[go: up one dir, main page]

JPH06283022A - Manufacture of dielectric ceramic composite for microwave - Google Patents

Manufacture of dielectric ceramic composite for microwave

Info

Publication number
JPH06283022A
JPH06283022A JP5066736A JP6673693A JPH06283022A JP H06283022 A JPH06283022 A JP H06283022A JP 5066736 A JP5066736 A JP 5066736A JP 6673693 A JP6673693 A JP 6673693A JP H06283022 A JPH06283022 A JP H06283022A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
heat treatment
mol
value
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5066736A
Other languages
Japanese (ja)
Inventor
Kenichi Ezaki
賢一 江崎
Yoko Baba
庸子 馬場
Juichi Takahashi
寿一 高橋
Kenichi Shibata
賢一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5066736A priority Critical patent/JPH06283022A/en
Publication of JPH06283022A publication Critical patent/JPH06283022A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To increase a dielectric constant and a Q value by sintering a dielectric ceramic composite for microwave of Li2O, CaO, Sm2O3, and TiO2 with their mixing ratio adjusted, baking the composite and then subjecting it to heat treatment at 600 to 1000 deg.C for 3 to 5 hours. CONSTITUTION:Li2O, CaO, Sm2O3, and TiO2 mixed to make composition ratios of 9, 16, 12, and 63mol%, respectively. After a wet mixing is applied to the mixed powder, it is baked tentatively and powdered. Then an organic binder is added to be pelletized and classified, and formed by applying a pressure 2000 to 3000kg/cm<2>, and then the product is baked at 1000 to 1400 deg.C for 1 to 5 hours, and solidified. And by applying a heat treatment to the sample for 3 to 5 hours at the temperature lower than the above baking by making the temperature scope 600 to 1000 deg.C, the dielectric ceramic composite is completed. Consequently, the dielectric constant and the D-value are increased in the microwave area, the temperature coefficient of the resonance frequency is made near zero, and its value can be controlled as desired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は数GHz帯のマイクロ波
領域で用いる共振器材料に使用される誘電体磁器組成物
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition used as a resonator material used in a microwave region of several GHz band.

【0002】[0002]

【従来の技術】近年の情報の高密度化は、使用する信号
周波数を益々高周波化させるに至っている。とりわけ、
数100MHz〜数GHz帯のマイクロ波は、衛星通
信、移動体通信、放送、更には移動体識別装置等の種々
の情報伝達媒体で使用されている。
2. Description of the Related Art In recent years, the high density of information has led to an increase in the frequency of signals used. Above all,
Microwaves in the several hundred MHz to several GHz band are used in various information transmission media such as satellite communication, mobile communication, broadcasting, and mobile identification devices.

【0003】斯る媒体で必要不可欠なものとして、送信
・受信器用の共振器とフィルタとがある。これらは、そ
の高周波帯域における機能を十分担う誘電体磁器材料を
使用して製造される。
Indispensable for such a medium is a resonator for a transmitter / receiver and a filter. These are manufactured by using a dielectric porcelain material that has a sufficient function in the high frequency band.

【0004】従来、この種の誘電体磁器材料としては、
高周波特性が比較的良好であるという理由で、BaO−Ti
2系、Ba{Zn1/3(Nb・Ta)2/3}O3系、あるいは(Zr
・Sn)TiO4系などが使用されている。
Conventionally, as a dielectric ceramic material of this type,
BaO-Ti because the high frequency characteristics are relatively good
O 2 system, Ba {Zn 1/3 (Nb ・ Ta) 2/3 } O 3 system, or (Zr
・ Sn) TiO 4 series is used.

【0005】ところが、この誘電体磁器材料から成る共
振器等にあっては、この誘電体の誘電率をεとしたなら
ば誘電体中で伝搬する電磁波の波長は1/√εと短くな
ることから、誘電率εが大きな材料を使用するほど、そ
の共振器等の寸法を小さくすることができることとな
る。
However, in a resonator or the like made of this dielectric ceramic material, if the permittivity of this dielectric is ε, the wavelength of the electromagnetic wave propagating in the dielectric will be as short as 1 / √ε. Therefore, the larger the dielectric constant ε is, the smaller the dimensions of the resonator and the like can be.

