[go: up one dir, main page]

JPH06283207A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH06283207A
JPH06283207A JP5090432A JP9043293A JPH06283207A JP H06283207 A JPH06283207 A JP H06283207A JP 5090432 A JP5090432 A JP 5090432A JP 9043293 A JP9043293 A JP 9043293A JP H06283207 A JPH06283207 A JP H06283207A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
negative electrode
fepo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5090432A
Other languages
Japanese (ja)
Other versions
JP3126007B2 (en
Inventor
Shigeto Okada
重人 岡田
Hideaki Otsuka
秀昭 大塚
So Arai
創 荒井
Masashi Shibata
昌司 柴田
Masahiro Ichimura
雅弘 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP05090432A priority Critical patent/JP3126007B2/en
Publication of JPH06283207A publication Critical patent/JPH06283207A/en
Application granted granted Critical
Publication of JP3126007B2 publication Critical patent/JP3126007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【目的】 可逆容量の大きな小型高エネルギー密度のリ
チウム電池を低コストで構成することを目的とする。 【構成】 組成式、FePO4 で表される物質を正極活
物質6として含み、アルカリ金属またはその化合物を負
極活物質4とし、正極活物質および負極活物質に対して
化学的に安定であり、かつアルカリ金属イオンが正極活
物質あるいは負極活物質に電気化学反応をするための移
動を行いうる物質を電解質物質とした非水電解質電池。
(57) [Summary] [Purpose] The purpose is to construct a small-sized high-energy-density lithium battery having a large reversible capacity at low cost. A composition, a material represented by FePO 4 is included as a positive electrode active material 6, an alkali metal or a compound thereof is used as a negative electrode active material 4, and it is chemically stable to the positive electrode active material and the negative electrode active material. In addition, a non-aqueous electrolyte battery in which an electrolyte substance is a substance capable of moving alkali metal ions to cause an electrochemical reaction with a positive electrode active material or a negative electrode active material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質電池、さら
に詳細には充放電可能な非水電解質二次電池に関し、特
に正極活物質の改良に関わり、電池の充放電容量の増加
を目的とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte secondary battery that can be charged and discharged, and is particularly related to the improvement of the positive electrode active material to increase the charge and discharge capacity of the battery. It is what

【0002】[0002]

【従来の技術】リチウム等のアルカリ金属およびその合
金や化合物を負極活物質とする非水電解質電池は、負極
金属イオンの正極活物質へのインサーションもしくはイ
ンターカレーション反応によって、その大放電容量と可
充電性を両立させている。従来から、リチウムを負極活
物質として用いる二次電池としては、リチウムに対しイ
ンターカレーションホストとなりうるV2 5 やLiC
oO2 やLiNiO2 などの層状もしくはトンネル状酸
化物を正極に用いた電池が提案されているが、これらの
金属酸化物は、コストの点で実用上難点がある。
2. Description of the Related Art A non-aqueous electrolyte battery using an alkali metal such as lithium and its alloys and compounds as a negative electrode active material has a large discharge capacity due to an insertion or intercalation reaction of a negative electrode metal ion into the positive electrode active material. It has both chargeability. Conventionally, as a secondary battery using lithium as a negative electrode active material, V 2 O 5 or LiC that can serve as an intercalation host for lithium is used.
Although batteries using layered or tunnel oxides such as oO 2 and LiNiO 2 for the positive electrode have been proposed, these metal oxides have practical difficulties in terms of cost.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記現状の問
題点を改善するために提案されたもので、その目的は、
小型で充放電特性に優れた電池特性を持つ非水電解質電
池を低コストで提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been proposed in order to solve the above problems of the present situation, and its purpose is to:
It is to provide a non-aqueous electrolyte battery that is small in size and has excellent battery characteristics in charge and discharge at low cost.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は組成式FePO4 で与えられる化合物を正
極活物質とし、リチウムその他のアルカリ金属またはそ
の化合物を負極活物質とし、前記正極活物質及び、前記
負極活物質に対して化学的に安定であり、且つアルカリ
金属イオンが前記正極活物質あるいは前記負極活物質と
電気化学反応をするための移動を行い得る物質を電解質
物質としたことを特徴とする非水電解質電池を発明の要
旨とするものである。
To achieve the above object, the present invention uses a compound represented by the composition formula FePO 4 as a positive electrode active material and lithium or other alkali metal or a compound thereof as a negative electrode active material. An electrolyte material is an active material and a material that is chemically stable to the negative electrode active material and is capable of moving alkali metal ions to cause an electrochemical reaction with the positive electrode active material or the negative electrode active material. A non-aqueous electrolyte battery characterized by the above is the subject of the invention.

