JPH06283310A - Temperature sensor - Google Patents
Temperature sensorInfo
- Publication number
- JPH06283310A JPH06283310A JP6782693A JP6782693A JPH06283310A JP H06283310 A JPH06283310 A JP H06283310A JP 6782693 A JP6782693 A JP 6782693A JP 6782693 A JP6782693 A JP 6782693A JP H06283310 A JPH06283310 A JP H06283310A
- Authority
- JP
- Japan
- Prior art keywords
- temperature sensor
- thermistor element
- chemical formula
- resistance
- change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は例えば自動車の排気ガス
対策の触媒の温度検知に使用する温度センサに関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor used for detecting the temperature of a catalyst for exhaust gas countermeasures for automobiles.
【0002】[0002]
【従来の技術】近年、環境問題や燃費向上等の要求か
ら、排気ガス対策用の触媒が使用されているが、その触
媒性能を高めるには触媒温度を正確に測定する必要があ
る。そのために温度センサの抵抗値の経時変化率を小さ
く、具体的には±20%以内に抑えなくてはならない。2. Description of the Related Art In recent years, catalysts for exhaust gas countermeasures have been used in response to environmental problems and demands for improvement of fuel consumption. However, it is necessary to accurately measure the catalyst temperature in order to improve the catalyst performance. Therefore, the rate of change of the resistance value of the temperature sensor with time must be small, and specifically must be suppressed within ± 20%.
【0003】従来、300〜700℃の温度を検知し、
1000℃の耐熱性を有する温度センサに用いるサーミ
スタ素子の材料として、Mg(Al,Cr)2O4系が用
いられていた。Conventionally, a temperature of 300 to 700 ° C. is detected,
As a material for the thermistor element used for a temperature sensor having a heat resistance of 1000 ° C., Mg (Al, Cr) 2 O 4 system has been used.
【0004】図2はサーミスタ素子の斜視図である。サ
ーミスタ素子1に白金パイプ2a,2bを挿入後、焼成
してサーミスタを得ていた。このサーミスタ素子1を図
1に示す触媒温度検知用センサの耐熱キャップ4内に密
封する。この時、白金パイプ2a,2bを二芯管3a,
3bと溶接し、中にリード線を通し、耐熱キャップ4外
に引出していた。FIG. 2 is a perspective view of the thermistor element. After inserting the platinum pipes 2a and 2b into the thermistor element 1, it is fired to obtain a thermistor. The thermistor element 1 is sealed in a heat resistant cap 4 of the catalyst temperature detecting sensor shown in FIG. At this time, the platinum pipes 2a, 2b are connected to the two-core pipe 3a,
3b was welded, the lead wire was passed through, and it was drawn out of the heat resistant cap 4.
【0005】[0005]
【発明が解決しようとする課題】上記従来の構成では、
高温になると耐熱キャップ4を構成する金属原子が耐熱
キャップ4内の酸素と結合し、耐熱キャップ4内の酸素
分圧を下げることとなる。そのため平衡を保つためにサ
ーミスタ素子1から酸素が放出されていた。また、耐熱
キャップ4から水素や一酸化炭素等の還元性のガスが発
生し、サーミスタ素子1に吸着し、酸素を奪い素子1内
に拡散していた。このようにサーミスタ素子1の酸素が
失われるためその構造が変化してしまい、その結果抵抗
値の経時変化率を±20%以内に抑えることができない
という問題点を有していた。SUMMARY OF THE INVENTION In the above conventional configuration,
When the temperature rises, the metal atoms forming the heat resistant cap 4 combine with oxygen in the heat resistant cap 4 to lower the oxygen partial pressure in the heat resistant cap 4. Therefore, oxygen was released from the thermistor element 1 in order to maintain equilibrium. Further, a reducing gas such as hydrogen or carbon monoxide was generated from the heat resistant cap 4, adsorbed to the thermistor element 1, deprived of oxygen and diffused in the element 1. As described above, the structure of the thermistor element 1 is changed due to the loss of oxygen, and as a result, the rate of change in resistance with time cannot be suppressed to within ± 20%.