【0006】しかしながら、前記誘電体磁器材料では、
その誘電率は通常20〜40と小さく、1〜3GHz領
域でのマイクロ波帯ではいきおい共振器の寸法が大きな
ものとなってしまう。
However, in the above dielectric ceramic material,
Its dielectric constant is usually as small as 20 to 40, and the size of the resonator becomes large in the microwave band in the range of 1 to 3 GHz.

【0007】一方、この誘電率の大きな材料としては、
例えばSrTiO3(ε;約300),CaTiO3(ε;約18
0)等が挙げられるものの、その半面これら材料の共振
周波数の温度係数τfは夫々+1700ppm/℃,+
800ppm/℃と非常に大きく、安定した使用を期待
できない。
On the other hand, as a material having a large dielectric constant,
For example, SrTiO 3 (ε; about 300), CaTiO 3 (ε; about 18)
However, the temperature coefficient τf of the resonance frequency of these materials is +1700 ppm / ° C, +
It is very large at 800 ppm / ° C, and stable use cannot be expected.

【0008】通常この様な誘電体組成物の温度係数τf
をゼロに近づける方策には、誘電率が大きく、且つ温度
係数τfがマイナスの値を示す材料とを組み合わせる方
法が用いられる。
Usually, the temperature coefficient τf of such a dielectric composition is
As a measure for making the value of zero close to zero, a method of combining with a material having a large dielectric constant and a negative temperature coefficient τf is used.

【0009】この方法によれば、適当な材料を選択する
ことにより、誘電率が大きく、且つその温度係数τfの
小さな磁器組成物が得られる。
According to this method, a ceramic composition having a large dielectric constant and a small temperature coefficient τf can be obtained by selecting an appropriate material.

【0010】[0010]

【発明が解決しようとする課題】然し乍ら、一般に、誘
電率εが大きなものほどその温度係数τfはプラスの側
に大きくなることから、誘電率が大きく、温度係数τf
がゼロに近い値を示し、且つその値を自在にコントロー
ル出来る適当な材料を見出せていない。
However, in general, the larger the permittivity ε, the larger the temperature coefficient τf becomes on the plus side. Therefore, the permittivity is large and the temperature coefficient τf is large.
Shows a value close to zero, and we have not found a suitable material that can control that value freely.

【0011】加えて、マイクロ波用誘電体磁器材料とし
ては、Q値の大きいことが必要となる。
In addition, the dielectric ceramic material for microwaves must have a large Q value.

【0012】斯る磁器材料として、近年酸化リチウム、
酸化カルシウム、酸化チタニウム等の酸化物を含む誘電
体磁器組成物により優れた磁器材料が作成されるように
なっているものの、未だその特性は不十分であった。斯
る磁器材料に関しては、例えば米国特許5,188,9
93号に詳細に記載されている。
In recent years, as such porcelain material, lithium oxide,
Although excellent porcelain materials have come to be produced from dielectric porcelain compositions containing oxides such as calcium oxide and titanium oxide, their characteristics are still insufficient. Regarding such a porcelain material, for example, US Pat. No. 5,188,9
No. 93 for details.

【0013】本発明は、上述した点に鑑み、誘電率及び
Q値が大きく、且つ共振周波数の温度係数τfがゼロに
近く自在にコントロール出来る誘電体磁器組成物を得る
ことを目的とする。
The present invention has been made in view of the above points, and an object thereof is to obtain a dielectric ceramic composition having a large dielectric constant and a large Q value, and having a temperature coefficient τf of the resonance frequency which can be freely controlled close to zero.

【0014】[0014]

