[go: up one dir, main page]

JPH06279858A - Production of non-oriented electric steel sheet excellent in magnetic property and surface property - Google Patents

Production of non-oriented electric steel sheet excellent in magnetic property and surface property

Info

Publication number
JPH06279858A
JPH06279858A JP5090689A JP9068993A JPH06279858A JP H06279858 A JPH06279858 A JP H06279858A JP 5090689 A JP5090689 A JP 5090689A JP 9068993 A JP9068993 A JP 9068993A JP H06279858 A JPH06279858 A JP H06279858A
Authority
JP
Japan
Prior art keywords
rolling
annealing
hot
less
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5090689A
Other languages
Japanese (ja)
Other versions
JP3644039B2 (en
Inventor
Kunikazu Tomita
邦和 冨田
Toshiharu Iizuka
俊治 飯塚
Yoshihiko Oda
善彦 尾田
Tomoyoshi Okita
智良 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP09068993A priority Critical patent/JP3644039B2/en
Publication of JPH06279858A publication Critical patent/JPH06279858A/en
Application granted granted Critical
Publication of JP3644039B2 publication Critical patent/JP3644039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

(57)【要約】 【目的】 高い磁束密度を有し、且つ表面性状が優れた
無方向性電磁鋼板の製造方法を提供すること 【構成】 C:0.0050wt%以下、Si:0.1
〜1.5wt%、Mn:0.2〜1.0wt%、P:
0.20wt%以下、S:0.010wt%以下、A
l:0.004wt%以下若しくは0.100〜0.5
00wt%、N:0.0050wt%以下、残部Fe及
び不可避不純物を含有する鋼を、所定の加熱温度、仕上
げ温度で熱間圧延した後、鋼中のSi,Al量により規
定される所定の巻取温度で巻取り、酸洗後、軽圧下圧延
を圧延方向を逆にして2回実施し、この軽圧下圧延では
1回の圧延当りの圧下率を0.5〜3.0%、2回の圧
延の合計圧下率を2.0〜5.0%とし、次いで所定の
条件で熱延板焼鈍、1回若しくは中間焼鈍を挾む2回以
上の冷間圧延、仕上焼鈍を順次施す。
(57) [Abstract] [Purpose] To provide a method for producing a non-oriented electrical steel sheet having a high magnetic flux density and excellent surface properties [Structure] C: 0.0050 wt% or less, Si: 0.1
~ 1.5 wt%, Mn: 0.2-1.0 wt%, P:
0.20 wt% or less, S: 0.010 wt% or less, A
1: 0.004 wt% or less or 0.100 to 0.5
Steel containing 00 wt%, N: 0.0050 wt% or less, balance Fe and unavoidable impurities is hot-rolled at a predetermined heating temperature and a finishing temperature, and then a predetermined winding defined by the amounts of Si and Al in the steel. After winding at picking temperature and pickling, light reduction rolling is performed twice with the rolling direction reversed, and in this light reduction rolling, the reduction rate per rolling is 0.5 to 3.0%, and twice. The total reduction of the rolling is set to 2.0 to 5.0%, and then hot-rolled sheet annealing, one or two or more cold rolling including intermediate annealing, and finish annealing are sequentially performed under predetermined conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は優れた磁気特性、特に
高い磁束密度を有し、しかも表面性状にも優れた無方向
性電磁鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, particularly high magnetic flux density, and excellent surface properties.

【従来の技術】モーター、変圧器等の鉄芯材料として用
いられる無方向性電磁鋼板は、電気機器の高効率化、小
型化を図る上で鉄損が低く且つ磁束密度が高いことが望
ましい。なかでも、所謂低〜中級グレードの無方向性電
磁鋼板は、比較的容量の小さい電気機器に使用されるケ
ースが多く、損失に占める励磁電流の割合が高いため、
機器の小型化の観点からは勿論のこと高効率化の観点か
らも磁束密度が高いことが重要となる。
2. Description of the Related Art Non-oriented electrical steel sheets used as iron core materials for motors, transformers, etc. are desired to have low iron loss and high magnetic flux density in order to achieve high efficiency and miniaturization of electrical equipment. Among them, so-called low-to-intermediate grade non-oriented electrical steel sheets are often used in electric devices having a relatively small capacity, and the ratio of the exciting current to the loss is high.
High magnetic flux density is important not only from the viewpoint of miniaturization of equipment but also from the viewpoint of high efficiency.

【0002】一般に、無方向性電磁鋼板の磁束密度を上
昇させようとする場合、冷間圧延前組織の適正化、具体
的には結晶粒の粗大化が重要であり、従来でもこれに関
する技術が種々開示されている。例えば、特開昭57−
35628号、特開昭58−204126号等には、熱
延板に熱延板焼鈍を施すことで結晶粒を粗大化させる技
術が開示され、また、特開昭54−68717号、特開
昭56−98420号等にはSbあるいはSn等の特殊
元素を添加した上で熱延板焼鈍を施し、結晶粒を粗大化
させる技術が開示され、さらに、特開昭63−1868
23号、特開平1−139721号、特開平1−306
523号、特開平1−309921号等には、熱延板を
1〜5%ないし12〜20%の圧下率で軽圧下圧延した
後焼鈍し、歪粒成長による二次再結晶を利用して結晶粒
を粗大化させる技術が開示されている。
Generally, in order to increase the magnetic flux density of a non-oriented electrical steel sheet, it is important to optimize the microstructure before cold rolling, specifically, to coarsen the crystal grains. Various are disclosed. For example, JP-A-57-
No. 35628, JP-A-58-204126 and the like disclose a technique for coarsening crystal grains by subjecting a hot-rolled sheet to annealing of the hot-rolled sheet, and also JP-A-54-68717 and JP-A-58-68717. No. 56-98420 discloses a technique of adding a special element such as Sb or Sn and then annealing the hot-rolled sheet to coarsen the crystal grains. Further, JP-A-63-1868.
23, JP-A-1-139721, JP-A-1-306
No. 523, JP-A-1-309921, etc., a hot-rolled sheet is lightly rolled at a reduction rate of 1 to 5% to 12 to 20%, then annealed, and secondary recrystallization by strained grain growth is utilized. A technique for coarsening crystal grains is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの技術
では製品の表面性状についての検討を欠いており、以下
に述べるように、磁束密度を十分に高めようとすると不
可避的に表面性状が劣化して製品の商品価値が損なわ
れ、また逆に、表面性状の劣化を防止しようとすると十
分に高い磁束密度が得られず、結局、磁束密度と表面性
状の両方を同時に満足できないという欠点があった。
However, these techniques lack the examination of the surface texture of the product, and as will be described below, when the magnetic flux density is sufficiently increased, the surface texture is inevitably deteriorated. Therefore, the commercial value of the product is impaired, and conversely, if it is attempted to prevent the deterioration of the surface quality, a sufficiently high magnetic flux density cannot be obtained, and in the end, both the magnetic flux density and the surface quality cannot be satisfied at the same time. .

【0004】すなわち、上述した従来技術のうち熱延板
焼鈍だけで結晶粒の粗大化を図ろうとする技術は、二次
再結晶の駆動力として粒界エネルギーを利用しようとす
るものであるが、駆動力が粒界エネルギーだけであるた
め駆動力自体が小さく、このため低温焼鈍では結晶粒の
粗大化が不十分で磁束密度の向上代が小さく、磁束密度
を向上させようとするとかなりの高温焼鈍が必要とな
る。さらに、上記のように駆動力自体が小さいことか
ら、仮りに高温焼鈍を行ったとしても二次再結晶のため
の臨界エネルギーを超えた結晶粒は少数しか得られず、
この少数の結晶粒が周りの結晶粒を蚕食して二次再結晶
が進行する結果、極端に粗大化した組織しか得られな
い。このため磁束密度は十分に向上するものの、製品に
熱延板の著しい粗大粒に起因した顕著な粗大粒を生じ、
表面性状が著しく劣化する。また、Sb,Sn等の特殊
元素を添加した上で熱延板焼鈍を行う技術においても、
上記のような粗大粒の発生は抑制できず、同様の問題を
生じる。
That is, among the above-mentioned conventional techniques, the technique for coarsening the crystal grains only by annealing the hot-rolled sheet is intended to utilize the grain boundary energy as the driving force for the secondary recrystallization. Since the driving force is only the grain boundary energy, the driving force itself is small. Therefore, the coarsening of the crystal grains is insufficient in the low temperature annealing, and the margin for improving the magnetic flux density is small. Is required. Furthermore, since the driving force itself is small as described above, only a small number of crystal grains exceeding the critical energy for secondary recrystallization can be obtained even if high temperature annealing is performed,
As a result of the small number of crystal grains eclipsing the surrounding crystal grains and secondary recrystallization proceeds, only an extremely coarse structure is obtained. For this reason, the magnetic flux density is sufficiently improved, but the product has remarkably coarse grains due to the remarkably coarse grains of the hot-rolled sheet.
The surface properties are significantly deteriorated. Also, in the technique of annealing a hot rolled sheet after adding a special element such as Sb or Sn,
The generation of coarse particles as described above cannot be suppressed, and the same problem occurs.

【0005】これらの技術に対し、熱延板を軽圧下圧延
後焼鈍する技術は、二次再結晶の駆動力として粒界エネ
ルギーに加え、これより圧倒的に大きな軽圧下圧延によ
る歪を利用するものであり、比較的低温の焼鈍であって
も主として歪粒成長を機構として二次再結晶が進行し、
結晶粒の粗大化が達成される。しかし、上記従来技術の
ように単に軽圧下圧延の圧下率を規定するだけでは、依
然として磁束密度と表面性状の両方を満足させることは
困難である。すなわち、詳細は後述するが、従来技術の
大半がそうであるように軽圧下圧延の圧下率が概ね5%
以上と比較的高い場合には、駆動力としての歪は十分に
付与されるが、同時に二次再結晶のための臨界エネルギ
ーを超えた結晶粒の数も多くなり、このため組織は一応
粗大化はするもののその程度は十分でなく、磁束密度の
向上代も必ずしも十分ではない。一方、軽圧下圧延の圧
下率が概ね2%以下と低い場合には、二次再結晶のため
の臨界エネルギーを超える結晶粒の数が少なく、先に述
べた熱延板焼鈍だけを実施する場合と同様に組織が粗大
化し過ぎ、このため磁束密度は十分に向上するものの表
面性状が劣化する。さらに、低温焼鈍を実施した場合、
板厚中央部に一部二次再結晶の完了しない部分を生じる
こともあり、この場合には磁束密度の向上代が小さくな
る。また、軽圧下圧延の圧下率が概ね2〜5%の範囲で
は、磁束密度の向上代と表面性状の改善の程度が共に中
途半端となり、いずれの場合も高磁束密度化と良好な表
面性状の確保を同時に達成することは困難である。
In contrast to these techniques, the technique of annealing a hot-rolled sheet after light reduction rolling uses grain boundary energy as a driving force for secondary recrystallization, and utilizes strain by light rolling which is overwhelmingly larger than this. The secondary recrystallization proceeds mainly due to strained grain growth as a mechanism even if the annealing is performed at a relatively low temperature.
Coarsening of crystal grains is achieved. However, it is still difficult to satisfy both the magnetic flux density and the surface quality by simply defining the reduction ratio of light reduction rolling as in the above-mentioned conventional technique. That is, although the details will be described later, the reduction ratio of the light reduction rolling is about 5% as in most of the conventional techniques.
When the above is relatively high, the strain as the driving force is sufficiently imparted, but at the same time, the number of crystal grains exceeding the critical energy for secondary recrystallization increases, which causes the structure to become coarser. However, the degree is not sufficient, and the margin for improving the magnetic flux density is not always sufficient. On the other hand, when the reduction ratio of the light reduction rolling is as low as about 2% or less, the number of crystal grains exceeding the critical energy for secondary recrystallization is small, and only the hot-rolled sheet annealing described above is performed. Similarly to the above, the structure becomes too coarse, and thus the magnetic flux density is sufficiently improved, but the surface quality is deteriorated. Furthermore, when low temperature annealing is performed,
There may be a part where secondary recrystallization is not completed in the central part of the plate thickness, and in this case, the margin for improving the magnetic flux density becomes small. Further, when the reduction ratio of the light reduction rolling is in the range of approximately 2 to 5%, both the margin for improving the magnetic flux density and the degree of improvement of the surface quality are halfway, and in both cases, high magnetic flux density and good surface quality It is difficult to achieve security at the same time.

