JPH06287607A - Metallic porous body - Google Patents
Metallic porous bodyInfo
- Publication number
- JPH06287607A JPH06287607A JP5076505A JP7650593A JPH06287607A JP H06287607 A JPH06287607 A JP H06287607A JP 5076505 A JP5076505 A JP 5076505A JP 7650593 A JP7650593 A JP 7650593A JP H06287607 A JPH06287607 A JP H06287607A
- Authority
- JP
- Japan
- Prior art keywords
- less
- porous body
- skeleton
- porous
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 239000011148 porous material Substances 0.000 claims abstract description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052802 copper Inorganic materials 0.000 abstract description 6
- 239000010949 copper Substances 0.000 abstract description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 abstract description 2
- 239000005751 Copper oxide Substances 0.000 abstract description 2
- 229910000431 copper oxide Inorganic materials 0.000 abstract description 2
- 239000011149 active material Substances 0.000 description 11
- 229920000620 organic polymer Polymers 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910000464 lead oxide Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910021508 nickel(II) hydroxide Inorganic materials 0.000 description 2
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/74—Meshes or woven material; Expanded metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Powder Metallurgy (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
(57)【要約】
【目的】 本発明は平均孔径の小さな金属多孔体を用い
て充放電利用率を低下させないアルカリ二次電池用多孔
質集電体を提供するものである。
【構成】 骨格中に1μm以上50μm以下の空洞をも
ち、骨格の平均径が50μm以上200μm以下でかつ
平均孔径が200μm以上800μm以下である銅また
は酸化銅の多孔体。空孔率が85%以上99%以下の範
囲にあることを特徴とする。多孔体の厚さが0.5mm以
上5mm以下の範囲にあることを特徴とする。
【効果】 本発明により、充放電利用率がよくかつ安定
なアルカリ二次電池用多孔質集電体が提供できた。
(57) [Summary] [Object] The present invention provides a porous current collector for an alkaline secondary battery, which does not reduce the charge-discharge utilization rate by using a metal porous body having a small average pore size. A copper or copper oxide porous body having a cavity of 1 μm or more and 50 μm or less in the skeleton, an average diameter of the skeleton of 50 μm or more and 200 μm or less, and an average pore diameter of 200 μm or more and 800 μm or less. The porosity is in the range of 85% or more and 99% or less. It is characterized in that the thickness of the porous body is in the range of 0.5 mm or more and 5 mm or less. [Effect] The present invention can provide a porous current collector for an alkaline secondary battery, which has a good charge / discharge utilization rate and is stable.
Description
【0001】[0001]
【産業上の利用分野】本発明は三次元の金属多孔体に関
する。詳しくは銅を基本元素とした金属多孔体で、例え
ばアルカリ二次電池用集電体として使用される。FIELD OF THE INVENTION The present invention relates to a three-dimensional porous metal body. Specifically, it is a metal porous body containing copper as a basic element, and is used, for example, as a current collector for an alkaline secondary battery.
【0002】[0002]
【従来の技術】アルカリ電池において金属多孔体を集電
体として使用することが提案されている(特開昭55−
25988号公報、特開昭55−125202号公報参
照)。その特徴として高表面積による充放電利用率の向
上や重量坪量精度の向上があげられている。これらの金
属多孔体の平均孔径は1mm以上であり骨格の径も0.5
mm以上と大きい。このような大きな平均孔径及び骨格径
をもつ金属多孔体は以下の作製方法により得られる。す
なわち、多孔質の有機高分子例えばウレタンフォームの
骨格に金属多孔体原料粉末を有機接着剤と混錬して塗布
し、ローラー間を通すことにより過剰原料粉末を取り除
き、これを加熱により有機高分子材料の骨格を分解ある
いは蒸発させて除去し、原料粉末を焼結して金属多孔体
は得られる(特開昭55−125202号公報)。金属
多孔体をこのような製造方法で作製する場合、用いる多
孔質有機高分子の孔径が小さいと目詰まりを起こすため
孔径が小さい金属多孔体は得られていない。2. Description of the Related Art It has been proposed to use a metal porous body as a current collector in an alkaline battery (JP-A-55-55).
25988, JP-A-55-125202). Its features include the improvement of charge / discharge utilization rate and the accuracy of weight basis weight due to its high surface area. The average pore diameter of these metal porous bodies is 1 mm or more, and the skeleton diameter is 0.5.
Larger than mm. The metal porous body having such a large average pore diameter and skeleton diameter can be obtained by the following production method. That is, a porous organic polymer, for example, urethane foam skeleton is kneaded with a metal porous material powder and applied with an organic adhesive, and excess raw material powder is removed by passing between rollers, and the organic polymer is heated by heating it. The skeleton of the material is decomposed or evaporated and removed, and the raw material powder is sintered to obtain a porous metal body (Japanese Patent Laid-Open No. 55-125202). When the metal porous body is produced by such a production method, if the porous organic polymer used has a small pore size, clogging occurs, so that a metal porous body having a small pore size has not been obtained.