【0006】本発明は上記従来の問題点を解決するもの
で、抵抗値の経時変化率を小さくすることを目的とする
ものである。The present invention solves the above-mentioned conventional problems, and an object thereof is to reduce the rate of change in resistance with time.
【0007】[0007]
【課題を解決するための手段】この目的を達成するため
に本発明の温度センサは、サーミスタ素子を(化1)で
表される組成の酸化物を用いて形成したものである。In order to achieve this object, the temperature sensor of the present invention is one in which a thermistor element is formed by using an oxide having a composition represented by Chemical formula 1.
【0008】[0008]
【作用】上記構成によるとコランダム構造をとる高抵抗
のAl2O3にP型伝導のCr2O3とN型伝導のFe2O3
を固溶させたものとなる。この時P型は酸素を失うと抵
抗値が増加し、N型は減少し、このように同一結晶中に
P型とN型を存在させることにより抵抗値の経時変化を
小さく抑えることができる。According to the above-mentioned structure, P-type conduction Cr 2 O 3 and N-type conduction Fe 2 O 3 are added to high resistance Al 2 O 3 having a corundum structure.
Is a solid solution. At this time, the resistance value of the P-type increases when oxygen is lost, and the resistance value of the N-type decreases, and the presence of the P-type and the N-type in the same crystal makes it possible to suppress the change in resistance value with time.
【0009】[0009]
【実施例】(実施例1)以下本発明の一実施例について
図と表を参照しながら説明する。図1は触媒温度検知用
温度センサの断面図である。サーミスタ素子1の構成材
料以外は従来と同じ構成なので同一番号が付してある。(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings and tables. FIG. 1 is a sectional view of a temperature sensor for detecting catalyst temperature. Except for the constituent material of the thermistor element 1, it has the same structure as the conventional one, so the same reference numerals are given.
【0010】図2はサーミスタ素子1の斜視図である。
(化1)におけるAl2O3,Cr2O3,Fe2O3をxと
yが表1に示す組成になるように所定量秤量し試料No.
1〜27を作成した。まず試料No.1をボールミルで1
6時間混合し、1200℃で仮焼後再びボールミルで1
8時間粉砕した。そして乾燥後10重量%濃度のポリビ
ニルアルコール水溶液を全体の8重量%添加して造粒を
行った。最後に図2に示す形状に成形を行い、白金パイ
プ2a,2bを挿入後1600℃で焼成し、サーミスタ
素子1を得た。試料No.2〜27についても同様の操作
を行った。FIG. 2 is a perspective view of the thermistor element 1.
Al 2 O 3 , Cr 2 O 3 , and Fe 2 O 3 in (Chemical formula 1) were weighed in predetermined amounts so that x and y had the compositions shown in Table 1, and sample No.
1-27 were created. First, sample No. 1 with a ball mill
Mix for 6 hours, calcine at 1200 ° C, and then use ball mill again 1
Crushed for 8 hours. Then, after drying, 8% by weight of the whole polyvinyl alcohol aqueous solution having a concentration of 10% by weight was added for granulation. Finally, the thermistor element 1 was obtained by molding into the shape shown in FIG. 2, inserting the platinum pipes 2a and 2b, and firing at 1600 ° C. The same operation was performed on Sample Nos. 2 to 27.
【0011】[0011]
【表1】 [Table 1]
【0012】このようにして得られたサーミスタ素子1
を従来と同様にして図1に示す触媒温度検知用の温度セ
ンサの耐熱キャップ4内に組み込んで、300℃,60
0℃,850℃における抵抗値を測定しそれを表1にR
300,R600,R850として示した。また900
℃で1000時間の密閉耐久試験を行った後、300℃
における抵抗値を測定し、変化率を求め、表1にΔR3
00として示した。The thermistor element 1 thus obtained
In the same manner as in the conventional case, the temperature sensor for detecting the catalyst temperature shown in FIG.
The resistance values at 0 ° C and 850 ° C were measured and are shown in Table 1 as R
It is shown as 300, R600 and R850. Again 900
After conducting a sealed endurance test at 1000C for 1000 hours, then 300 ℃
The resistance value was measured and the rate of change was calculated.