【0006】以上のように従来技術では、良好な表面性
状を確保しつつ磁束密度を十分に向上させることができ
ないという問題があった。本発明はこのような従来の問
題に鑑みなされたもので、表面性状を損なうことなく、
無方向性電磁鋼板の磁気特性、特に磁束密度を著しく向
上させることができる無方向性電磁鋼板の製造方法を提
供することをその目的とする。
As described above, the conventional technique has a problem in that it is impossible to sufficiently improve the magnetic flux density while ensuring good surface properties. The present invention has been made in view of such conventional problems, without impairing the surface properties,
It is an object of the present invention to provide a method for manufacturing a non-oriented electrical steel sheet which can significantly improve the magnetic properties of the non-oriented electrical steel sheet, particularly the magnetic flux density.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記目的を
達成するために、冷間圧延前組織、すなわち熱延板組織
を磁束密度が十分に向上する程度に粗大化し、且つ製品
の表面粗大粒を抑制し得る方法について検討を重ねた。
すなわち、本発明者らはまず、製品の表面粗大粒は主と
して熱延板表層部の結晶粒が過度に粗大化することが原
因であり、これが適切な粒径に抑えられれば、板厚中央
部の結晶粒が粗大であっても製品の表面粗大粒の発生を
抑制できるものと考えた。さらに、板厚中央部の結晶粒
が十分に粗大であれば、表層部の結晶粒が粗大化しなく
ても磁束密度は十分に向上するものと考え、熱延板の板
厚中央部の結晶粒を十分粗大化しつつ、表層部を適切な
粒径に制御し得る方法について検討を行った。その結
果、熱延板の巻取温度を鋼中のSi,Al量に応じて制
御し、粗大化に際しての前組織を適正化した上で、軽圧
下圧延により適正量の歪を2回に分けて、しかも圧延方
向を逆にして付与し、その後適正な条件で熱延板焼鈍を
行うことにより、上述したような熱延板組織が得られる
ことを見出した。
In order to achieve the above object, the present inventors have coarsened a structure before cold rolling, that is, a hot-rolled sheet structure to such an extent that a magnetic flux density is sufficiently improved, and the surface of a product. Studies have been repeated on a method capable of suppressing coarse particles.
That is, the present inventors first of all, the surface coarse particles of the product is mainly caused by excessive coarsening of the crystal grains of the surface layer portion of the hot-rolled sheet, and if this is suppressed to an appropriate grain size, the sheet thickness central portion It was thought that the generation of coarse particles on the surface of the product could be suppressed even if the crystal grains of were coarse. Furthermore, if the crystal grains in the central portion of the plate thickness are sufficiently large, it is considered that the magnetic flux density is sufficiently improved even if the crystal grains in the surface layer portion do not become coarse. A method for controlling the surface layer portion to have an appropriate grain diameter while sufficiently coarsening was investigated. As a result, the coiling temperature of the hot-rolled sheet was controlled according to the amounts of Si and Al in the steel, the pre-structure was optimized during coarsening, and the appropriate amount of strain was divided into two by light reduction rolling. Moreover, it was found that the above-mentioned hot-rolled sheet structure can be obtained by applying the material with the rolling direction reversed and then performing hot-rolled sheet annealing under appropriate conditions.

【0008】本発明はこのような知見に基づきなされた
もので、その特徴とする構成は以下の通りである。 (1) C:0.0050wt%以下、Si:0.1〜
1.5wt%、Mn:0.2〜1.0wt%、P:0.
20wt%以下、S:0.010wt%以下、Al:
0.004wt%以下若しくは0.100〜0.500
wt%、N:0.0050wt%以下、残部Feおよび
不可避的不純物からなる鋼を、1050〜1250℃に
加熱した後、750〜880℃の仕上温度で熱間圧延
し、下式を満足する巻取温度で巻取った後、 37(Si+Al)+570≦CT≦41(Si+A
l)+686 但し CT:巻取温度(℃) Si:Si含有量(wt%) Al:Al含有量(wt%) 該熱延板を酸洗し、0.5〜3.0%の圧下率で1回目
の軽圧下圧延を行い、引続き前記1回目の軽圧下圧延と
圧延方向を逆にして0.5〜3.0%の圧下率で2回目
の軽圧下圧延を行い、この際、前記2回の軽圧下圧延の
圧下率の合計を2.0〜5.0%とし、次いで750℃
〜Ac1の温度範囲で30分〜10時間若しくは850
℃〜Ac1の温度範囲で30秒〜5分の熱延板焼鈍を施
し、次いで1回若しくは中間焼鈍を挾む2回以上の冷間
圧延を行い、しかる後700〜900℃の温度範囲で3
0秒〜5分の仕上焼鈍を施すことを特徴とする磁気特性
と表面性状が優れた無方向性電磁鋼板の製造方法。
The present invention has been made on the basis of such knowledge, and its characteristic constitution is as follows. (1) C: 0.0050 wt% or less, Si: 0.1
1.5 wt%, Mn: 0.2 to 1.0 wt%, P: 0.
20 wt% or less, S: 0.010 wt% or less, Al:
0.004 wt% or less or 0.100 to 0.500
wt%, N: 0.0050 wt% or less, steel consisting of balance Fe and unavoidable impurities is heated to 1050 to 1250 ° C., and then hot-rolled at a finishing temperature of 750 to 880 ° C. to satisfy the following formula. 37 (Si + Al) + 570 ≦ CT ≦ 41 (Si + A
l) +686 However, CT: coiling temperature (° C) Si: Si content (wt%) Al: Al content (wt%) The hot rolled sheet is pickled, and a rolling reduction of 0.5 to 3.0%. The first light reduction rolling is carried out in the following manner, and then the second light reduction rolling is carried out at the reduction ratio of 0.5 to 3.0% by reversing the rolling direction from the first light reduction rolling. The total reduction ratio of the two light reduction rollings was 2.0 to 5.0%, and then 750 ° C.
To Ac 1 for 30 minutes to 10 hours or 850
Hot-rolled sheet annealing is performed for 30 seconds to 5 minutes in a temperature range of ℃ to Ac 1 , and then cold rolling is performed once or twice or more with intermediate annealing, and then in a temperature range of 700 to 900 ° C. Three
A method for producing a non-oriented electrical steel sheet having excellent magnetic properties and surface properties, characterized by performing a finish annealing for 0 seconds to 5 minutes.

【0009】(2) C:0.0050wt%以下、S
i:0.1〜1.5wt%、Mn:0.2〜1.0wt
%、P:0.20wt%以下、S:0.010wt%以
下、Al:0.004wt%以下若しくは0.100〜
0.500wt%、N:0.0050wt%以下、残部
Feおよび不可避的不純物からなる鋼を、1050〜1
250℃に加熱した後、750〜880℃の仕上温度で
熱間圧延し、下式を満足する巻取温度で巻取った後、 37(Si+Al)+570≦CT≦41(Si+A
l)+686 但し CT:巻取温度(℃) Si:Si含有量(wt%) Al:Al含有量(wt%) 該熱延板を酸洗し、0.5〜3.0%の圧下率で1回目
の軽圧下圧延を行い、引続き前記1回目の軽圧下圧延と
圧延方向を逆にして0.5〜3.0%の圧下率で2回目
の軽圧下圧延を行い、この際、前記2回の軽圧下圧延の
圧下率の合計を2.0〜5.0%とし、次いで750℃
〜Ac1の温度範囲で30分〜10時間若しくは850
℃〜Ac1の温度範囲で30秒〜5分の熱延板焼鈍を施
し、次いで1回若しくは中間焼鈍を挾む2回以上の冷間
圧延を行い、しかる後600〜850℃の温度範囲で3
0秒〜5分の仕上焼鈍を施し、剪断、打抜き等の加工
後、歪取焼鈍を施すことを特徴とする磁気特性と表面性
状が優れた無方向性電磁鋼板の製造方法。
(2) C: 0.0050 wt% or less, S
i: 0.1 to 1.5 wt%, Mn: 0.2 to 1.0 wt
%, P: 0.20 wt% or less, S: 0.010 wt% or less, Al: 0.004 wt% or less, or 0.100 to
A steel consisting of 0.500 wt%, N: 0.0050 wt% or less, the balance Fe and unavoidable impurities is
After heating to 250 ° C., hot rolling at a finishing temperature of 750 to 880 ° C. and winding at a winding temperature satisfying the following formula, 37 (Si + Al) + 570 ≦ CT ≦ 41 (Si + A
l) +686 However, CT: coiling temperature (° C) Si: Si content (wt%) Al: Al content (wt%) The hot rolled sheet is pickled, and a rolling reduction of 0.5 to 3.0%. The first light reduction rolling is carried out in the following manner, and then the second light reduction rolling is carried out at the reduction ratio of 0.5 to 3.0% by reversing the rolling direction from the first light reduction rolling. The total reduction ratio of the two light reduction rollings was 2.0 to 5.0%, and then 750 ° C.
To Ac 1 for 30 minutes to 10 hours or 850
Hot-rolled sheet annealing is performed for 30 seconds to 5 minutes in the temperature range of ℃ to Ac 1 , followed by cold rolling once or twice or more with intermediate annealing, and then in the temperature range of 600 to 850 ° C. Three
A method for producing a non-oriented electrical steel sheet having excellent magnetic properties and surface properties, which comprises performing finish annealing for 0 seconds to 5 minutes, performing shearing, punching, and the like, and then performing stress relief annealing.

【0010】(3) C:0.0050wt%以下、S
i:0.1〜1.5wt%、Mn:0.2〜1.0wt
%、P:0.20wt%以下、S:0.010wt%以
下、Al:0.004wt%以下若しくは0.100〜
0.500wt%、N:0.0050wt%以下、残部
Feおよび不可避的不純物からなる鋼を、1050〜1
250℃に加熱した後、750〜880℃の仕上温度で
熱間圧延し、下式を満足する巻取温度で巻取った後、 37(Si+Al)+570≦CT≦41(Si+A
l)+686 但し CT:巻取温度(℃) Si:Si含有量(wt%) Al:Al含有量(wt%) 該熱延板を酸洗し、0.5〜3.0%の圧下率で1回目
の軽圧下圧延を行い、引続き前記1回目の軽圧下圧延と
圧延方向を逆にして0.5〜3.0%の圧下率で2回目
の軽圧下圧延を行い、この際、前記2回の軽圧下圧延の
圧下率の合計を2.0〜5.0%とし、次いで750℃
〜Ac1の温度範囲で30分〜10時間若しくは850
℃〜Ac1の温度範囲で30秒〜5分の熱延板焼鈍を施
し、次いで1回若しくは中間焼鈍を挾む2回以上の冷間
圧延を行い、しかる後650〜800℃の温度範囲で3
0秒〜5分の仕上焼鈍を施し、次いで、1.0〜12.
0%の調圧率で調質圧延を行い、剪断、打抜き等の加工
後、歪取焼鈍を施すことを特徴とする磁気特性と表面性
状が優れた無方向性電磁鋼板の製造方法。
(3) C: 0.0050 wt% or less, S
i: 0.1 to 1.5 wt%, Mn: 0.2 to 1.0 wt
%, P: 0.20 wt% or less, S: 0.010 wt% or less, Al: 0.004 wt% or less, or 0.100 to
A steel consisting of 0.500 wt%, N: 0.0050 wt% or less, the balance Fe and unavoidable impurities is
After heating to 250 ° C., hot rolling at a finishing temperature of 750 to 880 ° C. and winding at a winding temperature satisfying the following formula, 37 (Si + Al) + 570 ≦ CT ≦ 41 (Si + A
l) +686 However, CT: coiling temperature (° C) Si: Si content (wt%) Al: Al content (wt%) The hot rolled sheet is pickled, and a rolling reduction of 0.5 to 3.0%. The first light reduction rolling is carried out in the following manner, and then the second light reduction rolling is carried out at the reduction ratio of 0.5 to 3.0% by reversing the rolling direction from the first light reduction rolling. The total reduction ratio of the two light reduction rollings was 2.0 to 5.0%, and then 750 ° C.
To Ac 1 for 30 minutes to 10 hours or 850
Hot-rolled sheet annealing is performed for 30 seconds to 5 minutes in the temperature range of ℃ to Ac 1 , followed by cold rolling once or twice or more with intermediate annealing, and thereafter in the temperature range of 650 to 800 ° C. Three
Finish annealing is performed for 0 seconds to 5 minutes, and then 1.0 to 12.
A method for producing a non-oriented electrical steel sheet having excellent magnetic properties and surface properties, which is characterized by performing temper rolling at a pressure regulation rate of 0%, performing shearing, punching and the like and then performing stress relief annealing.