【0003】[0003]
【発明が解決しようとする課題】従来の金属多孔体の平
均孔径は小さいものでも1mm以上であり、その中に活物
質を充填して電極とする場合孔径が大きいために活物質
は金属に近い部分のみ利用され、充放電利用率は十分で
はない。さらに、孔径が大きいと未利用物が下部に堆積
し、電極から外への流失が起こる。そのためこの電極を
二次電池として用いる場合、数回の充放電の繰り返しに
よって利用率が低下したり、または短絡が起こり電池と
しては使用できない。本発明は平均孔径の小さな金属多
孔体を用いて上記のような欠点を改良したアルカリ二次
電池用多孔質集電体を提供するものである。Even if the average pore diameter of a conventional metal porous body is small, it is 1 mm or more, and when an active material is filled therein to form an electrode, the active material is close to a metal because of the large pore diameter. It is used only partially, and the charge / discharge utilization rate is not sufficient. Further, if the pore size is large, the unused material is deposited in the lower part, and the outflow from the electrode to the outside occurs. Therefore, when this electrode is used as a secondary battery, it cannot be used as a battery because the utilization factor decreases or a short circuit occurs due to repeated charging and discharging several times. The present invention provides a porous current collector for an alkaline secondary battery in which the above-mentioned drawbacks are improved by using a metal porous body having a small average pore size.
【0004】[0004]
【課題を解決するための手段】本発明は多孔質の有機高
分子材料を銅、または酸化銅で覆い、非酸化性ガス雰囲
気中で加熱し、有機高分子材料を分解除去して得られる
平均孔径の小さな金属多孔体である。詳しくは骨格中に
1μm以上50μm以下の空洞をもち、骨格の平均径が
50μm以上200μm以下でかつ平均孔径が200μ
m以上800μm以下であり、また空孔率が85%以上
99%以下の範囲にあり、さらに多孔体の厚さが0.5
mm以上5mm以下の範囲にある金属多孔体である。The present invention provides an average obtained by covering a porous organic polymer material with copper or copper oxide and heating it in a non-oxidizing gas atmosphere to decompose and remove the organic polymer material. It is a porous metal having a small pore size. Specifically, the skeleton has cavities of 1 μm or more and 50 μm or less, the skeleton has an average diameter of 50 μm or more and 200 μm or less, and an average pore diameter of 200 μm.
m or more and 800 μm or less, the porosity is in the range of 85% or more and 99% or less, and the porous body has a thickness of 0.5.
It is a porous metal body in the range of mm to 5 mm.
【0005】これは、本発明者らの発明(特願平04−
119854号公報)により製作される。図1及び図2
に本発明にかかわる銅を用いた金属多孔体を示す。図中
1は骨格、2は空孔、3は骨格中の空洞を示す。この図
1に示す多孔体は、骨格1の平均径が50μm以上20
0μm以下であり、骨格1内に1μm以上50μm以下
の空洞3をもっている。骨格1の径が50μmより小さ
いと強度的に低下し、200μmより大きいと電池の活
物質の利用率が減少する。また、金属骨格内の空洞3は
用いた有機高分子材料の蒸発により生じているが、緻密
な焼結によりその高分子材料の骨格径より小さい。平均
孔径が200μmより小さいと電池の活物質が十分に充
填されにくく、800μmより大きいと活物質の利用率
が低下する。この金属多孔体の空孔率は85%以上99
%以下であるが、85%より小さいと活物質の利用率が
低下し、99%以上であると強度的に脆くなる。また、
金属多孔体の厚さは0.5mmより薄いと強度的に脆く活
物質含浸時に壊れ易く、5mmより厚いと含浸が不十分で
気孔が残る。This is the invention of the present inventors (Japanese Patent Application No. 04-
No. 1119854). 1 and 2
The metal porous body using copper according to the present invention is shown in FIG. In the figure, 1 is a skeleton, 2 is a hole, and 3 is a cavity in the skeleton. The porous body shown in FIG. 1 has a skeleton 1 with an average diameter of 50 μm or more.
The skeleton 1 has a cavity 3 of 1 μm or more and 50 μm or less. If the diameter of the skeleton 1 is smaller than 50 μm, the strength is lowered, and if it is larger than 200 μm, the utilization factor of the active material of the battery is reduced. The cavity 3 in the metal skeleton is generated by evaporation of the organic polymer material used, but is smaller than the skeleton diameter of the polymer material due to dense sintering. If the average pore size is smaller than 200 μm, it is difficult to sufficiently fill the active material of the battery, and if it is larger than 800 μm, the utilization factor of the active material is lowered. The porosity of this metallic porous body is 85% or more and 99.