It is shown as 00.
【0013】なお抵抗値変化率は(密閉耐久試験後の抵
抗値−初期抵抗値)/初期抵抗値×100(%)を用い
て算出した。The rate of change in resistance value was calculated by using (resistance value after sealed durability test-initial resistance value) / initial resistance value x 100 (%).
【0014】表1の試料No.20のようにFe成分が増
加しy/(x+y)の値が、0.6を越えると、抵抗値
変化率が−30%と大きい。その理由は、Feが高温下
で耐久性に劣り、還元雰囲気において酸素を奪われやす
いFe3O4として存在するからで、そのためP型とN型
のバランスがとれなくなるのである。またFe成分が多
くなるとクラックを生じることもある。When the Fe component increases and the value of y / (x + y) exceeds 0.6 as in sample No. 20 in Table 1, the resistance change rate is as large as -30%. The reason is that Fe is inferior in durability at a high temperature and exists as Fe 3 O 4 which is easily deprived of oxygen in a reducing atmosphere, so that the P type and the N type cannot be balanced. Moreover, when the Fe component is increased, cracks may occur.
【0015】また試料No.5のようにFe成分が全く含
まれていないと、N型が存在せず抵抗値変化率は+37
%と大きくなる。When the Fe component is not contained at all like Sample No. 5, the N-type does not exist and the resistance value change rate is +37.
It becomes as large as%.
【0016】(実施例2)以下に本発明の第2の実施例
について説明する。(Second Embodiment) A second embodiment of the present invention will be described below.
【0017】(化2)におけるAl2O3,Cr2O3,F
e2O3,CaCO3をx,y,aが表2に示す組成にな
るように所定量秤量し、試料No.28〜39を作成し
た。Al 2 O 3 , Cr 2 O 3 and F in the chemical formula 2
A predetermined amount of e 2 O 3 and CaCO 3 was weighed so that x, y, and a had the compositions shown in Table 2, and sample Nos. 28 to 39 were prepared.
【0018】[0018]
【表2】 [Table 2]
【0019】焼成温度を1500℃にした以外は(実施
例1)の場合と同様にして、サーミスタ素子1を得た。
そしてそれを図1に示す触媒温度検知用の温度センサの
耐熱キャップ4内に密封し、300℃,600℃,85
0℃における抵抗値を測定し、それを表2内にR30
0,R600,R850として示した。次に900℃で
1000時間の密閉耐久試験後、300℃における抵抗
値を測定し、抵抗値変化率を(実施例1)のようにして
求めた。それを表2にΔR300として示した。なおC
aOは主成分(化1)に固溶せず、単独で粒界に存在す
る。表2の試料No.39のように、CaOの添加量が5
原子%を越えると、焼成中にCaOが飛散しサーミスタ
素子1はポーラスになる。そのため酸素を奪われやすく
なり、抵抗値の経時変化率が±20%を越えてしまう。
また試料No.38のようにCaOの添加量が0.1原子
%未満になると、(実施例1)よりも焼成温度が100
℃も低いため、緻密化をはかることができず、抵抗値の
経時変化率が大きくなる。CaO添加時、無添加時の理
論密度比を密度比1、密度比2として表2に並記してい
る。理論密度化は(素体密度)/(理論密度)×100
(%)を用いて算出した。無添加時の密度比2は(実施
例1)を用いて求めたものである。表2を見るとわかる
ように、焼成温度を100℃も下げているにもかかわら
ず、CaOを添加することにより、緻密なサーミスタ素
子1が得られる。A thermistor element 1 was obtained in the same manner as in (Example 1) except that the firing temperature was 1500 ° C.
Then, it is sealed in a heat-resistant cap 4 of a temperature sensor for detecting the catalyst temperature shown in FIG.
The resistance value at 0 ° C was measured, and it was recorded in Table 2 as R30.