【0011】[0011]

【作用】以下、本発明の詳細をその限定理由とともに説
明する。まず、本発明において最も重要な要件である熱
延板の軽圧下圧延条件について説明する。図1は、本発
明鋼種である表1に記載の鋼Aを対象として、熱延板の
軽圧下圧延を2スタンドの圧延機を用いて1回の圧延で
行った場合と、1スタンドの圧延機を用いて1回目の圧
延を行った後、圧延方向を逆転して2回目の圧延を行っ
た場合について、製品の磁束密度と板面粒径を熱延板軽
圧下圧延の圧下率(2回圧延の場合は合計圧下率)で整
理して示したものである。ここで、製品の板面粒径と
は、所謂光学顕微鏡で観察されるミクロ組織の粒径では
なく、表面性状として問題となる製品の板面粗大粒の大
きさを目視評価した際の粒径を指している。また、軽圧
下圧延以外の製造条件は、以下に示すような本発明範囲
内のものとした。また、2回圧延の場合には、合計圧下
率が1.0〜6.0%のものについては、1回目と2回
目の圧延の各圧下率は0.5〜3.0%の範囲であっ
た。 熱間圧延:加熱温度1200℃、仕上温度800℃、巻
取温度640℃、仕上厚2mm 熱延板焼鈍:890℃×2分 冷間圧延:仕上厚0.5mm 仕上焼鈍:730℃×2分
The details of the present invention will be described below together with the reasons for limitation. First, the light reduction rolling condition of the hot rolled sheet, which is the most important requirement in the present invention, will be described. FIG. 1 shows a case where light reduction rolling of a hot-rolled sheet is performed once by using a two-stand rolling mill, and one-stand rolling, for steel A described in Table 1 which is a steel type of the present invention. After performing the first rolling using the mill, the rolling direction was reversed and the second rolling was performed, and the magnetic flux density and plate grain size of the product were determined by the reduction ratio (2 In the case of rolling, the total rolling reduction is summarized. Here, the particle size of the plate surface of the product is not the particle size of the microstructure observed by a so-called optical microscope, but the particle size when visually evaluating the size of the coarse particles of the plate surface of the product, which is a problem as the surface texture. Pointing to. Further, the manufacturing conditions other than the light reduction rolling were set within the scope of the present invention as shown below. Further, in the case of the second rolling, when the total rolling reduction is 1.0 to 6.0%, the respective rolling reductions of the first rolling and the second rolling are in the range of 0.5 to 3.0%. there were. Hot rolling: heating temperature 1200 ° C, finishing temperature 800 ° C, winding temperature 640 ° C, finishing thickness 2mm Hot rolled sheet annealing: 890 ° C x 2 minutes Cold rolling: finishing thickness 0.5mm Finishing annealing: 730 ° C x 2 minutes

【0012】図2は、図1と同様の試験を表1に記載の
本発明鋼種である鋼Fについて行った結果を示してい
る。ここで、軽圧下圧延以外の製造条件については図1
に関する試験と同様にそれぞれ本発明範囲内としたが、
条件そのものは以下に示すように図1の場合とは異なる
値とした。また、2回圧延の場合には、合計圧下率が
1.0〜6.0%のものについては、1回目と2回目の
圧延の各圧下率は0.5〜3.0%の範囲であった。 熱間圧延:加熱温度1100℃、仕上温度860℃、巻
取温度730℃、仕上厚2mm 熱延板焼鈍:880℃×3時間 冷間圧延:仕上厚0.5mm 仕上焼鈍:860℃×3分
FIG. 2 shows the results of a test similar to that of FIG. 1 performed on steel F, which is the steel type of the present invention shown in Table 1. Here, the manufacturing conditions other than the light reduction rolling are shown in FIG.
As in the case of the test related to each, it was set within the scope of the present invention,
The condition itself was set to a value different from that in the case of FIG. 1 as shown below. Further, in the case of the second rolling, when the total rolling reduction is 1.0 to 6.0%, the respective rolling reductions of the first rolling and the second rolling are in the range of 0.5 to 3.0%. there were. Hot rolling: heating temperature 1100 ° C., finishing temperature 860 ° C., winding temperature 730 ° C., finishing thickness 2 mm Hot rolled sheet annealing: 880 ° C. × 3 hours Cold rolling: finishing thickness 0.5 mm Finishing annealing: 860 ° C. × 3 minutes

【0013】先に従来技術の説明でも触れたが、図1及
び図2からも明らかなように熱延板軽圧下圧延を単に1
回の圧延で行う限りは、高磁束密度化と優れた表面性状
の確保を両立させることはできない。すなわち、軽圧下
圧延の圧下率が概ね5%以上では、引き続き行われる熱
延板焼鈍時の二次再結晶に対する駆動力が十分に与えら
れる結果、二次再結晶を起こすための臨界のエネルギー
を超えた結晶粒の数が過多となる。このため熱延板焼鈍
後の組織の粗大化の程度が十分でなく、粗大粒による表
面性状の劣化はないものの磁束密度が十分に改善されな
い。一方、軽圧下圧延の圧下率が概ね1〜2%の範囲で
は、二次再結晶に対する駆動力が小さいため、二次再結
晶を起こすための臨界のエネルギーを超えた結晶粒の数
が少ない。このため熱延板焼鈍後の組織が十分に粗大化
して高い磁束密度は得られる反面、製品の板面粒径が4
〜5mm以上となり、表面粗大粒による表面性状の劣化
が著しい。さらに、軽圧下圧延の圧下率が概ね1%以下
になると上記駆動力が過少となるため、熱延板焼鈍後の
板厚表層部は十分粗大な二次再結晶粒で占められるもの
の、これが板厚方向の全部を覆うまでには成長できず、
板厚中央部に一部二次再結晶の完了できない細粒部が残
存してしまう。このため製品の表面粗大粒により表面性
状が劣化し、また、磁束密度の向上代も小さい。また、
軽圧下圧延の圧下率が概ね2〜5%の場合には、圧下率
が増加するにつれて製品の板面粒径は細粒化していく
が、同時に磁束密度も低下してしまい、この場合も高い
磁束密度と優れた表面性状を同時に満足することはでき
ない。
As mentioned above in the description of the prior art, as is clear from FIGS. 1 and 2, the light rolling of the hot-rolled sheet is simply 1
As long as rolling is performed once, it is not possible to achieve both high magnetic flux density and securing excellent surface properties. That is, when the reduction ratio of the light reduction rolling is approximately 5% or more, the driving force for the secondary recrystallization during the subsequent hot-rolled sheet annealing is sufficiently given, and as a result, the critical energy for causing the secondary recrystallization is increased. The number of exceeded crystal grains becomes excessive. For this reason, the degree of coarsening of the structure after annealing the hot rolled sheet is not sufficient, and although the surface quality is not deteriorated by the coarse grains, the magnetic flux density is not sufficiently improved. On the other hand, when the reduction ratio of the light reduction rolling is in the range of about 1 to 2%, the driving force for the secondary recrystallization is small, so that the number of crystal grains exceeding the critical energy for causing the secondary recrystallization is small. Therefore, while the structure after annealing of the hot rolled sheet is sufficiently coarsened and a high magnetic flux density can be obtained, the sheet surface grain size of the product is 4
It becomes 5 mm or more, and the surface quality is remarkably deteriorated by the coarse particles. Further, when the reduction ratio of the light reduction rolling is approximately 1% or less, the driving force becomes too small, and therefore the plate thickness surface layer portion after the hot rolled sheet annealing is occupied by sufficiently coarse secondary recrystallized grains, but this It cannot grow until it covers the entire thickness,
Part of the fine grain where secondary recrystallization cannot be completed remains in the central portion of the plate thickness. For this reason, the surface quality of the product is deteriorated by the coarse particles of the product, and the margin for improving the magnetic flux density is small. Also,
When the reduction rate of the light reduction rolling is approximately 2 to 5%, the plate surface grain size of the product becomes finer as the reduction rate increases, but at the same time, the magnetic flux density also decreases, which is also high. The magnetic flux density and the excellent surface quality cannot be satisfied at the same time.

【0014】これに対し、熱延板軽圧下圧延を圧延方向
を逆にした2回の圧延で行った場合には、その合計圧下
率を適正範囲に制御することにより高い磁束密度と優れ
た表面性状が共に確保されることが判る。具体的には、
成分組成が異なる鋼Aおよび鋼Fともに、2回の圧延の
合計圧下率を2.0〜5.0%に制御することで、磁束
密度については鋼Aでは1.81T以上の値が、また、
鋼Fでは1.78T以上の値が得られ、しかも板面粒径
はともに3mm以下と表面性状上問題のない値にまで低
下しており、高位の磁束密度と優れた表面性状が確保さ
れている。さらに、合計圧下率が2.0〜5.0%の範
囲にあっては、熱延板軽圧下圧延を1回の圧延で行った
同一板面粒径のものと磁束密度を比較すると、磁束密度
は概ね0.02T以上高くなっており、このことからも
熱延板軽圧下圧延を圧延方向を逆にした2回の圧延で行
い、その際の合計圧下率を2.0〜5.0%に制御する
ことの有効性が理解できる。以上の理由から本発明で
は、熱延板軽圧下圧延を圧延方向を逆にした2回の圧延
で行い、且つこの2回の圧延の合計圧下率を2.0〜
5.0%と規定する。なお、ここでいう1回の圧延と
は、1スタンド若しくは2スタンド以上で行われる圧延
(すなわち、1パス若しくは2パス以上の圧延)を含ん
でいる。
On the other hand, when the hot-rolled sheet light reduction rolling is performed by two times of rolling with the rolling directions reversed, the total reduction rate is controlled within an appropriate range to obtain a high magnetic flux density and an excellent surface. It can be seen that the properties are secured together. In particular,
By controlling the total rolling reduction of the two rollings to 2.0 to 5.0% for both steel A and steel F having different composition, the magnetic flux density of steel A is 1.81 T or more, and ,
With Steel F, a value of 1.78 T or more was obtained, and the grain size of the plate surface was both 3 mm or less, which was a value that was not problematic in terms of surface texture, and a high magnetic flux density and excellent surface texture were secured. There is. Further, when the total reduction ratio is in the range of 2.0 to 5.0%, when comparing the magnetic flux density with that of the same plate surface grain size that was obtained by performing one light rolling of the hot rolled sheet, the magnetic flux density was The density is generally higher than 0.02T, and from this fact as well, the light reduction rolling of the hot-rolled sheet is performed by two times of rolling with the rolling directions reversed, and the total reduction rate at that time is 2.0 to 5.0. You can understand the effectiveness of controlling to%. For the above reasons, in the present invention, the light rolling of the hot rolled sheet is performed by two rollings with the rolling directions reversed, and the total rolling reduction of the two rollings is 2.0 to.
It is specified as 5.0%. The single rolling referred to here includes rolling performed in one stand or in two or more stands (that is, rolling in one pass or two or more passes).

【0015】なお、上述した試験における熱延板軽圧下
圧延は、これを1回の圧延で行う場合には2スタンドの
圧延機を使用し、また、圧延方向を逆にした2回の圧延
で行う場合には1スタンドの圧延機を使用したものであ
り、ともに圧延パス数は2である。したがって、両者の
本質的な相違は各パスを同一圧延方向で行うか、逆方向
で行うかという点に尽きる。したがって、本発明におい
ては熱延板軽圧下圧延を2回に分けて行うこと自体には
特別な意義はなく、圧延方向を1回目の圧延と2回目の
圧延で逆転させることに本質的な意義がある。
In the above-mentioned test, the light reduction rolling of the hot rolled sheet is carried out by using a two-stand rolling machine in the case of performing this rolling once, and by carrying out two rollings with the rolling directions reversed. When it is carried out, a one-stand rolling machine is used, and the number of rolling passes is two in both cases. Therefore, the essential difference between the two lies in whether each pass is performed in the same rolling direction or in the opposite direction. Therefore, in the present invention, there is no special significance in performing the light reduction rolling of the hot-rolled sheet in two times, and it is essential meaning that the rolling direction is reversed between the first rolling and the second rolling. There is.

