode in contact with the solid electrolyte, wherein the air electrode and the fuel electrode are porous (NiCrAl) -based, (N
(iCrFe) type and (NiCrFeAl) type heat resistant alloys and (NiCrAl + YSZ) type, (NiCrFe +)
A solid electrolyte fuel cell, characterized by being made of a heat resistant alloy or cermet selected from the group of YSZ) type and (NiCrFeAl + YSZ) type cermets.
質としそして該固体電解質と接面する空気電極及び燃料
電極を基体管或いは基体板上に備える固体電解質燃料電
池において、前記基体管或いは基体板を多孔質の、(N
iCrAl)系、(NiCrFe)系及び(NiCrF
eAl)系耐熱性合金並びに(NiCrAl+YSZ)
系、(NiCrFe+YSZ)系及び(NiCrFeA
l+YSZ)系サーメットの群から選択される耐熱性合
金製又はサーメット製とし、そして該基体管或いは基体
板自体を前記基体管或いは基体板に隣り合う空気電極或
いは燃料電極と兼用しそして他方の空気電極或いは燃料
電極を同系材料製としたことを特徴とする固体電解質燃
料電池。2. A solid electrolyte fuel cell comprising yttria-stabilized zirconia as a solid electrolyte, and an air electrode and a fuel electrode in contact with the solid electrolyte on the base tube or the base plate, wherein the base tube or the base plate is porous. , (N
iCrAl) type, (NiCrFe) type and (NiCrF)
eAl) type heat resistant alloy and (NiCrAl + YSZ)
System, (NiCrFe + YSZ) system and (NiCrFeA)
1 + YSZ) cermet, made of a heat-resistant alloy or cermet, and the base tube or base plate itself is also used as an air electrode or fuel electrode adjacent to the base tube or base plate and the other air electrode. Alternatively, the solid electrolyte fuel cell is characterized in that the fuel electrode is made of a similar material.
が溶射膜である請求項1乃至2の固体電解質燃料電池。3. The solid electrolyte fuel cell according to claim 1, wherein the solid electrolyte and the air electrode and the fuel electrode are sprayed films.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4204220A JP3057342B2 (en) | 1992-07-09 | 1992-07-09 | Solid electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4204220A JP3057342B2 (en) | 1992-07-09 | 1992-07-09 | Solid electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0629024A true JPH0629024A (en) | 1994-02-04 |
JP3057342B2 JP3057342B2 (en) | 2000-06-26 |
Family
ID=16486831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4204220A Expired - Lifetime JP3057342B2 (en) | 1992-07-09 | 1992-07-09 | Solid electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3057342B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001243966A (en) * | 2000-02-02 | 2001-09-07 | Haldor Topsoe As | Solid oxide fuel cell |
JP2005071948A (en) * | 2003-08-28 | 2005-03-17 | National Institute Of Advanced Industrial & Technology | Hybrid porous tube and method for producing the same |
JP2005327529A (en) * | 2004-05-13 | 2005-11-24 | National Institute Of Advanced Industrial & Technology | Cylindrical fuel cell and manufacturing method thereof |
JP2006173091A (en) * | 2004-12-16 | 2006-06-29 | General Electric Co <Ge> | High-performance fuel cell electrode and its manufacturing method |
JP2007329132A (en) * | 2007-07-20 | 2007-12-20 | National Institute Of Advanced Industrial & Technology | Hybrid porous tube |
US7354676B2 (en) | 2002-05-01 | 2008-04-08 | Nissan Motor Co., Ltd. | Cell body for fuel cell and method of manufacturing the same |
JP2008300075A (en) * | 2007-05-29 | 2008-12-11 | Shinko Electric Ind Co Ltd | Solid oxide fuel cell and its manufacturing method |
JP2009009737A (en) * | 2007-06-26 | 2009-01-15 | Ngk Spark Plug Co Ltd | Solid electrolyte fuel cell and its manufacturing method |
US7566509B2 (en) | 2003-11-18 | 2009-07-28 | National Institute Of Advanced Industrial Science And Technology | Tubular fuel cell and method of producing the same |
WO2019171903A1 (en) * | 2018-03-06 | 2019-09-12 | 住友電気工業株式会社 | Electrolyte layer-anode composite member for fuel cell, cell structure, fuel cell, and method for manufacturing composite member |
WO2024070075A1 (en) * | 2022-09-28 | 2024-04-04 | 住友電気工業株式会社 | Conductive member and solid oxide fuel cell including same |
-
1992
- 1992-07-09 JP JP4204220A patent/JP3057342B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001243966A (en) * | 2000-02-02 | 2001-09-07 | Haldor Topsoe As | Solid oxide fuel cell |
US7354676B2 (en) | 2002-05-01 | 2008-04-08 | Nissan Motor Co., Ltd. | Cell body for fuel cell and method of manufacturing the same |