It is shown as 0, R600, and R850. Next, after a sealed durability test at 900 ° C. for 1000 hours, the resistance value at 300 ° C. was measured, and the resistance value change rate was obtained as in (Example 1). It is shown in Table 2 as ΔR300. Note that C
aO does not form a solid solution with the main component (Chemical Formula 1) and exists alone at the grain boundaries. Like sample No. 39 in Table 2, the amount of CaO added is 5
When it exceeds atomic%, CaO scatters during firing and the thermistor element 1 becomes porous. Therefore, oxygen is easily deprived, and the rate of change in resistance with time exceeds ± 20%.
When the amount of CaO added is less than 0.1 atom% as in sample No. 38, the firing temperature is 100 than that in (Example 1).
Since the temperature is also low, densification cannot be achieved, and the rate of change in resistance with time increases. The theoretical density ratios with and without addition of CaO are shown in Table 2 as density ratio 1 and density ratio 2. Theoretical densification is (elemental density) / (theoretical density) × 100
(%) Was used for calculation. The density ratio 2 without addition is obtained by using (Example 1). As can be seen from Table 2, the dense thermistor element 1 can be obtained by adding CaO even though the firing temperature is lowered by 100 ° C.
【0020】なお、CaOの添加はCrを多く含むもの
に特に効果がある。 (実施例3)以下本発明の第3の実施例について説明す
る。The addition of CaO is particularly effective for those containing a large amount of Cr. (Embodiment 3) A third embodiment of the present invention will be described below.
【0021】(化3)におけるAl2O3,Cr2O3,F
e2O3,CaCO3,希土類酸化物(Y2O3,La
2O3,CeO2,Pr6O11,Nd2O3,Sm2O3,Eu
2O3,Gd2O3,Tb4O7,Dy2O3,Ho2O3,Er
2O3,Tm2O3,Yb2O3,Lu 2O3)をx,y,a,
bが表3に示す組成になるように、所定量秤量し試料N
o.40〜77を作成した。Al in (Chemical Formula 3)2O3, Cr2O3, F
e2O3, CaCO3, Rare earth oxides (Y2O3, La
2O3, CeO2, Pr6O11, Nd2O3, Sm2O3, Eu
2O3, Gd2O3, TbFourO7, Dy2O3, Ho2O3, Er
2O3, Tm2O3, Yb2O3, Lu 2O3) Is x, y, a,
Sample N was weighed so that b had the composition shown in Table 3.
o.40-77 was created.
【0022】[0022]
【表3】 [Table 3]
【0023】(実施例1)の場合と同様にして、高温サ
ーミスタ素子1を得た。そして図1に示す触媒温度検知
用温度センサの耐熱性キャップ4内に密封し、300
℃,600℃,900℃における抵抗値を測定し、表3
にR300,R600,R900として示した。次に1
100℃で1000時間の密閉耐久試験を行った後、3
00℃における抵抗値を測定し、変化率を実施例1と同
様に算出し、表3にΔR300として示した。A high temperature thermistor element 1 was obtained in the same manner as in (Example 1). Then, the catalyst temperature detecting temperature sensor shown in FIG.
The resistance values at ℃, 600 ℃ and 900 ℃ were measured, and Table 3
Are shown as R300, R600, and R900. Then 1
After conducting a sealed endurance test at 100 ° C for 1000 hours, 3
The resistance value at 00 ° C. was measured, the rate of change was calculated in the same manner as in Example 1, and shown in Table 3 as ΔR300.
【0024】本実施例においては希土類酸化物とCaO
を添加して緻密化をはかり、吸着ガスが酸素を奪い拡散
するのを防いでいる。また希土類酸化物は粒界におい
て、ペロブスカイト構造の(RE)CrO3として存在
している。ここでREは希土類元素を表している。Ca
Oは主成分(化1)と固溶せず単独で粒界に存在してい
る。In this embodiment, rare earth oxide and CaO are used.
Is added to achieve densification and prevent the adsorbed gas from depriving oxygen and diffusing. The rare earth oxide exists as (RE) CrO 3 having a perovskite structure at the grain boundary. Here, RE represents a rare earth element. Ca
O does not form a solid solution with the main component (Chemical Formula 1) and exists alone at the grain boundary.