【0016】以上のように熱延板軽圧下圧延を圧延方向
を逆にした2回の圧延で行い、その合計圧下率を2.0
〜5.0%に制御することで高位の磁束密度と優れた表
面性状が得られることになるが、これは続く熱延板焼鈍
時に組織が適正化されることによるものである。すなわ
ち、熱延板軽圧下圧延を圧延方向を逆転することなく1
回の圧延で行った場合には、前述したように圧下率が
2.0〜5.0%の範囲では熱延板焼鈍後の粒径は磁束
密度と板面粒径の両者にとって中途半端なものにしかな
らない。これに対し、軽圧下圧延を圧延方向を逆にした
2回の圧延で行い、且つこの際の合計圧下率を2.0〜
5.0%とした上で熱延板焼鈍を実施すると、板表層部
が細粒で且つ板厚中央部が十分に粗大化した結晶粒組織
を得ることができる。ここで、熱延板焼鈍後の組織が板
表層部で細粒となることは、製品の板面粒径を小さく
し、表面粗大粒の発生を抑制できることを意味する。ま
た、板厚中央部が十分に粗大な組織となるため、高位の
磁束密度が達成される。
As described above, the light reduction rolling of the hot-rolled sheet is performed by two times of rolling with the rolling directions reversed, and the total reduction rate is 2.0.
By controlling the content to ˜5.0%, a high magnetic flux density and excellent surface texture can be obtained, but this is because the structure is optimized during the subsequent hot-rolled sheet annealing. That is, the hot-rolled sheet light reduction rolling is performed without reversing the rolling direction.
When the rolling is performed once, as described above, the grain size after hot-rolled sheet annealing is unsatisfactory for both the magnetic flux density and the sheet surface grain size in the rolling reduction range of 2.0 to 5.0%. It's nothing but a thing. On the other hand, light reduction rolling is performed by rolling twice with the rolling direction reversed, and the total reduction rate at this time is 2.0 to
When the hot-rolled sheet is annealed with the content set to 5.0%, it is possible to obtain a crystal grain structure in which the surface layer portion of the sheet is fine grains and the central portion of the sheet thickness is sufficiently coarsened. Here, the fact that the structure after annealing the hot rolled sheet becomes fine grains in the surface layer portion of the sheet means that the grain size of the sheet surface of the product can be made small and the generation of coarse surface grains can be suppressed. Further, since the central portion of the plate thickness has a sufficiently coarse structure, a high magnetic flux density is achieved.

【0017】このように、熱延板軽圧下圧延を圧延方向
を逆にした2回の圧延で行い、且つその際の合計圧下率
を2.0〜5.0%に制御した場合には、圧延方向を逆
転せず同一圧延方向で1回の圧延を行った場合とは異な
った組織形成を生じることになるが、これは次のような
理由によるものと考えられる。
In this way, when the hot rolled sheet light reduction rolling is performed by two times rolling with the rolling directions reversed, and the total reduction rate at that time is controlled to 2.0 to 5.0%, The formation of a structure different from the case where one rolling is performed in the same rolling direction without reversing the rolling direction occurs, which is considered to be due to the following reason.

【0018】すなわち、まず1回目の圧延で歪エネルギ
ーが熱延板の結晶粒に付与されるが、この際、圧下率が
小さいために歪エネルギーは主として表層部の結晶粒に
集中する。加えて、表層における各結晶粒の結晶方位の
違い、すなわち結晶回転による塑性変形の難易に応じて
歪エネルギーの蓄積量が各結晶粒で異なるため、歪エネ
ルギーを歪粒成長のための臨界駆動力を超えて蓄積した
結晶粒とそうでない結晶粒の分布を生じる。続いて2回
目の圧延が行われるが、仮にこの圧延を1回目と同一圧
延方向に行った場合、結晶方位の関係で1回目の圧延で
は結晶回転を起こしにくく、このために歪エネルギーの
蓄積が少なかった結晶粒は、1回目と同一圧延方向でな
される2回目の圧延でも同様に結晶回転を起こしにくい
ために歪エネルギーの蓄積量はあまり増加しない。この
ため2回目の圧延において、歪粒成長を生じるための臨
界駆動力を超える歪エネルギーを新たに得ることができ
る結晶粒の数は少ない。この場合、表層の結晶粒のうち
1回目の圧延で十分に結晶回転を起し塑性変形したもの
は、加工硬化により2回目の圧延では新たな塑性変形を
生じにくいことから、2回目の圧延による歪エネルギー
の多くは板厚中央部側の結晶粒に付与されることにな
る。かくして、2回目の圧延を1回目の圧延と同一方向
で行った場合には、歪粒成長のための臨界駆動力を超え
て歪エネルギーを蓄積した結晶粒、すなわち二次再結晶
に際しての核の分布は、板厚表層部と中央部とで大きな
差を生ずることはない。
That is, first, strain energy is imparted to the crystal grains of the hot-rolled sheet in the first rolling, but at this time, the strain energy is mainly concentrated on the crystal grains of the surface layer portion because the rolling reduction is small. In addition, the difference in the crystal orientation of each crystal grain in the surface layer, that is, the accumulated amount of strain energy differs depending on the crystal grain due to the difficulty of plastic deformation due to crystal rotation, so the strain energy is the critical driving force for strain grain growth. A distribution of grains that have accumulated above and those that have not accumulated occurs. Then, the second rolling is performed, but if this rolling is performed in the same rolling direction as the first rolling, crystal rotation hardly occurs in the first rolling due to the crystal orientation, and thus strain energy is not accumulated. The few crystal grains are less likely to cause crystal rotation even in the second rolling performed in the same rolling direction as the first rolling, and thus the strain energy storage amount does not increase so much. Therefore, in the second rolling, the number of crystal grains that can newly obtain strain energy exceeding the critical driving force for causing strained grain growth is small. In this case, among the crystal grains in the surface layer, those that have undergone sufficient crystal rotation in the first rolling to be plastically deformed are less likely to generate new plastic deformation in the second rolling due to work hardening, so Most of the strain energy is applied to the crystal grains on the central side of the plate thickness. Thus, when the second rolling is performed in the same direction as the first rolling, the crystal grains that have accumulated strain energy in excess of the critical driving force for strain grain growth, that is, the nuclei of nuclei at the time of secondary recrystallization The distribution does not cause a large difference between the surface layer portion and the central portion of the plate thickness.

【0019】これに対して、2回目の圧延を1回目の圧
延と逆方向に行う場合には、結晶方位の関係で1回目の
圧延では結晶回転を起しにくかった結晶粒は、逆方向で
行われる2回目の圧延では結晶回転を起し易くなり、容
易に塑性変形して歪粒成長の臨界駆動力を超えた歪エネ
ルギーを得ることができる。このため表層部に形成され
る二次再結晶の核の数は、2回目の圧延を1回目と同一
方向に行う場合に較べて顕著に増大する。同時に、2回
目の圧延で付与される歪エネルギーの大半が表層部の結
晶粒の塑性変形に消費されるため、板厚中央部側の結晶
粒の多くは歪粒成長の臨界駆動力を超えるような歪エネ
ルギーを得ることはできず、二次再結晶の核が多数導入
されることはない。かくして、2回目の圧延を1回目の
圧延とは逆方向に行った場合には、二次再結晶の核は表
層部に多く、板厚中央部には少ない分布をとる。続いて
これに熱延板焼鈍を実施すると、二次再結晶の核の分布
に応じて表層部は細粒組織となり、板厚中央部は十分な
粗大粒組織となる。加えて、このような結晶粒径の違い
に起因して表層部の細粒組織が板厚中央部の粗大粒組織
を蚕食することがないため、この組織形成は比較的安定
して進行するものと考えられる。
On the other hand, when the second rolling is carried out in the opposite direction to the first rolling, the crystal grains which were hard to cause crystal rotation in the first rolling due to the crystal orientation are in the opposite direction. In the second rolling that is performed, crystal rotation is likely to occur, and plastic deformation is easily performed to obtain strain energy that exceeds the critical driving force for strain grain growth. Therefore, the number of secondary recrystallization nuclei formed in the surface layer portion is significantly increased as compared with the case where the second rolling is performed in the same direction as the first rolling. At the same time, most of the strain energy applied in the second rolling is consumed by the plastic deformation of the crystal grains in the surface layer, so that most of the crystal grains in the center part of the plate thickness exceed the critical driving force for strain grain growth. Strain energy cannot be obtained, and many secondary recrystallization nuclei are not introduced. Thus, when the second rolling is performed in the opposite direction to the first rolling, the secondary recrystallization nuclei have a large distribution in the surface layer portion and a small distribution in the plate thickness central portion. Then, when hot-rolled sheet annealing is performed on this, the surface layer portion has a fine grain structure and the plate thickness center portion has a sufficiently coarse grain structure according to the distribution of nuclei of secondary recrystallization. In addition, since the fine grain structure of the surface layer does not erode the coarse grain structure of the central portion of the plate thickness due to such a difference in crystal grain size, this structure formation proceeds relatively stably. it is conceivable that.

【0020】このように熱延板軽圧下圧延を圧延方向を
逆にした2回の圧延で行うことにより、高位の磁束密度
と優れた表面性状の確保を可能とする組織形成を達成す
ることができるが、その際、2回の圧延の合計圧下率の
適正化もまた重要である。すなわち、合計圧下率が2.
0%未満では、付与される歪エネルギーが小さ過ぎるた
め、板厚中央部は勿論のこと板厚表層部に導入される二
次再結晶の核の数が少なく、この結果、熱延板焼鈍後の
表層部が十分な細粒組織とならず、製品の板面粒径が増
大し表面性状が損なわれる。一方、合計圧下率が5.0
%を超えると、付与される歪エネルギーが大き過ぎるた
め、板厚表層部は勿論のこと板厚中央部に導入される二
次再結晶の核の数が多く、この結果、熱延板焼鈍後の板
厚中央部が十分な粗大粒組織とならず、高位の磁束密度
が得られない。
By carrying out the light reduction rolling of the hot-rolled sheet by performing the rolling twice in the opposite rolling directions, it is possible to achieve the formation of a structure capable of ensuring a high magnetic flux density and excellent surface texture. However, in that case, it is also important to optimize the total reduction ratio of the two rollings. That is, the total rolling reduction is 2.
If it is less than 0%, the applied strain energy is too small, so that the number of secondary recrystallization nuclei introduced not only in the central part of the plate thickness but also in the surface layer part of the plate thickness is small. The surface layer portion of does not have a sufficiently fine grain structure, the grain size on the plate surface of the product increases, and the surface texture is impaired. On the other hand, the total rolling reduction is 5.0
%, The strain energy applied is too large, and the number of secondary recrystallization nuclei introduced not only in the plate thickness surface layer part but also in the plate thickness center part is large. As a result, after hot-rolled sheet annealing The central part of the plate thickness does not have a sufficiently coarse grain structure, and a high magnetic flux density cannot be obtained.

【0021】次に、熱延板軽圧下圧延を2回の圧延に分
けて行う際の各圧延における適正圧下率について説明す
る。図3および図4は、表1に記載の本発明鋼種である
鋼Aと鋼Fについて、熱延板軽圧下圧延を1スタンドの
圧延機を用いて圧延方向を逆にした2回の圧延で行った
場合の製品の磁束密度と板面粒径を、1回目および2回
目の圧延の各圧下率との関係で整理して示したものであ
る。ここで、熱延板軽圧下圧延以外の製造条件は、鋼A
については前記した図1の試験条件と、また、鋼Fにつ
いては図2の試験条件とそれぞれ同一とした。
Next, the appropriate reduction ratio in each rolling when the hot-rolled sheet light reduction rolling is divided into two rollings will be described. FIGS. 3 and 4 show steel A and steel F, which are the steel types of the present invention shown in Table 1, in light rolling of a hot rolled sheet by two rollings in which the rolling direction is reversed using a one-stand rolling mill. The magnetic flux density of the product and the grain size of the plate surface in the case where the rolling is performed are arranged and shown in relation to the respective reduction ratios of the first and second rollings. Here, the manufacturing conditions other than the light reduction rolling of the hot rolled sheet are steel A
2 was the same as the test conditions of FIG. 1 described above, and Steel F was the same as the test conditions of FIG.