【課題を解決するための手段】本発明製造方法の特徴と
するところは、組成式が、 w・Li2O−x・CaO−y・Sm23−z・TiO2 但し、 0.0モル%<w≦25.0モル% 0.0モル%<x≦50.0モル% 0.0モル%<y≦30.0モル% 0.0モル%<z≦80.0モル% w+x+y+z=100モル% で表される混合物を700℃以上1000℃以下の温度
範囲で仮焼し、次に1000℃以上1400℃以下の温
度範囲で焼成して作製されたマイクロ波用誘電体磁器組
成物であって、この誘電体磁器組成物を、600℃以上
1000℃以下の温度範囲で3乃至50時間熱処理する
ことを特徴としたものである。
It is a feature of the present invention production process [Summary of] the composition formula, w · Li 2 O-x · CaO-y · Sm 2 O 3 -z · TiO 2 , however, 0.0 Mol% <w ≦ 25.0 mol% 0.0 mol% <x ≦ 50.0 mol% 0.0 mol% <y ≦ 30.0 mol% 0.0 mol% <z ≦ 80.0 mol% w + x + y + z = 100 mol% of the mixture is calcined in the temperature range of 700 ° C. or higher and 1000 ° C. or lower, and then fired in the temperature range of 1000 ° C. or higher and 1400 ° C. or lower. The dielectric ceramic composition is heat-treated at a temperature range of 600 ° C. or higher and 1000 ° C. or lower for 3 to 50 hours.

【0015】[0015]

【作用】本発明では、相互の混合比を調整し焼結した酸
化リチウム(Li2O)と酸化カルシウム(CaO)と酸化
サマリウム(Sm23)と酸化チタニウム(TiO2)のマ
イクロ波用誘電体磁器組成物を焼成後600〜1000
℃で3〜50時間熱処理することにより、誘電率εr及
びQ値が大きく、且つ温度係数τfがゼロに近い良好な
マイクロ波誘電体磁器組成物を得ることができる。
In the present invention, the mixture of lithium oxide (Li 2 O), calcium oxide (CaO), samarium oxide (Sm 2 O 3 ) and titanium oxide (TiO 2 ) which are sintered by adjusting the mixing ratio of each other is used for microwave. 600-1000 after firing the dielectric ceramic composition
A good microwave dielectric ceramic composition having a large dielectric constant εr and Q value and a temperature coefficient τf close to zero can be obtained by heat treatment at 3 ° C for 50 hours.

【0016】従って、上記熱処理における温度または処
理時間を適当に選択することで、所望の特性を備えた上
記組成物を容易に作成することができる。
Therefore, by appropriately selecting the temperature or the treatment time in the heat treatment, the composition having desired characteristics can be easily prepared.

【0017】この熱処理による特性の向上は、まだ十分
解明されていないが酸素の状態変化が発生するためと考
えている。
It is considered that the improvement of the characteristics by the heat treatment is caused by the change of the oxygen state, although it has not been fully clarified yet.

【0018】[0018]

【実施例】本発明マイクロ波用誘電体磁器組成物を製造
するにあたっては、まず原材料となるLi2CO3,CaCO
3,Sm23,TiO2を用意する。そして、これらを所定の
組成となるように秤量し、配合する。
EXAMPLES In producing the dielectric ceramic composition for microwaves of the present invention, first, the raw materials Li 2 CO 3 and CaCO are used.
3 , Sm 2 O 3 and TiO 2 are prepared. Then, these are weighed and mixed so as to have a predetermined composition.

【0019】一例としては、Li2O,CaO、Sm23、そ
してTiO2の夫々の組成比を9mol%,16mol
%,12mol%そして63mol%となるように秤量
し、配合する。
As an example, the composition ratios of Li 2 O, CaO, Sm 2 O 3 , and TiO 2 are 9 mol% and 16 mol, respectively.
%, 12 mol% and 63 mol% are weighed and blended.

【0020】次にこれら粉末を配合し、ボールミル等に
より5〜20時間、アルコールを用いて湿式混合を行っ
た後、700〜1000℃で1〜5時間仮焼する。引き
続いて、この仮焼したものを再びボールミル等により2
〜50時間粉砕する。
Next, these powders are blended, wet-mixed with alcohol by a ball mill for 5 to 20 hours, and then calcined at 700 to 1000 ° C. for 1 to 5 hours. Subsequently, this calcined product is again subjected to 2 with a ball mill or the like.
Grind for ~ 50 hours.

【0021】次いで、これにポリビニルアルコールなど
の有機結合剤を加えて造粒、分級し、2000〜300
0kg/cm2の圧力を加えて成形する。続いて、この
成形品を1000〜1400℃の温度で1〜5時間焼成
し、且つ固形化する。
Then, an organic binder such as polyvinyl alcohol is added to this, and the mixture is granulated and classified to 2000 to 300.
Molding is performed by applying a pressure of 0 kg / cm 2 . Then, this molded product is baked at a temperature of 1000 to 1400 ° C. for 1 to 5 hours and solidified.