【0005】[0005]

【作用】本発明の鉄化合物である正極活物質は、既知4
V級高電圧正極の中でも最も安価なMn酸化物であるL
iMn2 4 に比べてもさらに半分以下の低コストを可
能とするものである。
The positive electrode active material, which is an iron compound of the present invention, is known to be 4
L, which is the cheapest Mn oxide among V-class high-voltage positive electrodes
Even if compared with iMn 2 O 4 , the cost can be reduced to half or less.

【0006】[0006]

【実施例】次に本発明の実施例について説明する。本発
明ではFePO4 は、FePO4 ・nH2 Oを熱処理し
て得た。熱分析の結果を図1に示す。図1の熱重量分析
の結果から、市販FePO4 ・nH2 O試薬より結晶水
を完全に除去するためには少なくとも250℃以上の熱
処理が必要であることがわかる。曲線Aは重量の減少、
曲線Bは発熱又は吸熱を示す。また、室温および250
℃,550℃,600℃,750℃各温度での24時間
熱処理品のX線回折結果を図2に示す。250℃で熱処
理した試料は非晶質であり、550℃〜750℃で熱処
理した試料は六方晶である。この正極活物質を用いて正
極を形成するには、FePO4 化合物粉末とポリテトラ
フルオロエチレンのような結着剤粉末との混合物をニッ
ケル,ステンレス等の支持体上に圧着成形する。あるい
は、かかる混合物質粉末に導電性を付与するため熱分解
黒鉛やアセチレンブラックのような導電性粉末を混合
し、これに更にポリテトラフルオロエチレンのような結
着剤粉末を所要に応じて加え、この混合物を金属容器に
入れ、あるいは前述の混合物をニッケル,ステンレス等
の支持体に圧着成形する等の手段によって形成される。
負極活物質であるリチウムは一般のリチウム電池のそれ
と同様にシート状として、またはそのシートをニッケ
ル,ステンレス等の導電体網に圧着して負極として形成
される。また負極活物質としては、リチウム以外にリチ
ウム合金やリチウム化合物、その他ナトリウム,カリウ
ム等、従来公知のものが使用できる。電解質としては、
例えばジメトキシエタン,2−メチルテトラヒドロフラ
ン,エチレンカーボネート,メチルホルメート,ジメチ
ルスルホキシド,プロピレンカーボネート,アセトニト
リル,ブチロラクトン,ジメチルフォルムアミドなどの
有機溶媒に、LiAsF6 ,LiBF4 ,LiPF6
LiAlCl4 ,LiClO4 などのルイス酸を溶解し
た非水電解質溶液が使用できる。更に、セパレータ,構
造材料(電池ケース等)などの他の要素についても従来
公知の各種材料が使用でき、特に制限はない。以下実施
例によって本発明の方法を更に具体的に説明するが、本
発明はこれらによりなんら制限されるものではない。な
お、実施例において電池の作製及び測定はアルゴン雰囲
気下のドライボックス中で行った。
EXAMPLES Next, examples of the present invention will be described. In the present invention, FePO 4 was obtained by heat treating FePO 4 .nH 2 O. The result of thermal analysis is shown in FIG. From the results of thermogravimetric analysis in FIG. 1, it is found that heat treatment at least at 250 ° C. or higher is required to completely remove the water of crystallization from the commercially available FePO 4 .nH 2 O reagent. Curve A shows weight loss,
Curve B shows exotherm or endotherm. Also at room temperature and 250
FIG. 2 shows the X-ray diffraction result of the heat-treated product for 24 hours at each temperature of ° C, 550 ° C, 600 ° C, and 750 ° C. The sample heat-treated at 250 ° C is amorphous, and the sample heat-treated at 550 ° C to 750 ° C is hexagonal. To form a positive electrode using this positive electrode active material, a mixture of FePO 4 compound powder and a binder powder such as polytetrafluoroethylene is pressure-molded on a support such as nickel or stainless steel. Alternatively, in order to impart conductivity to the mixed substance powder, a conductive powder such as pyrolytic graphite or acetylene black is mixed, and a binder powder such as polytetrafluoroethylene is further added to this, if necessary, The mixture is placed in a metal container, or the mixture is pressure-molded on a support made of nickel, stainless steel or the like.
Lithium, which is the negative electrode active material, is formed into a sheet shape like that of a general lithium battery, or is formed as a negative electrode by pressing the sheet onto a conductor network of nickel, stainless steel or the like. Further, as the negative electrode active material, in addition to lithium, conventionally known materials such as lithium alloys, lithium compounds, and sodium and potassium can be used. As an electrolyte,
For example, in an organic solvent such as dimethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, butyrolactone, dimethylformamide, LiAsF 6 , LiBF 4 , LiPF 6 ,
A non-aqueous electrolyte solution in which a Lewis acid such as LiAlCl 4 or LiClO 4 is dissolved can be used. Further, conventionally known various materials can be used for other elements such as a separator and structural materials (battery case, etc.), and there is no particular limitation. Hereinafter, the method of the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto. In the examples, the production and measurement of the battery were performed in a dry box under an argon atmosphere.

【0007】〔実施例1〕図3は本発明による電池の一
具体例であるコイン型電池の断面図であり、図中1はス
テンレス製封口板、2はポリプロピレン製ガスケット、
3はステンレス製正極ケース、4はリチウム負極、5は
ポリプロピレン製微孔性セパレータ、6は正極合剤ペレ
ットを示す。正極活物質は、FePO4 ・nH2 Oを2
50℃で36時間熱処理してFePO4 を無水化したも
のを用いた。得られた無水FePO4 を導電剤(アセチ
レンブラック粉末),結着剤(ポリテトラフルオロエチ
レン)と共に、70:25:5の重量比で混合の上、ロ
ール成形し、正極合剤ペレット6(厚さ0.5mm,直
径17mm,200mg/cell)とした。まず、封
口板1上に金属リチウム負極4を加圧配置したものを、
ガスケット2の凹部に挿入し、金属リチウム負極4の上
にセパレータ5,正極合剤ペレット6の順序に配置し、
電解液としてプロピレンカーボネート(PC)と2−ジ
メトキシエタン(DME)の等容積混合溶媒にLiCl
4 を溶解させた1規定溶液をそれぞれ適量注入して含
浸させた後に、正極ケース3をかぶせてかしめることに
より、厚さ2mm,直径23mmのコイン型電池を作製
した。実施例1のリチウム2次電池について、0.5m
A/cm2 の放電電流密度で4.5V>1Vの電圧規制
下の充放電試験を行ったところ、図4に示す良好な特性
図を得、可逆的に充放電できることがわかった。図4に
おいて、縦軸にセル電圧、横軸に充放電時間をとり、右
下りの曲線は放電、右上りの曲線は充電状態を示す。
Example 1 FIG. 3 is a cross-sectional view of a coin-type battery which is a specific example of the battery according to the present invention, in which 1 is a stainless steel sealing plate, 2 is a polypropylene gasket,
3 is a positive electrode case made of stainless steel, 4 is a lithium negative electrode, 5 is a microporous separator made of polypropylene, and 6 is a positive electrode material mixture pellet. The positive electrode active material is FePO 4 · nH 2 O 2
The one obtained by heat treating at 50 ° C. for 36 hours to dehydrate FePO 4 was used. The obtained anhydrous FePO 4 was mixed with a conductive agent (acetylene black powder) and a binder (polytetrafluoroethylene) at a weight ratio of 70: 25: 5, and then roll-formed, and the positive electrode mixture pellet 6 (thickness: 0.5 mm, diameter 17 mm, 200 mg / cell). First, the metallic lithium negative electrode 4 placed under pressure on the sealing plate 1
Insert into the recess of the gasket 2 and place the separator 5 and the positive electrode material mixture pellet 6 in this order on the metal lithium negative electrode 4.
LiCl in an equal volume mixed solvent of propylene carbonate (PC) and 2-dimethoxyethane (DME) as an electrolytic solution.
A proper amount of 1N solution in which O 4 was dissolved was injected and impregnated thereinto, respectively, and then the positive electrode case 3 was covered and crimped to manufacture a coin type battery having a thickness of 2 mm and a diameter of 23 mm. About the lithium secondary battery of Example 1, 0.5 m
A charge / discharge test under a voltage regulation of 4.5 V> 1 V with a discharge current density of A / cm 2 was performed, and it was found that a good characteristic diagram shown in FIG. 4 was obtained and reversible charge / discharge was possible. In FIG. 4, the vertical axis represents the cell voltage and the horizontal axis represents the charging / discharging time. The curve on the lower right shows discharge and the curve on the upper right shows the state of charge.

【0008】〔比較例1〕市販のFePO4 ・nH2
試薬を90℃の真空乾燥処理後、正極として用いた以
外、実施例1と同様な構造のコイン型電池を組み立て
た。しかして、実施例1及び比較例1のリチウム2次電
池について、0.5mA/cm2 の放電電流密度で4.
5V>1Vの電圧規制下の充放電試験を行ったところ、
その放電容量の充放電サイクル回数に伴う劣化挙動を図
5に示す。両者の比較から単に市販試薬のFePO4
nH2 Oを90℃で真空乾燥しただけでは結晶に含まれ
る水分が除去しきれず、良好なサイクル特性が得られな
い。FePO4 ・nH2 Oの熱処理による無水化処理品
がFePO4 の高電圧容量向上に効果的であることがわ
かる。
Comparative Example 1 Commercial FePO 4 .nH 2 O
A coin-type battery having the same structure as in Example 1 was assembled except that the reagent was vacuum dried at 90 ° C. and then used as a positive electrode. Therefore, regarding the lithium secondary batteries of Example 1 and Comparative Example 1, the discharge current density of 0.5 mA / cm 2 was 4.
When the charge / discharge test under the voltage regulation of 5V> 1V was conducted,
FIG. 5 shows the deterioration behavior of the discharge capacity with the number of charge / discharge cycles. From the comparison of the two, simply use the commercially available reagent FePO 4
Only by vacuum drying nH 2 O at 90 ° C., the water contained in the crystals cannot be completely removed, and good cycle characteristics cannot be obtained. It can be seen that the dehydration-treated product of FePO 4 · nH 2 O by heat treatment is effective for improving the high voltage capacity of FePO 4 .

【0009】〔実施例2〕熱処理温度による結晶系の影
響を調べるため、実施例1と同じコイン型電池を用い
て、FePO4 ・nH2 O熱処理条件を600℃,24
時間に変えた以外は実施例1と同条件でその充放電特性
を測定した。この熱処理条件で得られる六方晶FePO
4 の充放電曲線を図6に示す。高温熱処理により結晶化
しても、2サイクル目以降の充放電曲線は実施例1の非
晶質熱処理品と類似しており、電池特性上の優劣はほと
んど見られない。
[Embodiment 2] In order to investigate the influence of the crystal system depending on the heat treatment temperature, the same coin-type battery as in Embodiment 1 was used and the FePO 4 .nH 2 O heat treatment conditions were set to 600 ° C. and 24 ° C., respectively.
The charge / discharge characteristics were measured under the same conditions as in Example 1 except that the time was changed. Hexagonal FePO obtained under these heat treatment conditions
The charge / discharge curve of No. 4 is shown in FIG. Even if crystallized by high temperature heat treatment, the charge and discharge curves after the second cycle are similar to those of the amorphous heat treated product of Example 1, and there is almost no difference in battery characteristics.

【0010】[0010]

【発明の効果】以上説明したように、本発明によれば、
可逆容量の大きな小型高エネルギー密度のリチウム電池
を極めて低コストで構成することができ、本発明電池は
コイン型電池など種々の分野に利用できるという利点を
有する。
As described above, according to the present invention,
A small high energy density lithium battery having a large reversible capacity can be constructed at an extremely low cost, and the battery of the present invention has an advantage that it can be used in various fields such as a coin battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例であるFePO4 ・nH2
の熱重量分析及び示差熱分析特性図を示す。
FIG. 1 is an embodiment of the present invention FePO 4 .nH 2 O
The thermogravimetric analysis and the differential-thermal-analysis characteristic figure of are shown.

【図2】本発明の一実施例であるFePO4 ・nH2
の各熱処理温度でのX線回折特性図を示す。
FIG. 2 is an embodiment of the present invention FePO 4 .nH 2 O
The X-ray-diffraction characteristic figure in each heat processing temperature of is shown.

【図3】本発明の一実施例におけるコイン電池の構成例
を示す断面図である。
FIG. 3 is a cross-sectional view showing a configuration example of a coin battery in one embodiment of the present invention.

【図4】本発明の一実施例であるFePO4 熱処理品の
0.5mA/cm2 充放電電流時の4.5V>1V電圧
規制充放電曲線を示す特性図である。
FIG. 4 is a characteristic diagram showing a 4.5V> 1V voltage-regulated charge / discharge curve of a heat-treated FePO 4 product as an example of the present invention at a charge / discharge current of 0.5 mA / cm 2 .

【図5】本発明の一実施例であるFePO4 熱処理品
(本発明)及び未処理品(従来品)の0.5mA/cm
2 充放電電流時の放電容量の充放電サイクル回数に伴う
劣化挙動を示す特性図である。
FIG. 5: 0.5 mA / cm of FePO 4 heat-treated product (present invention) and untreated product (conventional product) which are examples of the present invention.
2 is a characteristic diagram showing the deterioration behavior of the discharge capacity at the time of charge / discharge current with the number of charge / discharge cycles.

【図6】本発明の一実施例である無水FePO4 結晶の
0.5mA/cm2 放電電流時の4.5V>1V規制充
放電曲線を示す特性図である。
FIG. 6 is a characteristic diagram showing a 4.5V> 1V regulated charge / discharge curve of anhydrous FePO 4 crystal according to an example of the present invention at a discharge current of 0.5 mA / cm 2 ;

【符号の説明】[Explanation of symbols]

1 ステンレス製封口板 2 ポリプロピレン製ガスケット 3 ステンレス製正極ケース 4 リチウム負極 5 ポリプロピレン製セパレータ 6 正極合剤ペレット 1 Stainless steel sealing plate 2 Polypropylene gasket 3 Stainless steel positive electrode case 4 Lithium negative electrode 5 Polypropylene separator 6 Positive electrode mixture pellet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 昌司 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 市村 雅弘 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Shoji Shibata 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor Masahiro Ichimura 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo No. Japan Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成式FePO4 で与えられる化合物を
正極活物質とし、リチウムその他のアルカリ金属または
その化合物を負極活物質とし、前記正極活物質及び、前
記負極活物質に対して化学的に安定であり、且つアルカ
リ金属イオンが前記正極活物質あるいは前記負極活物質
と電気化学反応をするための移動を行い得る物質を電解
質物質としたことを特徴とする非水電解質電池。
1. A compound represented by the composition formula FePO 4 is used as a positive electrode active material, lithium or other alkali metal or a compound thereof is used as a negative electrode active material, and chemically stable with respect to the positive electrode active material and the negative electrode active material. And a substance capable of moving alkali metal ions to cause an electrochemical reaction with the positive electrode active material or the negative electrode active material as an electrolyte substance.
【請求項2】 請求項1において正極活物質であるFe
PO4 は、FePO4 ・nH2 Oを熱分解することによ
り得られた無水晶であることを特徴とする非水電解質電
池。
2. The Fe as a positive electrode active material according to claim 1.
PO 4 is a non-crystal electrolyte obtained by thermally decomposing FePO 4 .nH 2 O, which is a non-aqueous electrolyte battery.
JP05090432A 1993-03-26 1993-03-26 Non-aqueous electrolyte battery Expired - Lifetime JP3126007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05090432A JP3126007B2 (en) 1993-03-26 1993-03-26 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05090432A JP3126007B2 (en) 1993-03-26 1993-03-26 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH06283207A true JPH06283207A (en) 1994-10-07
JP3126007B2 JP3126007B2 (en) 2001-01-22

Family

ID=13998454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05090432A Expired - Lifetime JP3126007B2 (en) 1993-03-26 1993-03-26 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3126007B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060680A1 (en) * 1999-04-06 2000-10-12 Sony Corporation Active material of positive plate, nonaqueous electrolyte secondary cell, method for producing active material of positive material
WO2000060679A1 (en) * 1999-04-06 2000-10-12 Sony Corporation Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
JP2002117833A (en) * 2000-10-06 2002-04-19 Sony Corp Nonaqueous electrolyte secondary battery
JP2002117847A (en) * 2000-10-06 2002-04-19 Sony Corp Positive electrode active material and nonaqueous electrolyte battery, as well as their manufacturing method
JP2007012491A (en) * 2005-07-01 2007-01-18 Kyushu Univ Method for producing positive electrode material for secondary battery, and secondary battery
JP2007080839A (en) * 2006-11-22 2007-03-29 Gs Yuasa Corporation:Kk Nonaqueous solid electrolyte cell
JP2008198815A (en) * 2007-02-14 2008-08-28 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JP2008235151A (en) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2008235150A (en) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
US7939201B2 (en) 2005-08-08 2011-05-10 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
US7955733B2 (en) 1996-04-23 2011-06-07 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
JP2011192500A (en) * 2010-03-15 2011-09-29 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
US8158090B2 (en) 2005-08-08 2012-04-17 A123 Systems, Inc. Amorphous and partially amorphous nanoscale ion storage materials
US8257616B2 (en) 1999-04-30 2012-09-04 Acep Inc. Electrode materials with high surface conductivity
US8323832B2 (en) 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials
CN103915626A (en) * 2014-04-21 2014-07-09 上海电力学院 Sodium ion battery composite positive material and preparation method thereof
JP2014157835A (en) * 1996-04-23 2014-08-28 Board Of Regents The Univ Of Texas System Cathode materials for secondary (rechargeable) lithium batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003301468A1 (en) * 2002-10-18 2004-05-04 Japan As Represented By President Of The University Of Kyusyu Method for preparing positive electrode material for lithium cell, and lithium cell

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8282691B2 (en) 1996-04-23 2012-10-09 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
US7964308B2 (en) 1996-04-23 2011-06-21 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
JP2014157835A (en) * 1996-04-23 2014-08-28 Board Of Regents The Univ Of Texas System Cathode materials for secondary (rechargeable) lithium batteries
US7998617B2 (en) 1996-04-23 2011-08-16 HYDRO-QUéBEC Cathode materials for secondary (rechargeable) lithium batteries
US8067117B2 (en) 1996-04-23 2011-11-29 HYDRO-QUéBEC Cathode materials for secondary (rechargeable) lithium batteries
US8785043B2 (en) 1996-04-23 2014-07-22 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
US7960058B2 (en) 1996-04-23 2011-06-14 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
US9362562B2 (en) 1996-04-23 2016-06-07 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
US7972728B2 (en) 1996-04-23 2011-07-05 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
US7955733B2 (en) 1996-04-23 2011-06-07 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
WO2000060680A1 (en) * 1999-04-06 2000-10-12 Sony Corporation Active material of positive plate, nonaqueous electrolyte secondary cell, method for producing active material of positive material
JP2011103305A (en) * 1999-04-06 2011-05-26 Sony Corp Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
WO2000060679A1 (en) * 1999-04-06 2000-10-12 Sony Corporation Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
US8506852B2 (en) 1999-04-30 2013-08-13 Acep Inc. Electrode materials with high surface conductivity
US8506851B2 (en) 1999-04-30 2013-08-13 Acep Inc. Electrode materials with high surface conductivity
US8257616B2 (en) 1999-04-30 2012-09-04 Acep Inc. Electrode materials with high surface conductivity
JP2002117833A (en) * 2000-10-06 2002-04-19 Sony Corp Nonaqueous electrolyte secondary battery
JP2002117847A (en) * 2000-10-06 2002-04-19 Sony Corp Positive electrode active material and nonaqueous electrolyte battery, as well as their manufacturing method
JP2007012491A (en) * 2005-07-01 2007-01-18 Kyushu Univ Method for producing positive electrode material for secondary battery, and secondary battery
US8057936B2 (en) 2005-08-08 2011-11-15 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
US8158090B2 (en) 2005-08-08 2012-04-17 A123 Systems, Inc. Amorphous and partially amorphous nanoscale ion storage materials
US8323832B2 (en) 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials
US7939201B2 (en) 2005-08-08 2011-05-10 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
US8617430B2 (en) 2005-08-08 2013-12-31 A123 Systems Llc Amorphous and partially amorphous nanoscale ion storage materials
JP2007080839A (en) * 2006-11-22 2007-03-29 Gs Yuasa Corporation:Kk Nonaqueous solid electrolyte cell
JP2008198815A (en) * 2007-02-14 2008-08-28 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JP2008235150A (en) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2008235151A (en) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2011192500A (en) * 2010-03-15 2011-09-29 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
CN103915626A (en) * 2014-04-21 2014-07-09 上海电力学院 Sodium ion battery composite positive material and preparation method thereof

Also Published As

Publication number Publication date
JP3126007B2 (en) 2001-01-22

Similar Documents

Publication Publication Date Title
KR101885719B1 (en) Method for producing a lithium or sodium battery
JP3484003B2 (en) Non-aqueous electrolyte secondary battery
EP2436066B1 (en) Titanium system composite and the preparing method of the same
JP3126007B2 (en) Non-aqueous electrolyte battery
JP3873717B2 (en) Positive electrode material and battery using the same
CN104428254A (en) Doped nickelate compounds
JP2004178835A (en) Non-aqueous electrolyte secondary battery
JP3875053B2 (en) ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME
JPH09194214A (en) Lithium manganese oxide compound and its preparation
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
JP2847663B2 (en) Non-aqueous electrolyte battery
JP2002117847A (en) Positive electrode active material and nonaqueous electrolyte battery, as well as their manufacturing method
JP2003229126A (en) Electrode active material for non-aqueous electrolyte secondary battery
JP2000348722A (en) Nonaqueous electrolyte battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH08287914A (en) Lithium battery
JPH0521067A (en) Non-aqueous electrolyte battery
JPH06111822A (en) Lithium battery
JP3125075B2 (en) Non-aqueous electrolyte secondary battery
JP3503239B2 (en) Lithium secondary battery
JP4165717B2 (en) Lithium secondary battery and manufacturing method thereof
JP3887849B2 (en) Nonaqueous electrolyte secondary battery and method for producing negative electrode for nonaqueous electrolyte secondary battery
JP3301026B2 (en) Lithium battery
CN113423665A (en) Negative electrode active material based on lithium iron hydroxysulfide
JP2559055B2 (en) Lithium battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 13