【0022】図3および図4によれば、1回目および2
回目の圧延の合計圧下率を本発明範囲内である2.0〜
5.0%とした場合でも、1回目および2回目の圧延の
各圧下率がそれぞれ0.5〜3.0%の範囲にないと、
高位の磁束密度と優れた表面性状を同時に確保できない
ことが判る。これは、1回の圧延の圧下率が0.5%未
満では、付与される歪エネルギーが小さ過ぎるため、表
層の結晶粒の何れもが歪粒成長のための臨界駆動力を超
えた歪エネルギーを蓄積できず、二次再結晶のための核
が形成されないからである。一方、1回の圧延の圧下率
が3.0%を超えると、付与される歪エネルギーが大き
過ぎるために板厚中央部に蓄積される歪エネルギーが増
加し、板厚中央部の結晶粒のうち歪粒成長のための臨界
駆動力を超えたもの、すなわち二次再結晶の核の数が急
増する結果、熱延板焼鈍後の板厚中央部が十分に粗大化
しないからである。このため本発明では、熱延板軽圧下
圧延での圧延1回当りの圧下率を0.5〜3.0%と規
定する。
According to FIGS. 3 and 4, the first time and the second time
The total rolling reduction of the second rolling is within the range of the present invention of 2.0 to
Even if it is 5.0%, if the reduction ratios of the first rolling and the second rolling are not within the range of 0.5 to 3.0%, respectively,
It can be seen that a high magnetic flux density and excellent surface properties cannot be secured at the same time. This is because if the rolling reduction of one rolling is less than 0.5%, the strain energy applied is too small, so that any of the crystal grains in the surface layer has a strain energy exceeding the critical driving force for strain grain growth. Is not accumulated and nuclei for secondary recrystallization are not formed. On the other hand, when the rolling reduction of one rolling exceeds 3.0%, the strain energy applied is too large and the strain energy accumulated in the central portion of the sheet thickness increases, and the crystal grains in the central portion of the sheet thickness increase. This is because, as a result, the one exceeding the critical driving force for strained grain growth, that is, the number of secondary recrystallization nuclei rapidly increases, and as a result, the central portion of the sheet thickness after hot-rolled sheet annealing does not become sufficiently coarse. For this reason, in the present invention, the reduction rate per rolling in the hot rolled sheet light reduction rolling is defined as 0.5 to 3.0%.

【0023】次に、熱間圧延時の巻取温度の適正範囲に
ついて述べるが、この要件も熱延板焼鈍後の組織を適正
化し、高位の磁束密度と優れた表面性状を得るために重
要である。図5は、表1に記載の本発明鋼種である鋼A
および鋼Fを対象に、熱間圧延時の巻取温度を種々変化
させて製品の磁束密度と板面粒径に対する巻取温度の影
響を調べ、その結果を整理して示したものである。な
お、巻取温度以外の製造条件については、以下に示すよ
うに本発明範囲内のものとした。
Next, the appropriate range of the coiling temperature during hot rolling will be described. This requirement is also important for optimizing the structure after hot-rolled sheet annealing and obtaining a high magnetic flux density and excellent surface properties. is there. FIG. 5 shows steel A, which is the steel type of the present invention described in Table 1.
For steel and steel F, the effects of the winding temperature on the magnetic flux density and grain size of the sheet were investigated by varying the winding temperature during hot rolling, and the results are summarized and shown. The manufacturing conditions other than the winding temperature were within the scope of the present invention as shown below.

【0024】鋼A; 熱間圧延:加熱温度1200℃、仕上温度800℃、仕
上厚2mm 熱延板軽圧下圧延:1回目の圧延の圧下率1.2% 2回目の圧延(1回目と逆方向)の圧下率1.6% 1回目および2回目の合計圧下率2.8% 熱延板焼鈍:890℃×2分 冷間圧延:仕上厚0.5mm 仕上焼鈍:730℃×2分 鋼F; 熱間圧延:加熱温度1100℃、仕上温度860℃、仕
上厚2mm 熱延板軽圧下圧延:1回目の圧延の圧下率2.6% 2回目の圧延(1回目と逆方向)の圧下率1.2% 1回目および2回目の合計圧下率3.8% 熱延板焼鈍:880℃×3時間 冷間圧延:仕上厚0.5mm 仕上焼鈍:860℃×3分
Steel A: Hot rolling: Heating temperature 1200 ° C., finishing temperature 800 ° C., finishing thickness 2 mm Hot rolled sheet light reduction rolling: reduction of 1.2% of first rolling Second rolling (reverse of first rolling) Direction) 1.6% 1st and 2nd total reduction 2.8% Hot rolled sheet annealing: 890 ° C x 2 minutes Cold rolling: Finished thickness 0.5mm Finish annealing: 730 ° C x 2 minutes Steel F; hot rolling: heating temperature 1100 ° C., finishing temperature 860 ° C., finishing thickness 2 mm Hot rolled sheet light reduction rolling: reduction of the first rolling 2.6% Reduction of the second rolling (direction opposite to the first rolling) Rate 1.2% First and second total reduction rate 3.8% Hot rolled sheet annealing: 880 ° C x 3 hours Cold rolling: Finished thickness 0.5 mm Finishing annealing: 860 ° C x 3 minutes

【0025】図5の結果から、高位の磁束密度と優れた
表面性状を同時に得るためには、巻取温度に上限および
下限があり、巻取温度をこの上限および下限間の範囲に
制御する必要があることが判る。すなわち、巻取温度が
下限温度を下回ると、板面粒径については鋼Aでは約1
mm、鋼Fでは1mm以下と表面性状の問題は生じない
ものの、磁束密度が低下している。一方、巻取温度が上
限温度を超えると、磁束密度については鋼Aでは1.8
2T以上、鋼Fでは1.78T以上と問題はないもの
の、板面粒径が4mm以上となり、表面性状が劣化して
いる。これは熱延板焼鈍後の組織形成の点から言うと、
巻取温度が下限を下回った場合には板厚中央部の組織が
十分粗大にならないため磁束密度が低下し、逆に、巻取
温度が上限を超えると板厚表層部の組織が十分細粒にな
らないため最終製品の板面粒径が増大し、表面性状が劣
化したものと言える。
From the results of FIG. 5, in order to obtain a high magnetic flux density and excellent surface properties at the same time, the winding temperature has an upper limit and a lower limit, and it is necessary to control the winding temperature within the range between the upper limit and the lower limit. I know that there is. That is, when the coiling temperature is lower than the lower limit temperature, the plate surface grain size of Steel A is about 1
In the case of mm and steel F, the problem of surface quality is 1 mm or less, but the magnetic flux density is lowered. On the other hand, when the winding temperature exceeds the upper limit temperature, the magnetic flux density of Steel A is 1.8.
Although there is no problem with 2T or more and with Steel F of 1.78T or more, the grain size of the plate surface is 4 mm or more, and the surface quality is deteriorated. From the point of view of structure formation after hot-rolled sheet annealing, this is
When the coiling temperature is below the lower limit, the structure in the central part of the plate thickness does not become sufficiently coarse, and the magnetic flux density decreases, and conversely, when the coiling temperature exceeds the upper limit, the structure of the plate thickness surface layer part is sufficiently fine-grained. It cannot be said that the grain size of the plate surface of the final product increased and the surface quality deteriorated.

【0026】ここで、巻取温度が適正範囲にない場合に
熱延板焼鈍後の組織形成に不備を生ずる理由については
必ずしも明らかではないが、巻取温度が下限を下回った
場合には、鋼Aおよび鋼Fともに軽圧下圧延前の熱延板
の板厚中央部に再結晶の完了していない領域が認めら
れ、これがその原因の一つとして考えられる。すなわ
ち、この領域は再結晶が完了していないため、熱延板軽
圧下圧延によって歪が付加されても、続く熱延板焼鈍時
に歪粒成長を起すことはなく、所謂核生成−成長による
一次再結晶−粒成長過程によって結晶粒の粗大化を生じ
るため、歪粒成長によって得られる程の粒径には達して
いないことが考えられる。また、巻取温度が上限を超え
た場合について考察すると、熱延板軽圧下圧延の際には
二次再結晶の核は主として結晶粒界に形成するものと考
えられるが、その場合、巻取温度が上限温度を超えるこ
とによって熱間圧延後の板厚表層部の結晶粒が適正粒径
を超えて成長すると、粒界面積の減少による二次再結晶
の核生成場所の減少が顕著となり、その結果、熱延板焼
鈍時に板厚表層部が表面性状に問題を生じない程度まで
細粒化しないことが考えられる。
Here, the reason why the structure formation after hot-rolled sheet annealing is defective when the coiling temperature is not within the proper range is not always clear, but when the coiling temperature is below the lower limit, the steel is In both A and Steel F, a region where recrystallization is not completed is observed in the center part of the thickness of the hot rolled sheet before light reduction rolling, and this is considered to be one of the causes. That is, since recrystallization is not completed in this region, even if strain is applied by hot rolling of the hot rolled sheet, strain grain growth does not occur during subsequent hot rolled sheet annealing, and so-called nucleation-primary growth It is considered that the grain size does not reach the grain size obtained by strained grain growth because coarsening of crystal grains occurs due to the recrystallization-grain growth process. Considering the case where the coiling temperature exceeds the upper limit, it is considered that the secondary recrystallization nuclei are mainly formed at the grain boundaries during light reduction rolling of the hot rolled sheet. When the crystal grain of the plate thickness surface layer portion after hot rolling grows to exceed the proper grain diameter by exceeding the upper limit temperature, the decrease in the nucleation site of the secondary recrystallization due to the decrease in the grain boundary area becomes remarkable, As a result, it is considered that the surface layer portion of the sheet thickness does not become finely grained to such an extent that the surface quality does not occur during annealing of the hot rolled sheet.

【0027】このように熱間圧延時の巻取温度に関して
も、熱延板焼鈍後の組織を適正化して高位の磁束密度と
優れた表面性状を得ようとすると、これを適正範囲に制
御することが必要となるが、この適正範囲の上限および
下限については、図5の結果から明らかなように鋼成分
若しくはプロセス条件の影響が考えられる。そこで、こ
れを確認するために鋼成分とプロセス条件を本発明範囲
内で種々変化させ、上記図5の試験と同様の整理を試み
た。その結果、いずれの場合にも巻取温度には上限およ
び下限が存在し、これを外れると上述したように熱延板
の組織に起因して熱延板焼鈍時の組織形成に不備を生
じ、高位の磁束密度と優れた表面性状が同時に得られな
いこと、また、巻取温度の上下限温度がプロセス条件に
拘りなく鋼成分のうちSiとAlの量に依存して変化す
ることが明らかとなった。
As described above, regarding the coiling temperature during hot rolling as well, if the structure after annealing of the hot rolled sheet is optimized to obtain a high magnetic flux density and excellent surface properties, this is controlled within an appropriate range. However, it is considered that the upper and lower limits of this appropriate range may be influenced by the steel composition or process conditions, as is clear from the results shown in FIG. Therefore, in order to confirm this, various changes were made to the steel composition and process conditions within the scope of the present invention, and the same arrangement as in the test of FIG. 5 was tried. As a result, the winding temperature in each case has an upper limit and a lower limit, and if it deviates from this, the structure of the hot-rolled sheet is deficient due to the structure of the hot-rolled sheet as described above, It has been clarified that a high magnetic flux density and excellent surface properties cannot be obtained at the same time, and that the upper and lower limit temperatures of the coiling temperature change depending on the amounts of Si and Al among steel components regardless of process conditions. became.

【0028】さらに、この巻取温度の上下限に対するS
i量とAl量の影響を定式化したところ、下限温度につ
いては、 (CT)L=37(Si+Al)+570 但し (CT)L:巻取温度の下限(℃) Si:Si含有量(wt%) Al:Al含有量(wt%) という関係が得られ、一方、上限温度については、 (CT)U=41(Si+Al)+686 但し (CT)U:巻取温度の上限(℃) Si:Si含有量(wt%) Al:Al含有量(wt%) という関係が得らた。このため、本発明では熱間圧延時
の巻取温度を、 37(Si+Al)+570≦CT≦41(Si+A
l)+686 但し CT:巻取温度(℃) Si:Si含有量(wt%) Al:Al含有量(wt%) という関係を満足するよう制御することをその要件とす
る。
Further, S for the upper and lower limits of this winding temperature
When the influence of the i amount and the Al amount is formulated, the lower limit temperature is (CT) L = 37 (Si + Al) +570 (CT) L : Lower limit of winding temperature (° C.) Si: Si content (wt%) ) Al: Al content (wt%) is obtained, while the upper limit temperature is (CT) U = 41 (Si + Al) +686 (CT) U : Upper limit of coiling temperature (° C) Si: Si Content (wt%) Al: The relationship of Al content (wt%) was obtained. Therefore, in the present invention, the coiling temperature during hot rolling is set to 37 (Si + Al) + 570 ≦ CT ≦ 41 (Si + A
l) +686 However, it is necessary to control so as to satisfy the relationship of CT: coiling temperature (° C.) Si: Si content (wt%) Al: Al content (wt%).