JP2005071948A (en) * | 2003-08-28 | 2005-03-17 | National Institute Of Advanced Industrial & Technology | Hybrid porous tube and method for producing the same |
US7566509B2 (en) | 2003-11-18 | 2009-07-28 | National Institute Of Advanced Industrial Science And Technology | Tubular fuel cell and method of producing the same |
JP2005327529A (en) * | 2004-05-13 | 2005-11-24 | National Institute Of Advanced Industrial & Technology | Cylindrical fuel cell and manufacturing method thereof |
JP2006173091A (en) * | 2004-12-16 | 2006-06-29 | General Electric Co <Ge> | High-performance fuel cell electrode and its manufacturing method |
JP2008300075A (en) * | 2007-05-29 | 2008-12-11 | Shinko Electric Ind Co Ltd | Solid oxide fuel cell and its manufacturing method |
JP2009009737A (en) * | 2007-06-26 | 2009-01-15 | Ngk Spark Plug Co Ltd | Solid electrolyte fuel cell and its manufacturing method |
JP2007329132A (en) * | 2007-07-20 | 2007-12-20 | National Institute Of Advanced Industrial & Technology | Hybrid porous tube |
WO2019171903A1 (en) * | 2018-03-06 | 2019-09-12 | 住友電気工業株式会社 | Electrolyte layer-anode composite member for fuel cell, cell structure, fuel cell, and method for manufacturing composite member |
WO2024070075A1 (en) * | 2022-09-28 | 2024-04-04 | 住友電気工業株式会社 | Conductive member and solid oxide fuel cell including same |
Also Published As
Publication number | Publication date |
---|---|
JP3057342B2 (en) | 2000-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tucker | Progress in metal-supported solid oxide fuel cells: A review | |
EP2380231B1 (en) | Thermal shock-tolerant solid oxide fuel cell stack | |
US6682842B1 (en) | Composite electrode/electrolyte structure | |
US7232626B2 (en) | Planar electrochemical device assembly | |
US6048636A (en) | Electrode substrate for fuel cell | |
US20110269047A1 (en) | Metal-supported, segmented-in-series high temperature electrochemical device | |
US20030232230A1 (en) | Solid oxide fuel cell with enhanced mechanical and electrical properties | |
US20070072070A1 (en) | Substrates for deposited electrochemical cell structures and methods of making the same | |
JP3057342B2 (en) | Solid electrolyte fuel cell | |
JPH1092446A (en) | Solid electrolyte type fuel cell | |
JP4761104B2 (en) | Cylindrical fuel cell | |
JPH09129252A (en) | Highly durable solid electrolyte fuel cell and method for manufacturing the same | |
JP6917182B2 (en) | Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks | |
JP3079268B2 (en) | Assembled cylindrical series type solid electrolyte fuel cell | |
JPH07320756A (en) | Solid electrolyte fuel cell | |
JP6835631B2 (en) | Electrochemical reaction single cell and electrochemical reaction cell stack | |
JP6754249B2 (en) | Electrochemical reaction single cell and electrochemical reaction cell stack | |
JP7430698B2 (en) | Electrochemical reaction single cell and electrochemical reaction cell stack | |
JP7121083B2 (en) | Cathode materials, electrochemical reaction single cells and electrochemical reaction cell stacks | |
JP6917398B2 (en) | Electrochemical reaction single cell and electrochemical reaction cell stack | |
JP2019075197A (en) | Electrochemical reaction single cell, and electrochemical reaction cell stack | |
JP2001196083A (en) | Solid oxide fuel cell | |
JP2005251611A (en) | Cell for solid oxide fuel cell and solid oxide fuel cell | |
JP6850179B2 (en) | Current collector-electrochemical reaction single cell complex and electrochemical reaction cell stack | |
TW202412369A (en) | Electrochemical cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000314 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080421 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090421 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090421 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100421 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100421 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110421 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110421 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120421 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120421 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130421 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130421 Year of fee payment: 13 |