【0022】そして、次にこの試料を上記焼成よりも低
温で、温度範囲が600〜1000℃となるように、3
〜50時間の熱処理を施すことにより、本願発明の誘電
体磁器組成物が完成する。
Then, this sample was heated at a temperature lower than that of the above-mentioned firing at a temperature range of 600 to 1000 ° C.
The dielectric ceramic composition of the present invention is completed by performing heat treatment for about 50 hours.

【0023】本試料を評価するに際しては、その焼成品
をその厚みが直径の約2分の1になるように両面研摩し
て測定用の試料とした。
In the evaluation of this sample, the fired product was polished on both sides so that the thickness thereof was about ½ of the diameter, and used as a sample for measurement.

【0024】このようにして完成した試料を、ハッキ・
コールマン法を用い測定周波数3GHz付近で誘電率
(ε)、Q値、及び共振周波数の温度係数(τf)を測
定した。
The sample thus completed is
The dielectric constant (ε), the Q value, and the temperature coefficient (τf) of the resonance frequency were measured near the measurement frequency of 3 GHz by using the Coleman method.

【0025】その測定結果を表1に示す。なお、実施例
で説明に使用した試料としては、表1の試料番号1〜6
が相当している。
The measurement results are shown in Table 1. In addition, as the samples used for the description in the examples, sample numbers 1 to 6 in Table 1
Is equivalent to.

【0026】尚、同表には、実施例で説明した焼成後の
上記熱処理のみ施さず、他の製造条件は全く同様とし
た、従来の誘電体磁器組成物(熱処理なし)についても
同時に示している。
The table also shows a conventional dielectric ceramic composition (without heat treatment) in which only the above-mentioned heat treatment after firing described in the examples was not performed and other manufacturing conditions were exactly the same. There is.

【0027】[0027]

【表1】 [Table 1]

【0028】同表から明らかなように、上記熱処理を施
した試料はその熱処理を施さない場合と比較して共振周
波数の温度係数がその熱処理条件に応じて変化し、とり
わけその変化の傾向は熱処理を施すことでその係数がマ
イナス側に変化する。
As is clear from the table, the temperature coefficient of the resonance frequency of the sample subjected to the above heat treatment changes depending on the heat treatment conditions, and the tendency of the change is particularly high. By applying, the coefficient changes to the negative side.

【0029】一方、比誘電率εrにいたっては、熱処理
後、わずかに減少するものの、それでもその値は90以
上と大きく良好な磁器組成物が得られており、またQ値
にあっては、熱処理の前後でほとんど変化がなく、熱処
理に因る悪影響は殆ど見られない。
On the other hand, although the relative permittivity εr slightly decreases after the heat treatment, the value is still 90 or more, and a good porcelain composition is obtained, and the Q value is There is almost no change before and after the heat treatment, and there is almost no adverse effect due to the heat treatment.

【0030】上記熱処理が、焼成される試料に対して、
どのような変化を与えるかについて熱処理温度をパラメ
ータとして示したものが図1である。同図は、横軸を上
記熱処理温度とし、縦軸を誘電体磁器組成物の磁器特性
の1つである温度係数τfとした。同図によれば、熱処
理を施すことで、当初同一組成(w=9,x=16,y
=12,z=63)でありながら処理される温度によっ
て上記温度係数が種々変化し、この熱処理温度を任意に
選択することにより所望の温度係数τfを備えた磁器組
成物が容易に得られることが分かる。
The above heat treatment is applied to the sample to be fired.
FIG. 1 shows what kind of change is given by using the heat treatment temperature as a parameter. In the figure, the horizontal axis is the heat treatment temperature, and the vertical axis is the temperature coefficient τf which is one of the ceramic characteristics of the dielectric ceramic composition. According to the figure, the same composition (w = 9, x = 16, y
= 12, z = 63), the above-mentioned temperature coefficient changes variously depending on the temperature to be treated, and a porcelain composition having a desired temperature coefficient τf can be easily obtained by arbitrarily selecting the heat treatment temperature. I understand.