【0029】熱延板は軽圧下圧延後に熱延板焼鈍に供さ
れるが、この熱延板焼鈍条件も熱延板焼鈍時の組織形成
を適正化し、高位の磁束密度と優れた表面性状を得る上
で重要である。本発明では熱延板焼鈍を所謂バッチ焼
鈍、連続焼鈍のいずれで行ってもよいが、バッチ焼鈍の
場合は750〜Ac1の温度範囲で30分〜10時間の
焼鈍を行う必要があり、また、連続焼鈍の場合は850
〜Ac1の温度範囲で30秒〜5分の焼鈍を行う必要が
ある。焼鈍温度が上記の各下限温度を下回ると、歪粒成
長による二次再結晶が完了せず、特に板厚中央部の組織
の粗大化が不十分となって磁束密度が劣化する。一方、
焼鈍温度が上記各上限温度を上回るとγ/α変態を生
じ、集合組織が劣化して磁束密度の低下をきたす。焼鈍
時間についても、上記の各下限を下回ると二次再結晶が
完了しないため磁束密度が低下する。また、焼鈍時間の
上限については、本発明では熱延板焼鈍時の組織の粗大
化は歪粒成長による二次再結晶によって生起されるもの
であるため、上記の各上限を超えた長時間の焼鈍を行っ
ても、これによる粗大化の程度は小さく、却ってエネル
ギーコストを上昇させる結果となり好しくない。加え
て、上記の各上限を超える長時間の焼鈍を行うと内部酸
化層や窒化層が生成されるようになり、磁気特性が劣化
する。
The hot-rolled sheet is subjected to hot-rolled sheet annealing after light reduction rolling, and this hot-rolled sheet annealing condition also optimizes the structure formation during the hot-rolled sheet annealing to obtain a high magnetic flux density and excellent surface texture. It is important for getting. In the present invention, hot-rolled sheet annealing may be performed by so-called batch annealing or continuous annealing, but in the case of batch annealing, it is necessary to perform annealing for 30 minutes to 10 hours in the temperature range of 750 to Ac 1. , 850 for continuous annealing
It is necessary to anneal for 30 seconds to 5 minutes in the temperature range of to Ac 1 . If the annealing temperature is lower than each of the above lower limit temperatures, the secondary recrystallization due to strained grain growth is not completed, and especially the coarsening of the structure in the central portion of the plate thickness becomes insufficient, and the magnetic flux density deteriorates. on the other hand,
If the annealing temperature exceeds each of the above upper limit temperatures, γ / α transformation occurs, the texture deteriorates, and the magnetic flux density decreases. With respect to the annealing time as well, if the lower limit of each of the above is exceeded, the secondary recrystallization is not completed and the magnetic flux density decreases. Further, with respect to the upper limit of the annealing time, in the present invention, the coarsening of the structure during hot-rolled sheet annealing is caused by secondary recrystallization due to strain grain growth. Even if annealing is performed, the degree of coarsening due to this is small, which rather increases the energy cost, which is not desirable. In addition, if annealing is performed for a long time exceeding the above respective upper limits, an internal oxide layer or a nitride layer will be generated, and the magnetic characteristics will deteriorate.

【0030】以上述べたように、本発明では熱間圧延時
の巻取温度を鋼成分のSi,Al量に応じて適正化した
上で、所定の圧下率の下で軽圧下圧延を2回に分けて逆
方向に実施し、しかる後所定条件の熱延板焼鈍を行うこ
とにより、熱延板焼鈍後の組織が適正化し、高位の磁束
密度と優れた表面性状が得られることになるが、これら
以外の条件、すなわち、鋼成分や仕上焼鈍条件等のプロ
セス因子の適正化も勿論重要である。そこで、以下これ
らについて説明する。先ず、鋼成分についてその限定理
由を説明する。
As described above, in the present invention, the coiling temperature during hot rolling is optimized according to the amounts of Si and Al in the steel components, and then light rolling is performed twice under a predetermined rolling reduction. By performing hot-rolled sheet annealing under predetermined conditions, the structure after hot-rolled sheet annealing is optimized, and high-order magnetic flux density and excellent surface properties can be obtained. Of course, it is also important to optimize other process conditions, that is, process factors such as steel composition and finish annealing conditions. Therefore, these will be described below. First, the reasons for limiting the steel components will be described.

【0031】C: 磁気特性を劣化させ、また磁気時効
の原因となる元素であり、これを回避するためには0.
0050wt%以下とする必要がある。 Si: 固有抵抗の上昇を通じて鉄損を改善する元素で
あるが、この効果を十分に得るためには0.1wt%以
上の添加が必要である。一方、1.5wt%を超えたS
iの添加は磁束密度を大幅に低下させるため、上限は
1.5wt%とする。 Mn: 熱間延性改善の点から0.2wt%以上の添加
が必要であるが、1.0wt%を超えると効果が飽和す
るだけでなく磁束密度の低下が大きくなるため、上限は
1.0wt%とする。
C: An element that deteriorates magnetic properties and causes magnetic aging.
It is necessary to set it to 0050 wt% or less. Si: An element that improves iron loss by increasing the specific resistance, but in order to obtain this effect sufficiently, addition of 0.1 wt% or more is necessary. On the other hand, S exceeding 1.5 wt%
The addition of i significantly lowers the magnetic flux density, so the upper limit is made 1.5 wt%. Mn: In order to improve hot ductility, it is necessary to add 0.2 wt% or more. However, if it exceeds 1.0 wt%, not only the effect is saturated, but also the decrease in magnetic flux density becomes large, so the upper limit is 1.0 wt. %.

【0032】P: 硬度上昇を通じて打抜き性を改善す
る元素であり、必要に応じて0.20wt%までは添加
してよいが、添加量が0.20wt%を超えるとその効
果が飽和するだけでなく、磁束密度の低下が著しくなる
ため、その添加量は0.20wt%以下にする必要があ
る。 S: MnSを形成することで磁気特性を劣化させる元
素であり、これを回避するためにはS量の上限を0.0
10wt%とする必要がある。
P: An element that improves punchability by increasing hardness, and may be added up to 0.20 wt% if necessary, but if the addition amount exceeds 0.20 wt%, the effect is saturated. However, since the magnetic flux density is remarkably reduced, the addition amount must be 0.20 wt% or less. S: MnS is an element that deteriorates magnetic properties by forming Mn, and in order to avoid this, the upper limit of the amount of S is 0.0.
It is necessary to set it to 10 wt%.

【0033】Al: Alを微量に含有する場合には、
微細なAlNが形成され磁気特性を阻害する。そこで、
この微細なAlNの形成を避けるためには、Al量を
0.004wt%以下とする必要がある。一方、Alを
0.100wt%以上含む場合には、形成されるAl量
が十分粗大であるため磁気特性の劣化はなく、むしろ固
有抵抗の増大を通じて鉄損低減に寄与する。しかし、添
加量が0.500wt%を超えると磁束密度を大幅に低
下させるようになるため、Alを積極的に添加する場合
には、その上限を0.500wt%とする。したがっ
て、Alは0.004wt%以下若しくは0.100〜
0.500wt%とする。 N: 磁気特性を劣化させる元素であり、これを回避す
るために上限を0.0050wt%とする。 その他の元素: 磁気特性を付加的に改善する目的で、
Sb,Sn,B,Cu,Se,Ge,Co,Zr,C
a,REM等の1種または2種以上を適量添加すること
が可能である。
Al: When a small amount of Al is contained,
Fine AlN is formed, which impairs magnetic properties. Therefore,
In order to avoid the formation of this fine AlN, the amount of Al needs to be 0.004 wt% or less. On the other hand, when Al is contained in an amount of 0.100 wt% or more, the amount of Al formed is sufficiently large so that the magnetic characteristics are not deteriorated and rather the iron resistance is reduced by increasing the specific resistance. However, if the addition amount exceeds 0.500 wt%, the magnetic flux density will be significantly reduced. Therefore, when Al is positively added, the upper limit is set to 0.500 wt%. Therefore, Al is 0.004 wt% or less or 0.100 to
0.500 wt%. N: It is an element that deteriorates magnetic properties, and its upper limit is 0.0050 wt% in order to avoid this. Other elements: For the purpose of additionally improving magnetic properties,
Sb, Sn, B, Cu, Se, Ge, Co, Zr, C
It is possible to add an appropriate amount of one or more of a, REM and the like.

【0034】次に、仕上焼鈍等のプロセス条件について
説明する。 熱間圧延: 加熱温度が1250℃を超えると、スケー
ル発生による歩留り低下が著しくなることに加えて、内
部酸化や粒界酸化の増加を通じて磁気特性が大幅に低下
するため、加熱温度の上限は1250℃とする。一方、
加熱温度が1050℃を下回ると、圧延温度が全般に低
下するために圧延負荷の増大を招く。このため加熱温度
の下限は1050℃とする。仕上温度については、これ
が880℃を超えるとα域の圧下量が過少となって、熱
延板段階で好しい集合組織の発達が不十分となり、磁気
特性の劣化を招く。このため仕上温度の上限は880℃
とする。また、仕上温度が750℃を下回ると圧延負荷
の増大が著しいため、仕上温度の下限は750℃とす
る。
Next, process conditions such as finish annealing will be described. Hot rolling: When the heating temperature exceeds 1250 ° C., the yield is significantly decreased due to the generation of scale, and the magnetic properties are significantly decreased by the increase of internal oxidation and grain boundary oxidation. Therefore, the upper limit of the heating temperature is 1250. ℃. on the other hand,
When the heating temperature is lower than 1050 ° C., the rolling temperature is generally lowered, so that the rolling load is increased. Therefore, the lower limit of the heating temperature is 1050 ° C. Regarding the finishing temperature, if it exceeds 880 ° C., the amount of reduction in the α region becomes too small, and the development of favorable texture at the hot rolled sheet stage becomes insufficient, resulting in deterioration of magnetic properties. Therefore, the upper limit of finishing temperature is 880 ° C.
And Further, when the finishing temperature is lower than 750 ° C, the rolling load increases remarkably, so the lower limit of the finishing temperature is set to 750 ° C.

【0035】酸洗: 酸洗条件自体は常法でよいが、熱
延板軽圧下圧延での歪がスケール層に消費されるのを防
ぐ意味から、酸洗は熱延板軽圧下圧延前に行うのが好し
い。 冷間圧延: 冷間圧延は常法でよく、その回数について
も1回の冷間圧延であっても、また中間焼鈍を挾む2回
以上の冷間圧延であってもよい。
Pickling: The pickling condition itself may be a conventional method, but in order to prevent the strain in the light rolling of the hot rolled sheet from being consumed by the scale layer, the pickling should be performed before the light rolling of the hot rolled sheet. I like to do it. Cold rolling: Cold rolling may be a conventional method, and the number of times of cold rolling may be one cold rolling or two or more cold rolling including intermediate annealing.

【0036】仕上焼鈍: 仕上焼鈍後、需要家で歪取焼
鈍を実施されない所謂フルプロセス材の製造にあって
は、仕上焼鈍温度は700〜900℃の範囲とする。こ
れは焼鈍温度が700℃を下回ると製品の結晶粒径が小
さ過ぎ、鉄損が増大するためであり、一方、900℃を
超えると(111)集合組織の発達が顕著となって磁束
密度が劣化するためである。焼鈍時間に関しては、30
秒未満の焼鈍時間では粒成長が不十分で製品の結晶粒径
が小さくなり過ぎ、鉄損が増大するため、焼鈍時間の下
限は30秒とする。一方、5分を超えて焼鈍を行っても
組織変化は小さく、却ってエネルギーコストを増大させ
るだけであるため、焼鈍時間の上限は5分とする。
Finishing Annealing: In the production of so-called full process materials in which the strain relief annealing is not carried out by the consumer after the finishing annealing, the finishing annealing temperature is in the range of 700 to 900 ° C. This is because the crystal grain size of the product is too small and the iron loss increases when the annealing temperature is lower than 700 ° C. On the other hand, when the annealing temperature is higher than 900 ° C., the development of (111) texture becomes remarkable and the magnetic flux density increases. This is because it deteriorates. Regarding the annealing time, 30
If the annealing time is less than 2 seconds, grain growth is insufficient, the crystal grain size of the product becomes too small, and iron loss increases, so the lower limit of the annealing time is set to 30 seconds. On the other hand, even if annealing is performed for more than 5 minutes, the change in the structure is small and the energy cost is only increased, so the upper limit of the annealing time is set to 5 minutes.