% Or less, but if less than 85%, the utilization factor of the active material decreases, and if more than 99%, the strength becomes brittle. Also,
If the thickness of the metal porous body is less than 0.5 mm, the strength is fragile and the metal porous body is easily broken when impregnated with the active material. If the thickness is more than 5 mm, impregnation is insufficient and pores remain.
【0006】[0006]
【実施例】骨格の平均径が100μm、平均孔径が60
0μm、大きさが30mm×30mm×2mmの銅多孔体に、
水素発生を抑えるために鉛を電解メッキし、94wt%の
酸化亜鉛と4wt%のテフロンと2wt%の酸化鉛の混合物
を水を用いて撹拌しながら含浸し、乾燥後400℃で6
0分加熱処理して電池の負極とした。この負極と電荷量
が同じ量である水酸化ニッケル(II)の正極を30%水
酸化カリウム水溶液中にセルロース系を主成分とするセ
パレーターと一緒に配置し、0.2Cで5時間の充電放
電を50回繰り返した。この50回目の活物質利用率は
初期の値に比べ95%であり、十分繰り返しが可能な利
用率であった。Example: The average diameter of the skeleton is 100 μm and the average pore diameter is 60.
0μm, 30mm × 30mm × 2mm copper porous body,
In order to suppress hydrogen generation, lead is electroplated, and a mixture of 94 wt% zinc oxide, 4 wt% Teflon and 2 wt% lead oxide is impregnated with water while stirring, and after drying at 400 ° C for 6
It was heat-treated for 0 minutes and used as the negative electrode of the battery. A nickel (II) hydroxide positive electrode having the same amount of charge as this negative electrode is placed in a 30% aqueous potassium hydroxide solution together with a separator containing cellulose as a main component, and charged and discharged at 0.2 C for 5 hours. Was repeated 50 times. The utilization rate of the active material at the 50th cycle was 95% compared to the initial value, and the utilization rate was sufficiently repeatable.
【0007】(比較例)骨格の平均径が500μm、平
均孔径が1800μm、大きさが30mm×30mm×5mm
の銅多孔体に、水素発生を抑えるために鉛を電解メッキ
し、94wt%の酸化亜鉛と4wt%のテフロンと2wt%の
酸化鉛の混合物を水を用いて撹拌しながら含浸し、乾燥
後400℃で60分加熱処理して電池の負極とした。こ
の負極と電荷量が同じ量である水酸化ニッケル(II)の
正極を30%水酸化カリウム水溶液中にセルロース系を
主成分とするセパレーターと一緒に配置し、0.2Cで
5時間の充電放電を50回繰り返した。この50回目の
活物質利用率は初期の値に比べ40%であり、活物質は
多孔体の外に流失し、またこの流失した活物質が負極の
側面で異常析出し短絡が時々生じており、二次電池とし
ての性能は不十分であった。(Comparative Example) The skeleton has an average diameter of 500 μm, an average pore diameter of 1800 μm, and a size of 30 mm × 30 mm × 5 mm.
The above copper porous body is electrolytically plated with lead in order to suppress hydrogen generation, and a mixture of 94 wt% zinc oxide, 4 wt% Teflon and 2 wt% lead oxide is impregnated with water while stirring, and after drying 400 It heat-processed at 60 degreeC for 60 minutes, and it was set as the negative electrode of the battery. A nickel (II) hydroxide positive electrode having the same amount of charge as this negative electrode is placed in a 30% aqueous potassium hydroxide solution together with a separator containing cellulose as a main component, and charged and discharged at 0.2 C for 5 hours. Was repeated 50 times. The utilization rate of the active material at the 50th cycle was 40% compared to the initial value, and the active material was washed away to the outside of the porous body, and the washed-out active material was abnormally deposited on the side surface of the negative electrode, causing a short circuit occasionally. The performance as a secondary battery was insufficient.
【0008】[0008]
【発明の効果】本発明により、充放電利用率がよくかつ
安定なアルカリ二次電池用多孔質集電体が提供できた。According to the present invention, it is possible to provide a porous current collector for an alkaline secondary battery, which has a good charge and discharge utilization rate and is stable.
【図1】本発明の金属多孔体断面図である。FIG. 1 is a cross-sectional view of a porous metal body of the present invention.
【図2】本発明の骨格部分の断面図である。FIG. 2 is a sectional view of a skeleton portion of the present invention.
1 骨格 2 空孔 3 空洞 1 skeleton 2 holes 3 cavities
Claims (3)
をもち、骨格の平均径が50μm以上200μm以下で
かつ平均孔径が200μm以上800μm以下であるこ
とを特徴とする金属多孔体。1. A porous metal body having a cavity of 1 μm or more and 50 μm or less in the skeleton, an average diameter of the skeleton of 50 μm or more and 200 μm or less, and an average pore diameter of 200 μm or more and 800 μm or less.
ある請求項1に記載の金属多孔体。2. The porous metal body according to claim 1, wherein the porosity is in the range of 85% or more and 99% or less.
範囲にある請求項1に記載の金属多孔体。3. The porous metal body according to claim 1, wherein the porous body has a thickness of 0.5 mm or more and 5 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5076505A JPH06287607A (en) | 1993-04-02 | 1993-04-02 | Metallic porous body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5076505A JPH06287607A (en) | 1993-04-02 | 1993-04-02 | Metallic porous body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06287607A true JPH06287607A (en) | 1994-10-11 |
Family
ID=13607103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5076505A Withdrawn JPH06287607A (en) | 1993-04-02 | 1993-04-02 | Metallic porous body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06287607A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996031306A1 (en) * | 1995-04-03 | 1996-10-10 | Mitsubishi Materials Corporation | Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery |
JPH08291304A (en) * | 1995-02-23 | 1996-11-05 | Mitsubishi Materials Corp | Porous metal plate with large specific surface area |
JPH08333605A (en) * | 1995-04-03 | 1996-12-17 | Mitsubishi Materials Corp | Porous metallic plate having large specific surface area |
JPH09143511A (en) * | 1995-11-29 | 1997-06-03 | Mitsubishi Materials Corp | Porous metallic body having large specific surface area |
-
1993
- 1993-04-02 JP JP5076505A patent/JPH06287607A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08291304A (en) * | 1995-02-23 | 1996-11-05 | Mitsubishi Materials Corp | Porous metal plate with large specific surface area |
WO1996031306A1 (en) * | 1995-04-03 | 1996-10-10 | Mitsubishi Materials Corporation | Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery |
JPH08333605A (en) * | 1995-04-03 | 1996-12-17 | Mitsubishi Materials Corp | Porous metallic plate having large specific surface area |
US5848351A (en) * | 1995-04-03 | 1998-12-08 | Mitsubishi Materials Corporation | Porous metallic material having high specific surface area, method of producing the same, porous metallic plate material and electrode for alkaline secondary battery |
US6117592A (en) * | 1995-04-03 | 2000-09-12 | Mitsubishi Materials Corporation | Porus metallic material having high specific surface area, method of producing the same, porus metallic plate material and electrode for alkaline secondary battery |
JPH09143511A (en) * | 1995-11-29 | 1997-06-03 | Mitsubishi Materials Corp | Porous metallic body having large specific surface area |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3287166A (en) | Battery electrode and battery, and process for preparing said electrode | |
US3108910A (en) | Process for making electrodes or electrode elements for alkaline storage batteries an articles thus obtained | |
JP3972417B2 (en) | Sealed metal oxide-zinc storage battery and manufacturing method thereof | |
JPH06287607A (en) | Metallic porous body | |
JPS6137733B2 (en) | ||
JPH09274916A (en) | Alkaline storage battery | |
US3161545A (en) | Rechargeable cell and electrode therefor | |
JPH11233120A (en) | Electrode for alkaline storage battery and its manufacture | |
JP2898421B2 (en) | Method for producing sintered nickel electrode for alkaline secondary battery | |
JP3037034B2 (en) | Electrodes for alkaline secondary batteries | |
JP3781058B2 (en) | Battery electrode substrate and manufacturing method thereof | |
JP3414184B2 (en) | Method for producing positive electrode plate for alkaline storage battery | |
JP2981538B2 (en) | Electrodes for alkaline batteries | |
JP2981537B2 (en) | Negative electrode for alkaline batteries | |
JPH10334899A (en) | Manufacture of alkaline storage battery and its electrode | |
JP3015455B2 (en) | Electrode plate for battery | |
JP3941341B2 (en) | Alkaline battery and nickel plate | |
JP3397216B2 (en) | Nickel plate, method of manufacturing the same, and alkaline storage battery using the same | |
JPH0773876A (en) | Nickel electrode for secondary battery and manufacture thereof | |
JPS63114061A (en) | Manufacture of sintered nickel electrode for alkaline storage battery | |
JPS59219855A (en) | Formation of nickel-iron storage battery | |
US3398025A (en) | Nickel-cadmium battery electrodes | |
JPH0760681B2 (en) | Method for producing nickel positive electrode | |
JPS60140656A (en) | Production of cadmium negative electrode plate for alkaline storage battery | |
JPH09283127A (en) | Negative electrode for sealed alkaline batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000704 |