【0025】表3の試料No.42,54,66のように
希土類酸化物の添加量が10原子%を越えると、(R
E)CrO3の偏析量が増加し、主成分(化1)のCr
が多量に失われ半導体特性のバランスが崩れ抵抗値の経
時変化率が±20%を越えてしまう。また試料No.4
7,61,75のように、CaOを添加せずかつ希土類
酸化物の添加量が0.1原子%未満であると、抵抗値の
経時変化率は±20%を大きく越えてしまう。When the addition amount of the rare earth oxide exceeds 10 atomic% as in Sample Nos. 42, 54 and 66 of Table 3, (R
E) The segregation amount of CrO 3 is increased, and the main component (Chemical formula 1) of Cr
Is lost in a large amount, the balance of semiconductor characteristics is lost, and the rate of change in resistance over time exceeds ± 20%. Sample No.4
When CaO is not added and the amount of the rare earth oxide added is less than 0.1 atomic% as in Nos. 7, 61 and 75, the rate of change in resistance with time greatly exceeds ± 20%.
【0026】なお、密閉耐久試験温度を実施例1・2と
比較してもわかるように、希土類酸化物を添加すると耐
熱温度は200℃も向上している。As can be seen by comparing the sealing endurance test temperature with those of Examples 1 and 2, the addition of the rare earth oxide improves the heat resistance temperature by 200 ° C.
【0027】(実施例4)以下、本発明の第4の実施例
について説明する。(Fourth Embodiment) The fourth embodiment of the present invention will be described below.
【0028】(化4)におけるAl2O3,Cr2O3,F
e2O3,CaCO3,ThO2をx,y,a,bが表4に
示す組成になるように所定量秤量し、試料No.78〜8
8を作成した。Al 2 O 3 , Cr 2 O 3 and F in the chemical formula 4
A predetermined amount of e 2 O 3 , CaCO 3 , and ThO 2 was weighed so that x, y, a, and b had the compositions shown in Table 4, and sample Nos. 78 to 8 were used.
8 was created.
【0029】[0029]
【表4】 [Table 4]
【0030】(実施例1)の場合と同様にして、サーミ
スタ素子1を得て、それを図1に示す触媒温度検知用温
度センサの耐熱キャップ4内に密封し、300℃,60
0℃,900℃における抵抗値を測定し、表4において
R300,R600,R900として示した。そして1
100℃で1000時間の密閉耐久試験を行った後、3
00℃における抵抗値を測定し、その変化率を(実施例
1)と同様にして算出し、それを表4にΔR300とし
て示す。In the same manner as in (Example 1), the thermistor element 1 was obtained, and the thermistor element 1 was sealed in the heat resistant cap 4 of the catalyst temperature detecting temperature sensor shown in FIG.
The resistance values at 0 ° C. and 900 ° C. were measured and shown in Table 4 as R300, R600, and R900. And 1
After conducting a sealed endurance test at 100 ° C for 1000 hours, 3
The resistance value at 00 ° C. was measured, and the rate of change was calculated in the same manner as in (Example 1), which is shown in Table 4 as ΔR300.
【0031】ThO2,CaOは主成分(化1)と固溶
せず単独で粒界に存在する。そしてThO2は還元雰囲
気に安定なので希土類酸化物と比較すると10分の1の
添加量でも同様の効果を得ることができる。ThO 2 and CaO do not form a solid solution with the main component (Chemical Formula 1) and exist alone at grain boundaries. Since ThO 2 is stable in a reducing atmosphere, a similar effect can be obtained even with an addition amount of 1/10 that of rare earth oxides.
【0032】しかし表4の試料No.82のようにThO2
の添加量が10原子%を越えると、急速に焼結性が悪く
なりポーラスの発生が増加し、抵抗値の経時変化率が−
20%を越えてしまう。また試料No.85のように、C
aOを添加せずかつThO2の添加量が0.01原子%
未満になると、抵抗値の経時変化率が−20%を越えて
しまう。However, as shown in sample No. 82 of Table 4, ThO 2
When the amount of addition of Al exceeds 10 atomic%, the sinterability rapidly deteriorates, the generation of porous particles increases, and the rate of change in resistance with time is −.
It exceeds 20%. Also, as in sample No. 85, C
aO is not added and the amount of ThO 2 added is 0.01 atom%.
If it is less than the lower limit, the rate of change in resistance over time exceeds -20%.
【0033】またThO2も希土類酸化物と同様に耐熱
温度を200℃も改善できる。 (実施例5)以下、本発明の第5の実施例について説明
する。Further, ThO 2 can also improve the heat resistance temperature by 200 ° C. like the rare earth oxide. (Fifth Embodiment) The fifth embodiment of the present invention will be described below.
【0034】(化5)におけるAl2O3,Cr2O3,F
e2O3,CaCO3,ZrO2をx,y,a,bが表5に
示す組成になるようにそれぞれ所定量秤量し、試料No.
89〜101を作成した。Al 2 O 3 , Cr 2 O 3 and F in the chemical formula 5
A predetermined amount of e 2 O 3 , CaCO 3 , and ZrO 2 was weighed so that x, y, a, and b had the compositions shown in Table 5, and sample No.
89-101 was created.
【0035】[0035]
【表5】 [Table 5]
【0036】(実施例1)の場合と同様にして、サーミ
スタ素子1を得て、図1に示す触媒温度検知用温度セン
サの耐熱キャップ4内に密封し、300℃,600℃,
900℃における抵抗値を測定し、表5にR300,R
600,R900として示した。そして1100℃で1
000時間の密閉耐久試験を行った後、300℃におけ
る抵抗値を測定し、その変化率を(実施例1)と同様に
算出し、表5にΔR300として示した。In the same manner as in (Example 1), the thermistor element 1 was obtained and sealed in the heat-resistant cap 4 of the catalyst temperature detecting temperature sensor shown in FIG.
The resistance value at 900 ° C. was measured.
It is shown as 600 and R900. And 1 at 1100 ° C
After performing the sealed endurance test for 000 hours, the resistance value at 300 ° C. was measured, and the rate of change was calculated in the same manner as in (Example 1), and shown in Table 5 as ΔR300.
【0037】ZrO2,CaOは共に主成分(化1)と
固溶せず、それぞれ単独で粒界に存在する。表5の試料
No.92,96のように、ZrO2の添加量が30原子%
を越えると焼結性が悪化し、抵抗値の経時変化率が−2
0%を越えてしまう。Both ZrO 2 and CaO do not form a solid solution with the main component (Chemical Formula 1), and each exists alone at the grain boundary. Table 5 samples
Like Nos. 92 and 96, the amount of ZrO 2 added is 30 atom%.
If it exceeds, the sinterability deteriorates and the rate of change in resistance with time is -2.
It exceeds 0%.
【0038】ZrO2もThO2、希土類酸化物と同様に
耐熱温度が200℃も向上している。Like ZrO 2 and ThO 2 and the rare earth oxides, the heat resistance temperature is improved by 200 ° C.
【0039】さらに、主成分(化1)の組成が一定のと
き、ZrO2の添加量を調節することにより、抵抗値を
幅広くコントロールできるようになる。Further, when the composition of the main component (Chemical Formula 1) is constant, the resistance value can be widely controlled by adjusting the addition amount of ZrO 2 .
【0040】なお上記(実施例1〜5)からもわかるよ
うに、本発明の温度センサに用いるサーミスタ材料は、
環境変化に強い。そこでディスク型やガラス封入するな
ど形状を変えても温度センサとして十分使用できる。As can be seen from the above (Examples 1 to 5), the thermistor material used in the temperature sensor of the present invention is
Strong against environmental changes. Therefore, it can be sufficiently used as a temperature sensor even if the shape is changed, such as a disk type or glass sealed.
【0041】[0041]
【発明の効果】以上のように本発明の温度センサに用い
るサーミスタ素子はダム構造をとる高抵抗Al2O3にP
型伝導のCr2O3と、N型伝導のFe2O3を固溶させた
もので形成され、同一結晶中にP型とN型を混在させる
ことにより、高温下でサーミスタ素子が酸素を失って
も、抵抗値の経時変化を小さく抑えることができる。As described above, the thermistor element used in the temperature sensor of the present invention has a dam structure of high resistance Al 2 O 3 and P
It is formed by a solid solution of Cr 2 O 3 of type conductivity and Fe 2 O 3 of N type conductivity. By mixing P type and N type in the same crystal, the thermistor element can generate oxygen at high temperature. Even if it is lost, the change in resistance with time can be suppressed to be small.
【図1】本発明の一実施例の触媒温度検知用温度センサ
の断面図FIG. 1 is a sectional view of a temperature sensor for detecting a catalyst temperature according to an embodiment of the present invention.
【図2】本発明の一実施例のサーミスタ素子の斜視図FIG. 2 is a perspective view of a thermistor element according to an embodiment of the present invention.
1 サーミスタ素子 4 耐熱キャップ 1 Thermistor element 4 Heat resistant cap
───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑 拓興 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takuko Hata 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (5)
ップ内に設けたサーミスタ素子と、このサーミスタ素子
に電気的に接続されるとともに、前記耐熱キャップ外に
引出したリード線とを備え、前記サーミスタ素子を(化
1)で表される物質を用いて形成した温度センサ。 【化1】 1. A thermistor comprising: a metal heat-resistant cap; a thermistor element provided in the heat-resistant cap; and a lead wire that is electrically connected to the thermistor element and is drawn out of the heat-resistant cap. A temperature sensor in which an element is formed using a substance represented by (Chemical Formula 1). [Chemical 1]
としたとき、サーミスタ素子が(化2)で表される物質
を用いて形成された請求項1記載の温度センサ。 【化2】 2. The constituent metal atom of (Chemical formula 1) is 100 atom%.
The temperature sensor according to claim 1, wherein the thermistor element is formed by using a substance represented by (Chemical Formula 2). [Chemical 2]
としたとき、サーミスタ素子が(化3)で表される物質
を用いて形成された請求項1記載の温度センサ。 【化3】 3. The constituent metal atom of (Chemical formula 1) is 100 atom%.
In this case, the temperature sensor according to claim 1, wherein the thermistor element is formed by using a substance represented by (Chemical Formula 3). [Chemical 3]
としたとき、サーミスタ素子が(化4)で表される物質
を用いて形成された請求項1に記載の温度センサ。 【化4】 4. The constituent metal atom of (Chemical formula 1) is 100 atom%.
In this case, the temperature sensor according to claim 1, wherein the thermistor element is formed by using a substance represented by (Chemical Formula 4). [Chemical 4]
としたとき、サーミスタ素子が(化5)で表される物質
を用いて形成された請求項1に記載の温度センサ。 【化5】 5. The constituent metal atom of the chemical formula 1 is 100 atom%.
In this case, the temperature sensor according to claim 1, wherein the thermistor element is formed by using the substance represented by (Chemical Formula 5). [Chemical 5]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5067826A JP2985561B2 (en) | 1993-03-26 | 1993-03-26 | Temperature sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5067826A JP2985561B2 (en) | 1993-03-26 | 1993-03-26 | Temperature sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06283310A true JPH06283310A (en) | 1994-10-07 |
JP2985561B2 JP2985561B2 (en) | 1999-12-06 |
Family
ID=13356147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5067826A Expired - Fee Related JP2985561B2 (en) | 1993-03-26 | 1993-03-26 | Temperature sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2985561B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996035932A1 (en) * | 1995-05-11 | 1996-11-14 | Matsushita Electric Industrial Co., Ltd. | Temperature sensor element, temperature sensor having the same and method for producing the same temperature sensor element |
US5644284A (en) * | 1994-04-27 | 1997-07-01 | Matsushita Electric Industrial Co., Ltd. | Temperature sensor |
EP0795879A1 (en) * | 1995-08-31 | 1997-09-17 | Matsushita Electric Industrial Co., Ltd. | Temperature sensor and its manufacture |
US6081182A (en) * | 1996-11-22 | 2000-06-27 | Matsushita Electric Industrial Co., Ltd. | Temperature sensor element and temperature sensor including the same |
US6143207A (en) * | 1996-09-18 | 2000-11-07 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Wide-range thermistor material and method for producing it |
-
1993
- 1993-03-26 JP JP5067826A patent/JP2985561B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5644284A (en) * | 1994-04-27 | 1997-07-01 | Matsushita Electric Industrial Co., Ltd. | Temperature sensor |
US5694107A (en) * | 1994-04-27 | 1997-12-02 | Matsushita Electric Industrial Co., Ltd. | Temperature sensor |
WO1996035932A1 (en) * | 1995-05-11 | 1996-11-14 | Matsushita Electric Industrial Co., Ltd. | Temperature sensor element, temperature sensor having the same and method for producing the same temperature sensor element |
KR100227490B1 (en) * | 1995-05-11 | 1999-11-01 | 모리시타 요이찌 | Temperature sensor element, temperature sensor having the same and method for producing the same temperature sensor element |
US6014073A (en) * | 1995-05-11 | 2000-01-11 | Matsushita Electric Industrial Co., Ltd. | Temperature sensor element, temperature sensor having the same and method for producing the same temperature sensor element |
EP0795879A1 (en) * | 1995-08-31 | 1997-09-17 | Matsushita Electric Industrial Co., Ltd. | Temperature sensor and its manufacture |
EP0795879A4 (en) * | 1995-08-31 | 1998-12-23 | Matsushita Electric Ind Co Ltd | Temperature sensor and its manufacture |
US6164819A (en) * | 1995-08-31 | 2000-12-26 | Matsushita Electric Industrial Co., Ltd. | Temperature sensor and a method of manufacturing the same |
US6272735B1 (en) | 1995-08-31 | 2001-08-14 | Matsushita Electric Industrial Co., Ltd. | Temperature sensor and a method of manufacturing the same |
US6143207A (en) * | 1996-09-18 | 2000-11-07 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Wide-range thermistor material and method for producing it |
US6081182A (en) * | 1996-11-22 | 2000-06-27 | Matsushita Electric Industrial Co., Ltd. | Temperature sensor element and temperature sensor including the same |
Also Published As
Publication number | Publication date |
---|---|
JP2985561B2 (en) | 1999-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0703438B1 (en) | A temperature sensor and its manufacturing method | |
JP3254594B2 (en) | Porcelain composition for thermistor and thermistor element | |
KR100238575B1 (en) | temperature Senser | |
WO1986003051A1 (en) | Oxide semiconductor for thermistor and a method of producing the same | |
JP3254595B2 (en) | Porcelain composition for thermistor | |
US7537678B2 (en) | Detecting electrode and nitrogen oxide sensor using the same | |
EP0149681A1 (en) | Oxide semiconductor for thermistor | |
JPH06283310A (en) | Temperature sensor | |
EP0180646B1 (en) | Composition | |
CA1123117A (en) | Rare earth or yttrium, transition metal oxide thermistors | |
JPH06325907A (en) | Ceramic composition for thermistor | |
JP2985562B2 (en) | Temperature sensor | |
JP2985589B2 (en) | Temperature sensor | |
JP2904007B2 (en) | Temperature sensor | |
JP2904002B2 (en) | Temperature sensor | |
JP2970190B2 (en) | Oxide semiconductor for thermistor | |
KR0140493B1 (en) | Temperature sensor and manufacturing method | |
JP3569810B2 (en) | High temperature thermistor | |
JPS5947258B2 (en) | Oxygen sensor and its manufacturing method | |
JP3362644B2 (en) | Thermistor element, method of manufacturing the same, and temperature sensor using thermistor element | |
JP2000055857A (en) | Oxygen sensor element | |
MX2007005853A (en) | Ceramic insulating material and sensor element containing this material. | |
JPH04298240A (en) | Composition for electrodes | |
JPS61113211A (en) | Oxide semiconductor for thermistor | |
JPH06338402A (en) | Porcelain compounds for thermistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20081001 |
|
LAPS | Cancellation because of no payment of annual fees |