【0037】次に、仕上焼鈍後、調質圧延されることな
く需要家で剪断、打抜き等の加工を受け、しかる後に歪
取焼鈍されるセミプロセス材の製造にあっては、仕上焼
鈍温度を600〜850℃の範囲とする。この場合、所
定の磁気特性を得るための最終的な組織形成は需要家で
の歪取焼鈍時に行われるため、この意味での仕上焼鈍温
度の適正化は必要ではないが、仕上焼鈍温度が600℃
を下回ると硬質となり過ぎ、剪断刃や打抜き型の摩耗を
増大させてしまう。一方、仕上焼鈍温度が850℃を超
えると軟質となり、剪断、打抜き時のダレの増大、バリ
の増大を引き起こすため好ましくない。また、焼鈍時間
の下限については、硬度が必要以上に高くなるのを避け
る意味から30秒とする。一方、上限については5分と
するが、これはフルプロセス材と同様、5分を超えて焼
鈍を行っても組織変化が小さく、却ってエネルギーコス
トを増大させることになるからである。
Next, in the production of a semi-processed material which is subjected to processing such as shearing and punching at the consumer without being temper-rolled after finish annealing, and then strain relief annealing, the finish annealing temperature is set. It shall be in the range of 600 to 850 ° C. In this case, since the final microstructure formation for obtaining the predetermined magnetic properties is performed at the time of stress relief annealing at the consumer, it is not necessary to optimize the finish annealing temperature in this sense, but the finish annealing temperature is 600 ℃
If it is below the range, it becomes too hard, which increases the wear of the shearing blade and the punching die. On the other hand, if the finish annealing temperature exceeds 850 ° C., it becomes soft, which causes shearing, sagging during punching, and burrs, which is not preferable. The lower limit of the annealing time is set to 30 seconds in order to prevent the hardness from becoming unnecessarily high. On the other hand, the upper limit is set to 5 minutes because, like the full process material, even if annealing is performed for more than 5 minutes, the microstructure change is small and the energy cost is rather increased.

【0038】さらに、仕上焼鈍後に調質圧延され、需要
家で剪断、打抜き等の加工を施された後、歪取焼鈍され
るセミプロセス材の製造にあっては、仕上焼鈍温度を6
50〜800℃の範囲とする。前記調質圧延の目的は、
歪取焼鈍時の粒成長を調圧歪による二次再結晶によって
引き起こすことで鉄損を改善することにあり、この目的
を達成するためには、調質圧延前の結晶粒径の適正化が
重要となる。仕上焼鈍温度を650〜800℃の範囲に
制御することは、この結晶粒径の適正化のために必要で
ある。すなわち、仕上焼鈍温度が650℃未満では再結
晶が完了しないため、調質圧延を実施しても歪取焼鈍時
に完全な二次再結晶組織が得られない。また、仕上焼鈍
温度が800℃を超えると結晶粒径が過大となる結果、
調質圧延を実施すると歪取焼鈍後の二次再結晶組織が粗
大となり過ぎ、鉄損は改善されるものの磁束密度が劣化
してしまう。焼鈍時間についても、仕上焼鈍後の組織を
完全再結晶させる意味から下限を30秒とする。また、
上限については5分とするが、これは先に述べた二つの
場合と同様、5分を超えて焼鈍を行っても組織変化が小
さく、却ってエネルギーコストを増大させることになる
からである。
Further, in the production of a semi-processed material which is temper-rolled after finish annealing and subjected to processing such as shearing and punching at the consumer and then stress relief annealing, the finish annealing temperature is set to 6
The temperature is in the range of 50 to 800 ° C. The purpose of the temper rolling is
It is to improve iron loss by causing grain growth during stress relief annealing by secondary recrystallization due to pressure-controlled strain.To achieve this object, optimization of the crystal grain size before temper rolling is required. It becomes important. Controlling the finish annealing temperature in the range of 650 to 800 ° C. is necessary for optimizing the crystal grain size. That is, since recrystallization is not completed when the finish annealing temperature is lower than 650 ° C., a perfect secondary recrystallization structure cannot be obtained during strain relief annealing even when temper rolling is performed. Further, when the finish annealing temperature exceeds 800 ° C., the crystal grain size becomes excessive,
When temper rolling is performed, the secondary recrystallized structure after strain relief annealing becomes too coarse, and iron loss is improved but magnetic flux density deteriorates. Regarding the annealing time as well, the lower limit is set to 30 seconds in order to completely recrystallize the structure after finish annealing. Also,
The upper limit is set to 5 minutes, because, like the two cases described above, even if annealing is performed for more than 5 minutes, the change in structure is small and the energy cost is increased.

【0039】調質圧延: 仕上焼鈍後に調質圧延を施す
場合、この調質圧延は前述したように歪取焼鈍時に二次
再結晶を起させるために行われるものであり、その調圧
率は1.0〜12.0%の範囲とする必要がある。調圧
率が1.0%未満では二次再結晶の核が生成されず、一
方、12.0%超では歪取焼鈍時に二次再結晶ではなく
一次再結晶−粒成長が生じ、所定の粒径を得ることがで
きなくなる。なお、本発明では以上述べたように鋼成
分、各プロセス条件の適正化を行っているが、とりわけ
熱延板軽圧下圧延と熱延板焼鈍の組み合わせによる冷間
圧延前組織の粗大化は、製品の集合組織を改善すること
を意味しており、したがって、磁束密度が向上するのは
勿論のこと鉄損特性もまた改善されることは言うまでも
ない。
Temper rolling: When temper rolling is performed after finish annealing, this temper rolling is performed to cause secondary recrystallization during strain relief annealing as described above, and the pressure regulating rate is It is necessary to set it in the range of 1.0 to 12.0%. When the pressure regulation rate is less than 1.0%, secondary recrystallization nuclei are not generated. On the other hand, when the pressure regulation rate exceeds 12.0%, not the secondary recrystallization but the primary recrystallization-grain growth occurs at the time of stress relief annealing, and the predetermined recrystallization is caused. The particle size cannot be obtained. In the present invention, as described above, the steel components are optimized for each process condition, but in particular, the coarsening of the structure before cold rolling by the combination of hot-rolled sheet light reduction rolling and hot-rolled sheet annealing is performed. It means that the texture of the product is improved. Therefore, it goes without saying that the magnetic flux density is improved and the iron loss characteristics are also improved.

【0040】[0040]

【実施例】表1に記載の鋼A〜鋼Iを用い、これらを
2.0mmの厚さまで熱間圧延した後、酸洗し、さらに
熱延板軽圧下圧延、熱延板焼鈍を施した。引き続き1回
の冷間圧延の後、これを仕上焼鈍して板厚0.5mmの
製品を得た。また、一部のものについては、仕上焼鈍後
さらに調質圧延を実施し、板厚0.5mmの製品とし
た。このようにして得られた製品の表面粗大粒の程度を
評価するために、板面をナイタール腐食にて軽エッチン
グした後、板面粒径を目視(実際には5倍に拡大)にて
測定した。さらに、製品から25cmエプスタインサン
プルを剪断し、剪断まま或いは一部は歪取焼鈍(750
℃×2時間)を付与した後、磁気特性(L,C平均値)
を測定した。その際の各製造条件の詳細と調質圧延およ
び歪取焼鈍の有無を表2〜表4に、また、製品の磁気特
性と板面粒径の測定結果を表5にそれぞれ示す。
[Examples] Steels A to I described in Table 1 were hot-rolled to a thickness of 2.0 mm, then pickled, and further subjected to light reduction rolling of hot-rolled sheet and annealing of hot-rolled sheet. . Subsequently, after cold rolling once, this was finish annealed to obtain a product having a plate thickness of 0.5 mm. Further, for some of the products, after finish annealing, temper rolling was further carried out to obtain a product having a plate thickness of 0.5 mm. In order to evaluate the degree of coarse particles on the surface of the product thus obtained, the plate surface was lightly etched by nital corrosion, and then the plate surface grain size was visually measured (actually magnified 5 times). did. In addition, a 25 cm Epstein sample was sheared from the product and either unsheared or partially strain relief annealed (750
After applying (° C x 2 hours), magnetic properties (L, C average value)
Was measured. Tables 2 to 4 show the details of the respective production conditions at that time and the presence or absence of temper rolling and strain relief annealing, and Table 5 shows the measurement results of the magnetic properties and plate surface grain size of the product.

【0041】表5から明らかなように、本発明法によれ
ば高位の磁束密度を持ち、しかも板面粒径の小さな、す
なわち表面性状に優れた製品を得ることができる。ま
た、鉄損値も十分に低く良好である。一方、鋼成分或い
は製造条件が本発明範囲から逸脱した比較法にあって
は、磁束密度が本発明例に較べ概ね0.02T程度低い
か若しくは板面粒径が4mm以上となっており、高位の
磁束密度と優れた表面性状を同時に得ることができな
い。
As is clear from Table 5, according to the method of the present invention, it is possible to obtain a product having a high magnetic flux density and a small plate surface grain size, that is, an excellent surface property. The iron loss value is also sufficiently low and good. On the other hand, in the comparative method in which the steel composition or the manufacturing conditions deviated from the scope of the present invention, the magnetic flux density was lower by about 0.02 T or the grain size of the plate surface was 4 mm or more as compared with the examples of the present invention. It is impossible to obtain the magnetic flux density and the excellent surface properties at the same time.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【発明の効果】以上述べた本発明によれば、従来にはな
い高位の磁束密度と優れた表面性状を兼ね備えた無方向
性電磁鋼板を容易に製造することができる。
According to the present invention described above, it is possible to easily manufacture a non-oriented electrical steel sheet having both a high magnetic flux density which has not been heretofore available and excellent surface properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明鋼種である実施例の鋼Aについて、製品
の磁束密度と板面粒径に対する熱延板軽圧下圧延の方法
とその圧下率の影響を示したグラフ
FIG. 1 is a graph showing influences of a method of light reduction rolling of a hot rolled sheet and a reduction rate thereof on a magnetic flux density and a sheet surface grain size of a steel A of an example which is a steel type of the present invention.

【図2】本発明鋼種である実施例の鋼Fについて、製品
の磁束密度と板面粒径に対する熱延板軽圧下圧延の方法
とその圧下率の影響を示したグラフ
FIG. 2 is a graph showing the influence of the method of light reduction rolling of hot-rolled sheet and the reduction rate thereof on the magnetic flux density of the product and the grain size of the sheet for steel F of the example which is a steel type of the present invention.

【図3】本発明鋼種である実施例の鋼Aについて、製品
の磁束密度と板面粒径に対する熱延板軽圧下圧延の1回
目の圧延の圧下率と2回目の圧延の圧下率の影響を示し
たグラフ
FIG. 3 shows the influence of the rolling reduction of the first rolling and the rolling reduction of the second rolling of the hot-rolled sheet light reduction rolling on the magnetic flux density of the product and the sheet surface grain size of steel A of the example which is a steel type of the present invention. Graph showing

【図4】本発明鋼種である実施例の鋼Fについて、製品
の磁束密度と板面粒径に対する熱延板軽圧下圧延の1回
目の圧延の圧下率と2回目の圧延の圧下率の影響を示し
たグラフ
FIG. 4 shows the influence of the reduction ratio of the first rolling and the reduction ratio of the second rolling of the hot-rolled sheet light reduction rolling on the magnetic flux density of the product and the sheet surface grain size of steel F of the example which is a steel type of the present invention. Graph showing