【0031】従って、本発明マイクロ波用誘電体磁器組
成物を例えば共振器に使用する場合にあっては、斯る熱
処理による特性変化を考慮して、この熱処理条件を設定
すればよいこととなる。
Therefore, when the dielectric ceramic composition for microwaves of the present invention is used in, for example, a resonator, the heat treatment conditions may be set in consideration of the characteristic change due to the heat treatment. .

【0032】また、本願発明マイクロ波用誘電体磁器組
成物は、マイクロ波用として利用する際、特にQ値や上
記温度係数が設計上の重要なパラメータである場合にあ
っては、たとえ誘電率の値が小さくとも実用にたえるも
のである。
Further, when the dielectric ceramic composition for microwaves of the present invention is used for microwaves, especially when the Q value and the above temperature coefficient are important parameters in design, even if the dielectric constant is Even if the value of is small, it is practical.

【0033】本発明では、酸化リチウムと酸化カルシウ
ムと酸化サマリウムと酸化チタニウムを成分とする磁器
組成物を焼成後、適当な条件で熱処理することによっ
て、例えば誘電率とQ値を大きくした状態で、温度係数
がゼロ付近となるようなマイクロ波帯誘電体磁器組成物
を自在に形成することができることとなる。
In the present invention, a porcelain composition containing lithium oxide, calcium oxide, samarium oxide, and titanium oxide as components is baked and then heat-treated under appropriate conditions, for example, in a state where the dielectric constant and the Q value are increased, It is possible to freely form a microwave band dielectric ceramic composition having a temperature coefficient near zero.

【0034】それら酸化物の他のものとしては、酸化カ
ルシウムの代わりに、酸化ナトリウム、酸化ストロンチ
ウム、などを用いたものや、酸化サマリウムの代わり
に、酸化ランタン、酸化プラセオジウム、酸化ネオジ
ム、酸化ユ−ロピウム、などを用いた物があり、これら
についても本願発明と同様の効果を期待することが出来
る。
Other than these oxides, those in which sodium oxide, strontium oxide, etc. are used in place of calcium oxide, and lanthanum oxide, praseodymium oxide, neodymium oxide, and yu-oxide are used in place of samarium oxide. There are products using Ropium, etc., and the same effects as those of the present invention can be expected with respect to these products.

【0035】また、本発明は、セラミックス中の酸素の
状態の変化が原因であると考えられることから、上記焼
成時に酸素雰囲気中での熱処理制御を行う方法や、O2
−HIP処理(Hot Iisostatic Press)を行うことでも
同様の効果を期待することができる。
Further, since it is considered that the present invention is caused by the change in the state of oxygen in the ceramics, a method of controlling the heat treatment in an oxygen atmosphere during the above firing and O 2
The same effect can be expected by performing HIP processing (Hot Isostatic Press).

【0036】[0036]

【発明の効果】本発明によれば、マイクロ波領域におい
て誘電率及びQ値が大きく、共振周波数の温度係数τf
がゼロに近く且つその値を自在にコントロールできるマ
イクロ波用磁器組成物を得ることができる。
According to the present invention, the dielectric constant and the Q value are large in the microwave region, and the temperature coefficient τf of the resonance frequency is large.
It is possible to obtain a porcelain composition for microwaves whose is close to zero and whose value can be freely controlled.

【0037】従って、この組成物による共振器等にあっ
ては、その寸法を小型化し得ると共に、設計上要求され
る共振周波数の温度係数が多様に変化した場合において
も同一の組成比を持つ材料を適当な条件で熱処理するこ
とによって対処することが可能となる。
Therefore, in the resonator and the like made of this composition, it is possible to reduce the size thereof, and to use a material having the same composition ratio even when the temperature coefficient of the resonance frequency required for design changes variously. Can be dealt with by heat-treating under appropriate conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明製造方法の熱処理条件と、共振周波数の
温度係数(τf)との関係を示す特性図である。
FIG. 1 is a characteristic diagram showing a relationship between a heat treatment condition of a manufacturing method of the present invention and a temperature coefficient (τf) of a resonance frequency.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 賢一 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenichi Shibata 2-18, Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 組成式が、 w・Li2O−x・CaO−y・Sm23−z・TiO2 但し、 0.0モル%<w≦25.0モル% 0.0モル%<x≦50.0モル% 0.0モル%<y≦30.0モル% 0.0モル%<z≦80.0モル% w+x+y+z=100モル% で表される混合物を700℃以上1000℃以下の温度
範囲で仮焼し、次に1000℃以上1400℃以下の温
度範囲で焼成されたマイクロ波用誘電体磁器組成物であ
って、 上記誘電体磁器組成物を600℃以上1000℃以下の
温度範囲で3乃至50時間熱処理することを特徴とする
マイクロ波用誘電体磁器組成物の製造方法。
1. A composition formula, w · Li 2 O-x · CaO-y · Sm 2 O 3 -z · TiO 2 , however, 0.0 mol% <w ≦ 25.0 mol% 0.0 mol% <X ≦ 50.0 mol% 0.0 mol% <y ≦ 30.0 mol% 0.0 mol% <z ≦ 80.0 mol% w + x + y + z = 100 mol% A mixture represented by 700 ° C. or more and 1000 ° C. A dielectric ceramic composition for microwaves, which is calcined in the following temperature range and then in the temperature range of 1000 ° C or higher and 1400 ° C or lower, wherein the dielectric ceramic composition is 600 ° C or higher and 1000 ° C or lower. A method for producing a dielectric ceramic composition for microwaves, which comprises performing heat treatment in a temperature range for 3 to 50 hours.
JP5066736A 1993-03-25 1993-03-25 Manufacture of dielectric ceramic composite for microwave Pending JPH06283022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5066736A JPH06283022A (en) 1993-03-25 1993-03-25 Manufacture of dielectric ceramic composite for microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5066736A JPH06283022A (en) 1993-03-25 1993-03-25 Manufacture of dielectric ceramic composite for microwave

Publications (1)

Publication Number Publication Date
JPH06283022A true JPH06283022A (en) 1994-10-07

Family

ID=13324474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5066736A Pending JPH06283022A (en) 1993-03-25 1993-03-25 Manufacture of dielectric ceramic composite for microwave

Country Status (1)

Country Link
JP (1) JPH06283022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444222B1 (en) * 2001-11-13 2004-08-16 삼성전기주식회사 Dielectric Ceramic Compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444222B1 (en) * 2001-11-13 2004-08-16 삼성전기주식회사 Dielectric Ceramic Compositions

Similar Documents

Publication Publication Date Title
JPH08109064A (en) Dielectric ceramic composition for microwave
JP2002193662A (en) Dielectric porcelain and method of manufacturing the same
EP0966002B1 (en) Dielectric material and process for producing the same
JP3011123B2 (en) Dielectric ceramic composition
US5256639A (en) Dielectric ceramic composition
JPH05211007A (en) Dielectric porcelain composition for microwave
JP3306152B2 (en) Microwave dielectric porcelain composition
JP2974829B2 (en) Microwave dielectric porcelain composition
JP3462517B2 (en) Microwave dielectric porcelain composition
JP3002613B2 (en) Dielectric porcelain composition for producing dielectric resonator or filter for microwave, method for producing the same, dielectric resonator or filter for microwave obtained using the dielectric porcelain composition, and method for producing the same
JPH06283022A (en) Manufacture of dielectric ceramic composite for microwave
JP3378685B2 (en) Microwave dielectric porcelain composition
JPH04106807A (en) Dielectric ceramic composition for microwave
JP2002326865A (en) Dielectric porcelain composition and dielectric device
JPH035357A (en) Dielectric ceramic and its production
JPH0959059A (en) Conductor ceramic composition for microwave
JPH11130544A (en) Dielectric porcelain composition and method for producing the same
JPH0757537A (en) Dielectric porcelain composition
JP2002265266A (en) Dielectric porcelain composition and dielectric device
JP3197627B2 (en) Microwave dielectric porcelain composition
JPH04118806A (en) Dielectric ceramic composition for microwave
JPH08239262A (en) Dielectric porcelain composition
JP3359427B2 (en) High frequency dielectric ceramic composition
JPH05117024A (en) Dielectric porcelain for high frequency and its production
JP4006655B2 (en) Dielectric porcelain composition for microwave