【図5】本発明鋼種である実施例の鋼Aと鋼Fについ
て、製品の磁束密度と板面粒径に対する熱延巻取温度の
影響を示したグラフ
FIG. 5 is a graph showing the influence of the hot rolling coiling temperature on the magnetic flux density and the grain size of the plate surface of the steels A and F of the examples which are steel types of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大北 智良 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomoyoshi Okita 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.0050wt%以下、Si:
0.1〜1.5wt%、Mn:0.2〜1.0wt%、
P:0.20wt%以下、S:0.010wt%以下、
Al:0.004wt%以下若しくは0.100〜0.
500wt%、N:0.0050wt%以下、残部Fe
および不可避的不純物からなる鋼を、1050〜125
0℃に加熱した後、750〜880℃の仕上温度で熱間
圧延し、下式を満足する巻取温度で巻取った後、 37(Si+Al)+570≦CT≦41(Si+A
l)+686 但し CT:巻取温度(℃) Si:Si含有量(wt%) Al:Al含有量(wt%) 該熱延板を酸洗し、0.5〜3.0%の圧下率で1回目
の軽圧下圧延を行い、引続き前記1回目の軽圧下圧延と
圧延方向を逆にして0.5〜3.0%の圧下率で2回目
の軽圧下圧延を行い、この際、前記2回の軽圧下圧延の
圧下率の合計を2.0〜5.0%とし、次いで750℃
〜Ac1の温度範囲で30分〜10時間若しくは850
℃〜Ac1の温度範囲で30秒〜5分の熱延板焼鈍を施
し、次いで1回若しくは中間焼鈍を挾む2回以上の冷間
圧延を行い、しかる後700〜900℃の温度範囲で3
0秒〜5分の仕上焼鈍を施すことを特徴とする磁気特性
と表面性状が優れた無方向性電磁鋼板の製造方法。
1. C: 0.0050 wt% or less, Si:
0.1-1.5 wt%, Mn: 0.2-1.0 wt%,
P: 0.20 wt% or less, S: 0.010 wt% or less,
Al: 0.004 wt% or less or 0.100 to 0.
500 wt%, N: 0.0050 wt% or less, balance Fe
And steel consisting of unavoidable impurities,
After heating to 0 ° C., hot rolling at a finishing temperature of 750 to 880 ° C. and winding at a winding temperature satisfying the following formula, 37 (Si + Al) + 570 ≦ CT ≦ 41 (Si + A
l) +686 However, CT: coiling temperature (° C) Si: Si content (wt%) Al: Al content (wt%) The hot rolled sheet is pickled, and a rolling reduction of 0.5 to 3.0%. The first light reduction rolling is carried out in the following manner, and then the second light reduction rolling is carried out at the reduction ratio of 0.5 to 3.0% by reversing the rolling direction from the first light reduction rolling. The total reduction ratio of the two light reduction rollings was 2.0 to 5.0%, and then 750 ° C.
To Ac 1 for 30 minutes to 10 hours or 850
Hot-rolled sheet annealing is performed for 30 seconds to 5 minutes in a temperature range of ℃ to Ac 1 , and then cold rolling is performed once or twice or more with intermediate annealing, and then in a temperature range of 700 to 900 ° C. Three
A method for producing a non-oriented electrical steel sheet having excellent magnetic properties and surface properties, characterized by performing a finish annealing for 0 seconds to 5 minutes.
【請求項2】 C:0.0050wt%以下、Si:
0.1〜1.5wt%、Mn:0.2〜1.0wt%、
P:0.20wt%以下、S:0.010wt%以下、
Al:0.004wt%以下若しくは0.100〜0.
500wt%、N:0.0050wt%以下、残部Fe
および不可避的不純物からなる鋼を、1050〜125
0℃に加熱した後、750〜880℃の仕上温度で熱間
圧延し、下式を満足する巻取温度で巻取った後、 37(Si+Al)+570≦CT≦41(Si+A
l)+686 但し CT:巻取温度(℃) Si:Si含有量(wt%) Al:Al含有量(wt%) 該熱延板を酸洗し、0.5〜3.0%の圧下率で1回目
の軽圧下圧延を行い、引続き前記1回目の軽圧下圧延と
圧延方向を逆にして0.5〜3.0%の圧下率で2回目
の軽圧下圧延を行い、この際、前記2回の軽圧下圧延の
圧下率の合計を2.0〜5.0%とし、次いで750℃
〜Ac1の温度範囲で30分〜10時間若しくは850
℃〜Ac1の温度範囲で30秒〜5分の熱延板焼鈍を施
し、次いで1回若しくは中間焼鈍を挾む2回以上の冷間
圧延を行い、しかる後600〜850℃の温度範囲で3
0秒〜5分の仕上焼鈍を施し、剪断、打抜き等の加工
後、歪取焼鈍を施すことを特徴とする磁気特性と表面性
状が優れた無方向性電磁鋼板の製造方法。
2. C: 0.0050 wt% or less, Si:
0.1-1.5 wt%, Mn: 0.2-1.0 wt%,
P: 0.20 wt% or less, S: 0.010 wt% or less,
Al: 0.004 wt% or less or 0.100 to 0.
500 wt%, N: 0.0050 wt% or less, balance Fe
And steel consisting of unavoidable impurities,
After heating to 0 ° C., hot rolling at a finishing temperature of 750 to 880 ° C. and winding at a winding temperature satisfying the following formula, 37 (Si + Al) + 570 ≦ CT ≦ 41 (Si + A
l) +686 However, CT: coiling temperature (° C) Si: Si content (wt%) Al: Al content (wt%) The hot rolled sheet is pickled, and a rolling reduction of 0.5 to 3.0%. The first light reduction rolling is carried out in the following manner, and then the second light reduction rolling is carried out at the reduction ratio of 0.5 to 3.0% by reversing the rolling direction from the first light reduction rolling. The total reduction ratio of the two light reduction rollings was 2.0 to 5.0%, and then 750 ° C.
To Ac 1 for 30 minutes to 10 hours or 850
Hot-rolled sheet annealing is performed for 30 seconds to 5 minutes in the temperature range of ℃ to Ac 1 , followed by cold rolling once or twice or more with intermediate annealing, and then in the temperature range of 600 to 850 ° C. Three
A method for producing a non-oriented electrical steel sheet having excellent magnetic properties and surface properties, which comprises performing finish annealing for 0 seconds to 5 minutes, performing shearing, punching, and the like, and then performing stress relief annealing.
【請求項3】 C:0.0050wt%以下、Si:
0.1〜1.5wt%、Mn:0.2〜1.0wt%、
P:0.20wt%以下、S:0.010wt%以下、
Al:0.004wt%以下若しくは0.100〜0.
500wt%、N:0.0050wt%以下、残部Fe
および不可避的不純物からなる鋼を、1050〜125
0℃に加熱した後、750〜880℃の仕上温度で熱間
圧延し、下式を満足する巻取温度で巻取った後、 37(Si+Al)+570≦CT≦41(Si+A
l)+686 但し CT:巻取温度(℃) Si:Si含有量(wt%) Al:Al含有量(wt%) 該熱延板を酸洗し、0.5〜3.0%の圧下率で1回目
の軽圧下圧延を行い、引続き前記1回目の軽圧下圧延と
圧延方向を逆にして0.5〜3.0%の圧下率で2回目
の軽圧下圧延を行い、この際、前記2回の軽圧下圧延の
圧下率の合計を2.0〜5.0%とし、次いで750℃
〜Ac1の温度範囲で30分〜10時間若しくは850
℃〜Ac1の温度範囲で30秒〜5分の熱延板焼鈍を施
し、次いで1回若しくは中間焼鈍を挾む2回以上の冷間
圧延を行い、しかる後650〜800℃の温度範囲で3
0秒〜5分の仕上焼鈍を施し、次いで、1.0〜12.
0%の調圧率で調質圧延を行い、剪断、打抜き等の加工
後、歪取焼鈍を施すことを特徴とする磁気特性と表面性
状が優れた無方向性電磁鋼板の製造方法。
3. C: 0.0050 wt% or less, Si:
0.1-1.5 wt%, Mn: 0.2-1.0 wt%,
P: 0.20 wt% or less, S: 0.010 wt% or less,
Al: 0.004 wt% or less or 0.100 to 0.
500 wt%, N: 0.0050 wt% or less, balance Fe
And steel consisting of unavoidable impurities,
After heating to 0 ° C., hot rolling at a finishing temperature of 750 to 880 ° C. and winding at a winding temperature satisfying the following formula, 37 (Si + Al) + 570 ≦ CT ≦ 41 (Si + A
l) +686 However, CT: coiling temperature (° C) Si: Si content (wt%) Al: Al content (wt%) The hot rolled sheet is pickled, and a rolling reduction of 0.5 to 3.0%. The first light reduction rolling is carried out in the following manner, and then the second light reduction rolling is carried out at the reduction ratio of 0.5 to 3.0% by reversing the rolling direction from the first light reduction rolling. The total reduction ratio of the two light reduction rollings was 2.0 to 5.0%, and then 750 ° C.
To Ac 1 for 30 minutes to 10 hours or 850
Hot-rolled sheet annealing is performed for 30 seconds to 5 minutes in the temperature range of ℃ to Ac 1 , followed by cold rolling once or twice or more with intermediate annealing, and thereafter in the temperature range of 650 to 800 ° C. Three
Finish annealing is performed for 0 seconds to 5 minutes, and then 1.0 to 12.
A method for producing a non-oriented electrical steel sheet having excellent magnetic properties and surface properties, which is characterized by performing temper rolling at a pressure regulation rate of 0%, performing shearing, punching and the like and then performing stress relief annealing.
JP09068993A 1993-03-25 1993-03-25 Method for producing non-oriented electrical steel sheet Expired - Fee Related JP3644039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09068993A JP3644039B2 (en) 1993-03-25 1993-03-25 Method for producing non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09068993A JP3644039B2 (en) 1993-03-25 1993-03-25 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH06279858A true JPH06279858A (en) 1994-10-04
JP3644039B2 JP3644039B2 (en) 2005-04-27

Family

ID=14005505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09068993A Expired - Fee Related JP3644039B2 (en) 1993-03-25 1993-03-25 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3644039B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513724A (en) * 2010-10-25 2013-04-22 宝山鋼鉄股▲分▼有限公司 Manufacturing process of high magnetic induction non-oriented silicon steel
US9156036B2 (en) 2010-12-14 2015-10-13 Citizen Holdings Co. Ltd. Method of separating workpieces from chips
JP2019178374A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor, and motor core and manufacturing method therefor
JP2019178373A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor, and motor core and manufacturing method therefor
CN115404410A (en) * 2022-09-23 2022-11-29 马鞍山钢铁股份有限公司 Non-oriented silicon steel with excellent magnetic performance after stress relief annealing and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513724A (en) * 2010-10-25 2013-04-22 宝山鋼鉄股▲分▼有限公司 Manufacturing process of high magnetic induction non-oriented silicon steel
KR101404101B1 (en) * 2010-10-25 2014-06-09 바오샨 아이론 앤 스틸 유한공사 Method for manufacturing non-oriented silicon steel with high-magnetic induction
EP2508629A4 (en) * 2010-10-25 2016-11-30 Baoshan Iron & Steel Method for manufacturing non-oriented silicon steel with high-magnetic induction
US9156036B2 (en) 2010-12-14 2015-10-13 Citizen Holdings Co. Ltd. Method of separating workpieces from chips
JP2019178374A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor, and motor core and manufacturing method therefor
JP2019178373A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor, and motor core and manufacturing method therefor
CN115404410A (en) * 2022-09-23 2022-11-29 马鞍山钢铁股份有限公司 Non-oriented silicon steel with excellent magnetic performance after stress relief annealing and manufacturing method thereof
CN115404410B (en) * 2022-09-23 2024-01-16 马鞍山钢铁股份有限公司 Non-oriented silicon steel with excellent magnetic performance after stress relief annealing and manufacturing method thereof

Also Published As

Publication number Publication date
JP3644039B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
US11408041B2 (en) Non-oriented electrical steel sheet and method for producing same
WO1996000306A1 (en) Method of manufacturing non-oriented electromagnetic steel plate having high magnetic flux density and low iron loss
EP4455332A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
JP7268803B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6879341B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3644039B2 (en) Method for producing non-oriented electrical steel sheet
JP4337159B2 (en) Manufacturing method of silicon steel sheet and hot rolled steel strip material for silicon steel sheet
JP3399726B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP4337146B2 (en) Method for producing non-oriented electrical steel sheet
JPH0819465B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2005002401A (en) Method for producing non-oriented electrical steel sheet
JP4790151B2 (en) Non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
JPH06228645A (en) Manufacturing method of electrical steel sheet for small static device
JPH09283316A (en) High magnetic flux density, low iron loss, non-oriented electrical steel sheet having excellent thermal conductivity and method for producing the same
JP3890876B2 (en) Method for producing non-oriented electrical steel sheet
JPH0814015B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and surface properties and method for producing the same
JPH09228005A (en) High magnetic flux density, low iron loss, non-oriented electrical steel sheet having excellent thermal conductivity and method for producing the same
JP3179986B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP7636703B2 (en) Non-oriented electrical steel sheet
JP3690023B2 (en) Surface-treated cold-rolled steel sheet, hot-rolled steel sheet used therefor, and production method thereof
JP3937685B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same
JPH0657332A (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2004162081A (en) Manufacturing method of non-oriented electrical steel sheet for spiral core
JPH07300619A (en) Non-oriented electrical steel sheet manufacturing method
JP3379058B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees