[go: up one dir, main page]

JPH06276048A - Surface acoustic wave filter device - Google Patents

Surface acoustic wave filter device

Info

Publication number
JPH06276048A
JPH06276048A JP6210093A JP6210093A JPH06276048A JP H06276048 A JPH06276048 A JP H06276048A JP 6210093 A JP6210093 A JP 6210093A JP 6210093 A JP6210093 A JP 6210093A JP H06276048 A JPH06276048 A JP H06276048A
Authority
JP
Japan
Prior art keywords
electrode
surface acoustic
acoustic wave
side converter
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6210093A
Other languages
Japanese (ja)
Other versions
JP3307455B2 (en
Inventor
Kazuhiko Yamanouchi
和彦 山之内
Mitsuhiro Tanaka
光浩 田中
Yasubumi Horio
保文 堀尾
Masatsugu Oshima
正嗣 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP06210093A priority Critical patent/JP3307455B2/en
Publication of JPH06276048A publication Critical patent/JPH06276048A/en
Application granted granted Critical
Publication of JP3307455B2 publication Critical patent/JP3307455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To provide the surface acoustic wave filter which is superior in both out-band attenuation characteristics and insertion loss. CONSTITUTION:Plural filter stages are formed on a piezoelectric substrate 1 and reflectors 6, 7, 8, and 9 are arranged adjacently to at least one transducer side between transmission-side transducers 2 and 4 and reception-side transducers 3 and 5 of the respective filter stages. Those reflectors 6-9 reflect surface acoustic waves, propagated in the opposite directions from the reception-side transducers 3 and 5 among surface acoustic waves excited by the transmission- side transducers 2 and 4, to the transmission-side transducers 2 and 4. Further, the surface acoustic waves passed through the reception-side transducers 3 and 5 are reflected toward the reception-side transducers 3 and 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は弾性表面波フィルタ装
置、特に帯域外減衰特性及び挿入損失の改善を図った弾
性表面波フィルタ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave filter device, and more particularly to a surface acoustic wave filter device with improved out-of-band attenuation characteristics and insertion loss.

【0002】[0002]

【従来の技術】圧電性基板上にインタディジタル型の送
信側変換器及び受信側変換器を形成して特定の周波数帯
域の信号を取り出す弾性表面波フィルタ装置が実用化さ
れている。この弾性表面波フィルタ装置では、挿入損失
をできるだけ小さくするため送信側及び受信側変換器と
して一方向性トランスジューサが用いられている。一方
向性トランスジューサを用いた弾性表面波フィルタ装置
は挿入損失が比較的小さく、しかも位相特性及び周波数
特性を適切に制御できるため高い有用性を有している。
しかしながら、サイドロープ特性が不十分であり、帯域
外減衰特性を一層改善することが強く要請されている。
2. Description of the Related Art A surface acoustic wave filter device for extracting a signal in a specific frequency band by forming an interdigital transmitter and receiver on a piezoelectric substrate has been put into practical use. In this surface acoustic wave filter device, unidirectional transducers are used as transmitter and receiver converters to minimize insertion loss. A surface acoustic wave filter device using a unidirectional transducer has a relatively small insertion loss and is highly useful because the phase characteristic and the frequency characteristic can be controlled appropriately.
However, the side rope characteristic is insufficient, and it is strongly demanded to further improve the out-of-band attenuation characteristic.

【0003】帯域外の減衰特性を改善する方法として、
圧電性基板上に数個のフィルタ段を形成し、これらフィ
ルタ段を直列に接続する方法が考えられる。例えば、2
個のフィルタ段を直列に接続して1個の弾性表面波フィ
ルタ装置を構成すれば、得られる減衰特性は2個のフィ
ルタ段の減衰特性が掛け合せた特性となるため帯域外減
衰特性を大幅に改善することができる。
As a method of improving the attenuation characteristic outside the band,
A method is conceivable in which several filter stages are formed on a piezoelectric substrate and these filter stages are connected in series. For example, 2
If a single surface acoustic wave filter device is configured by connecting two filter stages in series, the obtained attenuation characteristic is a characteristic obtained by multiplying the attenuation characteristics of the two filter stages, so that the out-of-band attenuation characteristic is significantly increased. Can be improved.

【0004】[0004]

【発明が解決しようとする課題】複数のフィルタ段を直
列接続した場合、挿入損失も2個のフィルタ段の特性が
掛け合された特性となり、1個のフィルタ段を用いるフ
ィルタ装置に比べて挿入損失が若干増大する不具合が生
じてしまう。すなわち、第1フィルタ段の挿入損失が4
dBで第2フィルタ段の挿入損失が4dBでの場合、直
列接続すると8dBの挿入損失が生じてしまう。従っ
て、複数個のフィルタ段を直列接続した弾性表面波フィ
ルタ装置に挿入損失を向上させる手段が結合されれば、
帯域外減衰特性が一層良好に改善れさると共に良好な挿
入損失の弾性表面波フィルタ装置を実現することができ
る。従って、本発明の目的は、帯域外減衰特性が一層改
善れさると共に良好な損失特性の弾性表面波フィルタ装
置を提供することにある。
When a plurality of filter stages are connected in series, the insertion loss becomes a characteristic obtained by multiplying the characteristics of the two filter stages, and the insertion loss is larger than that of the filter device using one filter stage. This causes a problem that the loss is slightly increased. That is, the insertion loss of the first filter stage is 4
When the insertion loss of the second filter stage is 4 dB in dB, the insertion loss of 8 dB occurs in series connection. Therefore, if a means for improving the insertion loss is coupled to the surface acoustic wave filter device in which a plurality of filter stages are connected in series,
It is possible to realize a surface acoustic wave filter device having an improved out-of-band attenuation characteristic and a good insertion loss. Therefore, it is an object of the present invention to provide a surface acoustic wave filter device having an improved out-of-band attenuation characteristic and a good loss characteristic.

【0005】[0005]

【課題を解決するための手段】本発明による弾性表面波
フィルタ装置は、圧電性基板と、この圧電性基板上に形
成され、相互に直列接続したN(Nは2以上の整数)個
のフィルタ段とを具え、 各フィルタ段が、送信側変換
器と、受信側変換器と、これら送信側変換器又は受信側
変換器の少なくとも一方の変換器に隣接するように配置
した反射器とを有し、これら送信側変換器及び受信側変
換器が、インタディジタル型の正電極及び負電極と、こ
れら正電極と負電極との間に配置され、各電極指が隣接
する正電極の電極指と負電極の電極指との間の中間位置
から偏位した位置に配置されている浮き電極とを有し、
各フィルタ段の送信側変換器から対応する受信側変換器
と反対の方向に向けて励振された弾性表面波を前記反射
器により当該送信側変換器に向けて反射させ、送信側変
換器により励振され対応する受信側変換器を通過した弾
性表面波を前記反射器により当該受信側変換器に向けて
反射させるように構成したことを特徴とする。
A surface acoustic wave filter device according to the present invention comprises a piezoelectric substrate and N (N is an integer of 2 or more) filters formed on the piezoelectric substrate and connected in series. Each filter stage having a transmitter-side converter, a receiver-side converter, and a reflector arranged adjacent to at least one of the transmitter-side converter and the receiver-side converter. The transmitter-side converter and the receiver-side converter are arranged between the interdigital positive electrode and the negative electrode and between the positive electrode and the negative electrode, and each electrode finger is an electrode finger of the adjacent positive electrode. A floating electrode arranged at a position deviated from an intermediate position between the negative electrode and the electrode finger,
A surface acoustic wave excited from the transmitter-side converter of each filter stage in a direction opposite to the corresponding receiver-side converter is reflected by the reflector toward the transmitter-side converter, and is excited by the transmitter-side converter. The surface acoustic wave that has passed through the corresponding receiving side transducer is reflected by the reflector toward the receiving side transducer.

【0006】[0006]

【作用】送信側及び受信側変換器として一方向性トラン
スジューサを用いる場合、送信側変換器で励振された弾
性表面波の大部分は受信側変換器に向けて伝播するが、
一部の弾性表面波は受信側変換器とは反対方向に向けて
伝播する。また、送信側変換器で励振された受信側変換
器に入射した弾性表面波の大部分は受信側変換器によっ
て電気信号に変換されるが、一部の弾性表面波は受信側
変換器で変換されずそのまま通過する。従って、これら
一部の弾性表面波を有効に利用できれば送信側及び受信
側変換器の変換効率が一層改善され挿入損失を減少させ
ることができる。このような認識に基き、本発明では、
各フィルタ段の送信側変換器又は受信側変換器の少なく
とも一方の変換器に隣接して反射器を配置し、これら反
射器により弾性表面波をそれぞれ送信側変換器及び受信
側変換器に入射するように反射させる。
When a unidirectional transducer is used as the transmitter and receiver transducers, most of the surface acoustic wave excited by the transmitter propagates toward the receiver transducer.
Some surface acoustic waves propagate in the direction opposite to the receiving transducer. Also, most of the surface acoustic waves that have been incident on the receiving side transducer excited by the transmitting side transducer are converted to electrical signals by the receiving side transducer, but some surface acoustic waves are converted by the receiving side transducer. It passes without being passed. Therefore, if these surface acoustic waves can be effectively utilized, the conversion efficiency of the transmitter and receiver converters can be further improved and the insertion loss can be reduced. Based on such recognition, in the present invention,
A reflector is arranged adjacent to at least one of the transmitter-side converter and the receiver-side converter of each filter stage, and these surface acoustic waves are incident on the transmitter-side converter and the receiver-side converter, respectively. To reflect.

【0007】これら反射器を利用することにより、各フ
ィルタ段の挿入損失が一層減少するので、フィルタ装置
全体としての挿入損失も一層減少する。この結果、帯域
外減衰特性が一層改善されると共に良好な損失特性の弾
性表面波フィルタ装置を実現することができる。特に、
圧電性基板として水晶基板を用いる場合、水晶基板は良
好な温度特性(温度変化に対する帯域変動が少ない特
性)を有するものの、電気機械結合係数が小さい欠点が
ある。従って、圧電性基板として水晶基板を用いれば、
温度特性に優れると共に帯域外減衰特性及び損失特性が
一層改善された弾性表面波フィルタ装置を実現すること
ができる。
By using these reflectors, the insertion loss of each filter stage is further reduced, so that the insertion loss of the filter device as a whole is further reduced. As a result, it is possible to realize a surface acoustic wave filter device having further improved out-of-band attenuation characteristics and excellent loss characteristics. In particular,
When a quartz substrate is used as the piezoelectric substrate, the quartz substrate has good temperature characteristics (characteristics in which the band variation with respect to temperature change is small), but has a drawback that the electromechanical coupling coefficient is small. Therefore, if a quartz substrate is used as the piezoelectric substrate,
A surface acoustic wave filter device having excellent temperature characteristics and further improved out-of-band attenuation characteristics and loss characteristics can be realized.

【0008】[0008]

【実施例】図1は本発明による弾性表面波フィルタ装置
の全体構成を示す線図的平面図であり、図2は送信側変
換器と反射器の詳細な構成を示す線図的平面図であり、
図3は受信側変換器と反射器の詳細な構成を示す線図的
平面図である。本例では、圧電性基板として水晶基板1
を用いる。STカットした水晶は−20℃〜80℃の温度範
囲における周波数に対する温度係数 (TCF)が 1.6pp
m /℃と極めて微小である。ちなみに,128 °回転Yカ
ット×方向伝播 LiNbO3 のTCFは−74ppm/℃である
から、水晶基板は極めて良好な温度特性を有し、温度変
化による通過周波数帯域の変動を極めて微小範囲内に維
持することができる。水晶基板1上に第1の送信側変換
器2、第1の受信側変換器3、第2の送信側変換器4及
び第2の受信側変換器5をそれぞれ形成する。第1の送
信側変換器2と第1の受信側変換器3とで第1フィルタ
段を構成し、第2の送信側変換器4と第2の受信側変換
器5とにより第2のフィルタ段を構成する。第1の送信
側変換器2及び第1の受信側変換器3と隣接して第1及
び第2の反射器6及び7をそれぞれ配置し、第2の送信
側変換器4及び第2の受信側変換器5と隣接して第3及
び第4の反射器8及び9をそれぞれ形成する。第1及び
第3の反射器6及び8は第1及び第2の送信側変換器2
及び4で励振され対応する受信側変換器3及び5と反対
の方向に伝播する弾性表面波をそれぞれ対応する送信側
変換器2及び4に向けて反射する作用を果たす。第1及
び第2の送信側変換器2及び4で励振された弾性表面波
の大部分はそれぞれ送信側変換器に向けて伝播するが、
励振された弾性表面波の一部が受信側変換器と反対側方
向に伝播してしまう。これら反対方向に伝播する弾性表
面波を反射器6及び8により送信側変換器に向けて反射
させることにより、励振された弾性表面波を有効に利用
して挿入損失を改善することができる。また、第1及び
第2の受信側変換器3及び5に入射した弾性表面波の大
部分はこれら変換器によって電気信号に変換されるが、
一部の弾性表面波がこれら変換器を通過してしまう。こ
のため、第2及び第4の変換器7及び9を第1及び第2
の送信側変換器3及び5にそれぞれ隣接するように配置
して変換されなかった弾性表面波を受信側変換器3及び
5に向けてそれぞれ反射させる。尚、本例では第1及び
第2フィルタ段の送信側変換器及び受信側変換器の両方
に反射器を設けたが、少なくとも一方の変換器に隣接し
て反射器を設けるだけでも挿入損失を一層改善すること
ができる。
FIG. 1 is a schematic plan view showing the overall structure of a surface acoustic wave filter device according to the present invention, and FIG. 2 is a schematic plan view showing the detailed structures of a transmitter-side converter and a reflector. Yes,
FIG. 3 is a schematic plan view showing a detailed configuration of the receiving side converter and the reflector. In this example, the quartz substrate 1 is used as the piezoelectric substrate.
To use. The ST-cut crystal has a temperature coefficient (TCF) of 1.6pp with respect to frequency in the temperature range of -20 ℃ to 80 ℃.
It is extremely small at m / ° C. By the way, since the TCF of 128 ° rotation Y-cut × direction propagation LiNbO 3 is -74ppm / ° C, the quartz substrate has extremely good temperature characteristics, and the fluctuation of the pass frequency band due to temperature change is maintained within an extremely minute range. can do. A first transmitter-side converter 2, a first receiver-side converter 3, a second transmitter-side converter 4, and a second receiver-side converter 5 are formed on a crystal substrate 1. The first transmitter-side converter 2 and the first receiver-side converter 3 constitute a first filter stage, and the second transmitter-side converter 4 and the second receiver-side converter 5 form a second filter. Make up the steps. First and second reflectors 6 and 7 are respectively arranged adjacent to the first transmitter-side converter 2 and the first receiver-side converter 3, and the second transmitter-side converter 4 and the second receiver-side converter 3 are arranged. Adjacent to the side converter 5 are formed third and fourth reflectors 8 and 9, respectively. The first and third reflectors 6 and 8 are the first and second transmitter side converters 2
, And 4 and the surface acoustic waves that are propagated in the opposite direction to the corresponding receiving side transducers 3 and 5 are reflected toward the corresponding transmitting side transducers 2 and 4, respectively. Most of the surface acoustic waves excited by the first and second transmitter-side converters 2 and 4 propagate toward the transmitter-side converter, respectively.
Part of the excited surface acoustic wave propagates in the direction opposite to the receiving side transducer. By reflecting the surface acoustic waves propagating in the opposite directions toward the transmitting side transducer by the reflectors 6 and 8, the excited surface acoustic waves can be effectively used to improve the insertion loss. Further, most of the surface acoustic waves incident on the first and second receiving side converters 3 and 5 are converted into electric signals by these converters,
Some surface acoustic waves pass through these transducers. Therefore, the second and fourth converters 7 and 9 are connected to the first and second converters.
Are arranged so as to be adjacent to the transmitting side transducers 3 and 5, respectively, and the surface acoustic waves that have not been converted are reflected toward the receiving side transducers 3 and 5, respectively. In this example, the reflectors are provided in both the transmitter-side converter and the receiver-side converter of the first and second filter stages. However, even if a reflector is provided adjacent to at least one converter, the insertion loss is reduced. It can be further improved.

【0009】図2は第1の送信側変換器2及びこれと隣
接する第1の反射器6の詳細な構成を示す平面図であ
る。第1の送信側変換器2はインタディジタル型の正電
極10及び負電極11と、これら正電極と負電極との間
に形成した短絡型浮き電極12及び13を有する。尚、
図面を明瞭にするため、図1において各電極の対数は2
対で表示したが、通過帯域幅に応じて種々の対数に設定
することができ、例えばディジタル通信用の狭帯域フィ
ルタの場合例えば 200〜400 対に設定することができ
る。正電極10の電極指10a と10b との間のピッチ及び
負電極11の電極指11aと11bとの間のピッチは共に基
本弾性表面波の波長λに等しくなるように設定する。基
本弾性表面波の波長λは、vを水晶基板における弾性表
面波の平均伝播速度とし、fO を中心周波数とした場
合、λ=v/fO となるように設定する。また、正電極
10の電極指と負電極11の電極指との間の中心間距離
はλ/2に設定する。浮き電極12及び13は、それぞ
れ対をなす電極指12a, 12b及び13a, 13bを有し、こ
れら電極指間のピッチはそれぞれλ/2に設定する。正
電極、負電極及び浮き電極の各電極指の弾性表面波の伝
播方向の幅はそれぞれλ/12に設定する。浮き電極12
の一方の電極指12aは正電極10の電極指と10aとλ/
6の中心間距離を以て隣接すると共に負電極11の電極
指11aとλ/3の中心間距離を以て隣接し、他方の電極
指12bは負電極の電極指11aとλ/6の中心間距離を以
て隣接すると共に正電極の電極指10bとλ/3の中心間
距離を以て隣接する。また、浮き電極13の電極指13a
及び13bも浮き電極12の電極指と同様に正電極及び負
電極の電極指とλ/6及びλ/3の中心間距離を以て隣
接する。従って、正電極の電極指、浮き電極の電極指及
び負電極の電極指は、弾性表面波の伝播方向に沿ってλ
/6及びλ/3の中心間距離を以て順次形成されること
になる。このように構成すれば、浮き電極の各電極指12
a, 12b, 13a, 13bは、これらの電極指が隣接する正
電極の電極指と負電極の電極指との間の中間点から弾性
表面波の伝播方向と反対方向にλ/12の距離だけ偏位
し、この結果非対称構造に基く浮き電極による機械的反
射特性を一層有効に利用することができ、励振された弾
性表面波の大部分を図1の右側すなわち受信側変換器に
向けて伝播させることができる。この結果、トランスジ
ューサの一方向性が一層増強され挿入損失を低減するこ
とができる。水晶基板においては、この浮き電極の正電
極の電極指と負電極の電極指の中間点からの偏位量は一
方向性を高める上で極めて重要である。この偏位量につ
いて本発明者が種々の検討をした結果、浮き電極の電極
指の一部が正電極と負電極との間の中間点上に位置する
のでは偏位量が少な過ぎ良好な損失特性が得られないこ
とが判明した。従って、この浮き電極の偏位量は、浮き
電極の弾性表面波の伝播方向側の端縁が中間位置よりも
弾性表面波の伝播方向に見て手前側に位置するように設
定しなければならない。さらに、種々の検討結果より、
浮き電極の電極指の弾性表面波の伝播方向の中心位置
が、正電極と負電極との間の中間位置からほぼ電極指の
幅だけ離間する場合、浮き電極による反射波と正電極及
び負電極によって励振された弾性表面波との間の位相が
互いに整合し、最適な損失特性及び位相特性が得られ
た。
FIG. 2 is a plan view showing a detailed structure of the first transmitting side converter 2 and the first reflector 6 adjacent thereto. The first transmitting-side converter 2 has an interdigital positive electrode 10 and a negative electrode 11, and short-circuit type floating electrodes 12 and 13 formed between the positive electrode and the negative electrode. still,
In order to make the drawing clear, the number of pairs of each electrode is 2 in FIG.
Although shown as a pair, various logarithms can be set according to the pass band width, and for example, in the case of a narrow band filter for digital communication, it can be set to 200 to 400 pairs. The pitch between the electrode fingers 10a and 10b of the positive electrode 10 and the pitch between the electrode fingers 11a and 11b of the negative electrode 11 are both set to be equal to the wavelength λ of the fundamental surface acoustic wave. The wavelength lambda of the fundamental surface acoustic wave, v is the average propagation velocity of the surface acoustic wave in the quartz substrate, when the center frequency f O, is set to be λ = v / f O. Further, the center-to-center distance between the electrode finger of the positive electrode 10 and the electrode finger of the negative electrode 11 is set to λ / 2. The floating electrodes 12 and 13 have paired electrode fingers 12a, 12b and 13a, 13b, respectively, and the pitch between these electrode fingers is set to λ / 2. The width in the propagation direction of the surface acoustic wave of each electrode finger of the positive electrode, the negative electrode and the floating electrode is set to λ / 12. Floating electrode 12
One electrode finger 12a is the electrode finger of the positive electrode 10 and 10a and λ /
6 and the electrode finger 11a of the negative electrode 11 are adjacent to each other with a center distance of λ / 3, and the other electrode finger 12b is adjacent to the electrode finger 11a of the negative electrode with a center distance of λ / 6. In addition, the positive electrode is adjacent to the electrode finger 10b with a center distance of λ / 3. In addition, the electrode finger 13a of the floating electrode 13
Similarly, the electrode fingers of the floating electrode 12 are also adjacent to the electrode fingers of the positive electrode and the negative electrode with a center distance of λ / 6 and λ / 3. Therefore, the electrode finger of the positive electrode, the electrode finger of the floating electrode, and the electrode finger of the negative electrode are λ along the propagation direction of the surface acoustic wave.
They are sequentially formed with the center distances of / 6 and λ / 3. With this configuration, each electrode finger 12 of the floating electrode
a, 12b, 13a, 13b are the distance of λ / 12 from the midpoint between the positive electrode electrode and the negative electrode electrode finger where these electrode fingers are adjacent to each other, in the direction opposite to the surface acoustic wave propagation direction. As a result, the mechanical reflection characteristics of the floating electrode due to the asymmetric structure can be more effectively utilized, and most of the excited surface acoustic wave propagates to the right side of FIG. 1, that is, the receiving side transducer. Can be made. As a result, the unidirectionality of the transducer is further enhanced and the insertion loss can be reduced. In the quartz substrate, the amount of deviation from the intermediate point between the positive electrode electrode finger and the negative electrode electrode finger of the floating electrode is extremely important for enhancing the unidirectionality. As a result of various studies conducted by the present inventor on this deviation amount, it is too small if the electrode fingers of the floating electrode are located at the midpoint between the positive electrode and the negative electrode. It was found that the loss characteristics could not be obtained. Therefore, the displacement amount of the floating electrode must be set so that the edge of the floating electrode on the surface acoustic wave propagation direction side is located closer to the front side than the intermediate position in the surface acoustic wave propagation direction. . Furthermore, from various examination results,
When the center position in the propagation direction of the surface acoustic wave of the electrode finger of the floating electrode is separated from the intermediate position between the positive electrode and the negative electrode by about the width of the electrode finger, the reflected wave by the floating electrode and the positive electrode and the negative electrode The phases of the surface acoustic wave excited by and the surface acoustic waves were matched with each other, and the optimum loss characteristics and phase characteristics were obtained.

【0010】第1の反射器6は第1の送信側変換器2と
λ/2のほぼ整数倍の距離だけ離間して配置する。この
第1の反射器6は、矢印aで示す弾性表面波の主要伝播
方向とは反対向方向に沿って順次電極指6a , 6b , 6c ,
6d , 6e , 6fを有する。本例では、これら電極指6a
〜6fの弾性表面波の伝播方向の幅はλ/4に設定す
る。また、各電極指6a〜6fは、第1の送信側変換器2の
正電極及び負電極の電極指の配列ピッチと等しい配列ピ
ッチで、すなわち弾性表面波の伝播方向に沿ってλ/2
の中心間距離を以て順次形成する。反射器6は、第1の
送信側変換器2で励振され弾性表面波の伝播方向とは反
対の矢印b方向に伝播する弾性表面波に対して高い反射
特性を有しているので入射する弾性表面波の大部分を第
1の送信側変換器2に向けて反射させることができる。
The first reflector 6 is arranged so as to be separated from the first transmitter-side converter 2 by a distance of approximately an integral multiple of λ / 2. The first reflector 6 has electrode fingers 6a, 6b, 6c,
It has 6d, 6e and 6f. In this example, these electrode fingers 6a
The width of the surface acoustic wave of ˜6f in the propagation direction is set to λ / 4. The electrode fingers 6a to 6f have an arrangement pitch equal to the arrangement pitch of the electrode fingers of the positive electrode and the negative electrode of the first transmitter transducer 2, that is, λ / 2 along the surface acoustic wave propagation direction.
Sequentially formed with the distance between the centers of. Since the reflector 6 has a high reflection characteristic with respect to the surface acoustic wave excited by the first transmitting-side converter 2 and propagating in the direction of arrow b opposite to the propagation direction of the surface acoustic wave, the incident elastic force Most of the surface waves can be reflected toward the first transmitter side converter 2.

【0011】図3は第1の受信側変換器と第2の反射器
の詳細な構成を示す線図的平面図である。受信側変換器
3はインタディジタル型の正電極20及び負電極21
と、これら正電極と負電極との間に形成した短絡型浮き
電極22及び23を有する。送信側変換器と同様に、正
電極20の電極指20aと20bとの間のピッチ及び負電極
21の電極指21aと21bとの間とピッチは共に基本弾性
表面波の波長λに等しくなるように設定する。また、正
電極20の電極指と負電極21の電極指との間の中心間
距離はλ/2に設定する。浮き電極22及び23はそれ
ぞれ対をなす電極指22a, 22b及び23a,23bを有し、
これら電極指間のピッチはそれぞれλ/2に設定する。
また、正電極、負電極及び浮き電極の電極指の幅はλ/
12に設定する。浮き電極22及び23の各電極指は、こ
れら電極指が隣接する正電極の電極指と負電極の電極指
との間の中間位置からλ/12の距離だけ弾性表面波の主
要伝播方向に偏位させる。第2の反射器7は受信側変換
器3からλ/2のほぼ整数倍だけ離間して配置する。第
2の反射器7は幅λ/4の電極指 7a〜7 fを有し、こ
れら電極指は出力側変換器4の電極指の配列ピッチに等
しい配列ピッチで、すなわち弾性表面波の伝播方向に沿
ってλ/2の距離を以て順次形成する。前述したよう
に、第2の反射器7は第1の反射器と同様に、矢印aで
示す弾性表面波の伝播方向に沿って入射する弾性表面波
に対して高い反射特性を有するから、出力側変換器7で
ピックアップされずに通過した弾性表面波を第1の受信
側変換器3に向けて強く反射することができる。尚、各
反射器の電極指の数は、変換器及び基板の特性に基いて
適切に設定することができ、例えば変換器の対数が多い
場合は反射器の電極指の数を少なくし、変換器の対数が
少ない場合には反射器の電極指の数を多くするのが好ま
しい。
FIG. 3 is a schematic plan view showing a detailed structure of the first receiving side converter and the second reflector. The receiving side converter 3 includes an interdigital positive electrode 20 and a negative electrode 21.
And short-circuited floating electrodes 22 and 23 formed between the positive electrode and the negative electrode. Similar to the transmitter transducer, the pitch between the electrode fingers 20a and 20b of the positive electrode 20 and the pitch between the electrode fingers 21a and 21b of the negative electrode 21 are both equal to the wavelength λ of the surface acoustic wave. Set to. Further, the center-to-center distance between the electrode finger of the positive electrode 20 and the electrode finger of the negative electrode 21 is set to λ / 2. The floating electrodes 22 and 23 each have a pair of electrode fingers 22a, 22b and 23a, 23b,
The pitch between these electrode fingers is set to λ / 2.
The width of the electrode fingers of the positive electrode, negative electrode, and floating electrode is λ /
Set to 12. Each electrode finger of the floating electrodes 22 and 23 is deviated in the main propagation direction of the surface acoustic wave by a distance of λ / 12 from an intermediate position between the electrode finger of the positive electrode and the electrode finger of the negative electrode to which the electrode fingers are adjacent. Rank The second reflector 7 is arranged so as to be separated from the receiving side converter 3 by an approximately integral multiple of λ / 2. The second reflector 7 has electrode fingers 7a to 7f having a width λ / 4, and these electrode fingers have an array pitch equal to the array pitch of the electrode fingers of the output side transducer 4, that is, the propagation direction of the surface acoustic wave. Are sequentially formed with a distance of λ / 2. As described above, the second reflector 7 has a high reflection characteristic with respect to the surface acoustic wave incident along the propagation direction of the surface acoustic wave indicated by the arrow a, similarly to the first reflector, so that the output Surface acoustic waves that have passed through without being picked up by the side converter 7 can be strongly reflected toward the first receiving side converter 3. The number of electrode fingers of each reflector can be appropriately set based on the characteristics of the converter and the substrate. For example, when the number of pairs of converters is large, the number of electrode fingers of the reflector can be reduced to If the number of pairs of reflectors is small, it is preferable to increase the number of electrode fingers of the reflector.

【0012】本例では、第2フィルタ段の構成は第1の
フィルタ段と同一構成とする。従って、第2フィルタ段
の第2送信側変換器4及び第2受信側変換器5はそれぞ
れ第1のフィルタ段の第1送信側変換器2及び第1受信
側変換器3と同一構造をとり、第2フィルタ段の第3及
び第4反射器8及び9は第1のフィルタ段の反射器6及
び7と同一構造とする。図1に示すように、第1のフィ
ルタ段の送信側変換器2の正電極11を信号入力端子5
0に接続し負電極10は接地する。第1のフィルタ段の
受信側変換器3の負電極20を接地し、正電極21は水
晶基板1上に形成した導体パターン51を介して第2フ
ィルタ段の送信側変換器4の正電極31に接続する。こ
の送信側変換器4の負電極30は接地する。さらに、第
2フィルタ段の受信側変換器5の負電極40を接地し正
電極41は信号出力端子52に接続する。尚導体パター
ン51に所定のインダクタンスを結合してインピーダン
ス整合させることが好ましい。さらに、本例では、第1
のフィルタ段と第2のフィルタ段との間で電磁結合が生
ずるのを防止するためガード電極53及び54を形成す
る。これらガード電極53及び54は、第1段の変換器
と第2段の変換器の間に延在し、さらに送信側変換器と
受信側変換器との間にも延在してそれぞれシールド電極
を構成すると共に、導体パターン51に沿うように形成
する。
In this example, the second filter stage has the same configuration as the first filter stage. Therefore, the second transmitter-side converter 4 and the second receiver-side converter 5 of the second filter stage have the same structure as the first transmitter-side converter 2 and the first receiver-side converter 3 of the first filter stage, respectively. , The third and fourth reflectors 8 and 9 of the second filter stage have the same structure as the reflectors 6 and 7 of the first filter stage. As shown in FIG. 1, the positive electrode 11 of the transmitting side converter 2 of the first filter stage is connected to the signal input terminal 5
0 and the negative electrode 10 is grounded. The negative electrode 20 of the receiving side converter 3 of the first filter stage is grounded, and the positive electrode 21 is the positive electrode 31 of the transmitting side converter 4 of the second filter stage via the conductor pattern 51 formed on the crystal substrate 1. Connect to. The negative electrode 30 of this transmitter 4 is grounded. Further, the negative electrode 40 of the receiving side converter 5 of the second filter stage is grounded and the positive electrode 41 is connected to the signal output terminal 52. It is preferable to combine a predetermined inductance with the conductor pattern 51 for impedance matching. Further, in this example, the first
Guard electrodes 53 and 54 are formed to prevent electromagnetic coupling between the second filter stage and the second filter stage. These guard electrodes 53 and 54 extend between the first-stage converter and the second-stage converter, and also between the transmitting-side converter and the receiving-side converter, respectively. And is formed along the conductor pattern 51.

【0013】濾波されるべき電気信号は信号入力端子5
0及びアース端子を経て第1の送信側変換器に供給す
る。第1の送信側変換器2によって励振された弾性表面
波は矢印a方向に伝播し、第1の受信側変換器3でピッ
クアップされて電気信号に変換される。この電気信号は
第2の送信側変換器4の正電極31に供給され、この第
2の送信側変換器4により励振された弾性波は矢印c方
向に伝播し、第2の受信側変換器5によりピックアップ
されて電気信号に変換され、信号出力端子52から取り
出される。従って、濾波されるべき信号は、2個の直列
接続したフィルタ段によって2回濾波されることにな
る。
The electrical signal to be filtered is the signal input terminal 5
It is supplied to the first transmitting side converter through 0 and the ground terminal. The surface acoustic wave excited by the first transmitting-side converter 2 propagates in the direction of arrow a, is picked up by the first receiving-side converter 3, and is converted into an electric signal. This electric signal is supplied to the positive electrode 31 of the second transmitting-side converter 4, the elastic wave excited by the second transmitting-side converter 4 propagates in the direction of arrow c, and the second receiving-side converter is generated. It is picked up by 5 and converted into an electric signal and taken out from the signal output terminal 52. Therefore, the signal to be filtered will be filtered twice by the two serially connected filter stages.

【0014】次に、送信側及び受信側変換器の挿入損失
について説明する。比較実験に際し、図1〜図3に示す
弾性表面波フィルタ装置の第1のフルィルタ段だけで構
成され、第1のフィルタ段から反射器を除いた構成のも
のと、図4に示す既知の構造の弾性表面波フィルタ装置
を用いた。図4のトランスジューサは、図1に示すトラ
ンスジューサにおいて負電極の電極指11a, 11bと浮き
電極の電極指12b及び13bとの間にλ/12の電極幅の開
放型浮き電極60及び61をそれぞれ配置して短絡型浮
き電極と開放型浮き電極の双方を混在させたものであ
る。これ以外の事項については両者は同一の条件に設定
した。これらの試作品は共に中心周波数f O =150 MHz
に設定され、その特性評価試験の結果を図5に示す。図
5において横軸は周波数を示し、縦軸は減衰度を示す。
図5から明らかなように図1に示す本発明による弾性表
面波フィルタ装置の挿入損失は 5.0dBであり、これに対
して図4に示す混在型のフィルタ装置の挿入損失は 9.8
dBであり、約4.8dB だけ挿入損失を小さくすることがで
きた。この実験結果より、電気機械結合係数の小さい水
晶基板の場合、短絡型浮き電極と開放型浮き電極とを混
在させた構造形態よりも短絡型浮き電極だけを配置した
構造形態の方が挿入損失を一層低減できることが明らか
である。この理由は、以下のように考えられる。水晶基
板の場合、浮き電極による反射係数の符号は短絡型浮き
電極と開放型浮き電極とで互いに同一である。従って、
短絡型浮き電極及び開放型浮き電極の両方を混在させる
と送信側変換器から受信側変換器に向かう方向において
反射波が互いに打ち消し合ってしまい一方向性に難点が
生じ、この結果挿入損失が大きくなってしまう。このた
め、本発明では、水晶基板を用いる場合短絡型浮き電極
又は開放型浮き電極のいずれか一方だけを用いる。
Next, the insertion loss of the transmitter and receiver converters
Will be described. In a comparative experiment, shown in FIGS.
Only the first filter stage of the surface acoustic wave filter device is required.
And the configuration without the reflector from the first filter stage
And a surface acoustic wave filter device having a known structure shown in FIG.
Was used. The transducer of FIG. 4 is the same as the transducer of FIG.
Floating with the electrode fingers 11a and 11b of the negative electrode in the transducer
Open the electrode width of λ / 12 between the electrode fingers 12b and 13b.
Disposing the floating floating electrodes 60 and 61 respectively, the short-circuit floating
It is a mixture of both a floating electrode and an open floating electrode.
It For other matters, both set the same conditions
did. Both of these prototypes have a center frequency f O= 150 MHz
The result of the characteristic evaluation test is shown in FIG. Figure
5, the horizontal axis represents frequency and the vertical axis represents attenuation.
As is apparent from FIG. 5, the elasticity table according to the present invention shown in FIG.
The insertion loss of the surface wave filter device is 5.0 dB.
The insertion loss of the mixed type filter device shown in Fig. 4 is 9.8.
dB, and it is possible to reduce the insertion loss by about 4.8 dB.
Came. From this experimental result, water with a small electromechanical coupling coefficient
In case of crystal substrate, mix short-circuit type floating electrode and open type floating electrode.
Only short-circuited floating electrodes were placed rather than the existing structure
It is clear that the structural form can further reduce insertion loss
Is. The reason for this is considered as follows. Crystal base
In the case of a plate, the sign of the reflection coefficient of the floating electrode is the short-circuit type floating
The electrode and the open type floating electrode are the same. Therefore,
Mix both short-circuited floating electrodes and open-type floating electrodes
And in the direction from the transmitter transducer to the receiver transducer
The reflected waves cancel each other out, which is a unidirectional problem.
As a result, the insertion loss increases. others
Therefore, in the present invention, in the case of using a quartz substrate, a short-circuit type floating electrode
Alternatively, only one of the open type floating electrodes is used.

【0015】次に、各電極の電極幅(電極指の弾性表面
波の伝播方向における幅)について説明する。挿入損失
の要因として、弾性表面波の伝播による損失、電極での
電気抵抗による損失、及び電気回路の不整合によるリタ
ーン損失が考えられる。このうちリターン損失について
は電気回路において電気的な整合を行なうことにより改
善することができる。また、弾性表面波の伝播による損
失は弾性表面波フィルタ装置固有のものである。そこ
で、本発明者は挿入損失と電極における電気抵抗との関
係について検討した。電極における電気抵抗は正及び負
電極の電極幅と密接な関連性があり、電極幅を細くする
程電気抵抗が大きく挿入損失も大きくなることが予想さ
れる。さらに、電極幅と反射効率及び励振効率の関係に
おいても電極幅を細くすると反射効率及び励振効率が低
下することが予測される。図6は電極幅と挿入損失との
関係の実験結果を示すグラフである。本実験に際し、図
1〜図3に示す構成の弾性表面波フィルタ装置の第1の
フィルタ段だけから成り、第1のフィルタ段から反射器
を除いた構造の弾性表面波フィルタ装置について、開口
長(正電極と負電極との電極指が弾性表面波の進行方向
において互いに重り合う長さ)40λと 100λの2種類
のフィルタ装置を用意した。そして、開口長 100λのフ
ィルタ装置について 0.5×λ/12から 1.3×λ/12まで
0.1×λ/12毎に電極幅が増加するフィルタ装置を試作
して特性評価を行ない、開口長40λのフィルタ装置に
ついては 0.6×λ/12から 1.3×λ/12まで 0.1×λ/
12毎に電極幅が増加するフィルタ装置を試作して特性評
価を行なった。図6において、横軸は電極幅(×λ/1
2) を示し、縦軸は減衰量 (dB) を示す。実線は開口長
40λのデータを示し、破線は 100λのデータを示す。
図6から明らかなように、開口長が40λの素子及び 1
00λの素子共に電極幅が増大するに従って挿入損失は低
下している。挿入損失の実用上の基準は6dB以下である
から、この基準を満たすには電極幅は 0.8×λ/12以上
でなければならない。
Next, the electrode width of each electrode (width in the propagation direction of the surface acoustic wave of the electrode finger) will be described. Possible causes of the insertion loss are a loss due to the propagation of surface acoustic waves, a loss due to electric resistance at the electrodes, and a return loss due to mismatch of an electric circuit. Of these, the return loss can be improved by performing electrical matching in an electric circuit. Further, the loss due to the propagation of the surface acoustic wave is unique to the surface acoustic wave filter device. Therefore, the present inventor examined the relationship between the insertion loss and the electrical resistance of the electrode. The electric resistance of the electrodes is closely related to the electrode widths of the positive and negative electrodes, and it is expected that the smaller the electrode width, the larger the electric resistance and the larger the insertion loss. Further, regarding the relationship between the electrode width and the reflection efficiency and the excitation efficiency, it is expected that the reflection efficiency and the excitation efficiency will decrease if the electrode width is made thin. FIG. 6 is a graph showing the experimental results of the relationship between the electrode width and the insertion loss. In this experiment, the aperture length of the surface acoustic wave filter device having only the first filter stage of the surface acoustic wave filter device having the configuration shown in FIGS. (Lengths in which the electrode fingers of the positive electrode and the negative electrode overlap each other in the traveling direction of the surface acoustic wave) Two types of filter devices of 40λ and 100λ were prepared. And from 0.5 × λ / 12 to 1.3 × λ / 12 for a filter device with an aperture length of 100λ
A filter device in which the electrode width increases every 0.1 × λ / 12 was prototyped and the characteristics were evaluated. For a filter device with an aperture length of 40λ, from 0.6 × λ / 12 to 1.3 × λ / 12, 0.1 × λ /
A filter device in which the electrode width increases every 12 was prototyped and its characteristics were evaluated. In FIG. 6, the horizontal axis represents the electrode width (× λ / 1
2) and the vertical axis shows the amount of attenuation (dB). The solid line shows data for an aperture length of 40λ, and the broken line shows data for 100λ.
As can be seen from FIG. 6, an element with an aperture length of 40λ and 1
The insertion loss decreases as the electrode width increases for the 00λ element. Since the practical standard of insertion loss is 6 dB or less, the electrode width must be 0.8 × λ / 12 or more to satisfy this standard.

【0016】一方、電極幅を太くするとGDTが増大す
ると共に周波数特性において波形歪が増大するおそれが
ある。このため、電極幅とGDTとの関係について検討
した。図7は電極幅(×λ/12) とGDT(μ秒)との
関係の実験結果を示す。横軸は電極幅(×λ/12) を示
し、縦軸はGDT(μ秒)を示す。電極幅は太くなるに
つれてGDTも増大している。GDTの実用上のユーザ
仕様基準は 1.0μ秒以下である。従って、図7の結果よ
り、GDTの実用基準を満たすには電極幅は 1.3×λ/
12以下に設定する必要がある。
On the other hand, if the electrode width is increased, the GDT may increase and the waveform distortion in frequency characteristics may increase. Therefore, the relationship between the electrode width and GDT was examined. FIG. 7 shows the experimental results of the relationship between the electrode width (× λ / 12) and GDT (μsec). The horizontal axis represents the electrode width (× λ / 12), and the vertical axis represents the GDT (μsec). The GDT also increases as the electrode width increases. The practical user specification standard of GDT is 1.0 microsecond or less. Therefore, from the result of FIG. 7, in order to satisfy the practical standard of GDT, the electrode width is 1.3 × λ /
Must be set to 12 or less.

【0017】これら挿入損失及びGDTについての検討
結果より、水晶基板上に非対称一方向性トランスジュー
サを形成した弾性表面波フィルタ装置では、電極幅が増
大するに従ってGDTが増大し、電極幅が狭くなるに従
って挿入損失が悪化する特性がある。この実験結果よ
り、ユーザ仕様基準を考慮すると、電極幅dは、0.8 ×
λ/12≦d≦ 1.3×λ/12を満たすように設定すること
が好ましい。従って、本発明のように複数個のフィルタ
段を直列接続する場合でも、挿入損失及びGDTの観点
より正及び負電極並びに浮き電極の電極幅は上述した範
囲に設定することが好ましい。
From the results of examination of these insertion loss and GDT, in the surface acoustic wave filter device in which the asymmetric unidirectional transducer is formed on the quartz substrate, the GDT increases as the electrode width increases, and the electrode width narrows. There is a characteristic that insertion loss deteriorates. From the results of this experiment, considering the user specification standard, the electrode width d is 0.8 ×
It is preferable to set so as to satisfy λ / 12 ≦ d ≦ 1.3 × λ / 12. Therefore, even when a plurality of filter stages are connected in series as in the present invention, it is preferable to set the electrode widths of the positive and negative electrodes and the floating electrode within the above range from the viewpoint of insertion loss and GDT.

【0018】図8は本発明による弾性表面波フィルタ装
置の別の変形例を示す線図的平面図である。尚、図1で
用いた部材と同一の部材には同一の符号を付して説明す
る。本例では送信側変換器の対数と受信側変換器の対数
を相異させる。このように送信側変換器の対数と受信側
変換器の対数を適切に相異させることにより、例えば
4:1に対数を設定することにより1段型のトランスバ
ーサル型のフィルタ装置に比べて全体としての対数を1
/2に減少させても同一の通過帯域幅のフィルタ装置を
実現することができる。さらに、本例では、1個のガー
ド電極55を用いて第1のフィルタ段と第2のフィルタ
段との間並びに送信側変換器と受信側変換器との間で不
所望な電磁結合の発生を防止する。尚、本例では、第1
の受信側変換器と第2の送信側変換器とは、ボンデング
ワイヤ、金リボン又は基板を収納するパッケージに形成
した導体パターンを介して相互接続することができる。
FIG. 8 is a schematic plan view showing another modification of the surface acoustic wave filter device according to the present invention. The same members as those used in FIG. 1 will be described with the same reference numerals. In this example, the logarithm of the transmitter side converter and the logarithm of the receiver side converter are made different. In this way, by appropriately differentiating the logarithm of the transmitter side converter and the logarithm of the receiver side converter, for example, by setting the logarithm to 4: 1, it is possible to improve the overall structure as compared with the one-stage transversal type filter device. Logarithm as 1
Even if it is reduced to / 2, it is possible to realize a filter device having the same pass bandwidth. Further, in this example, one guard electrode 55 is used to generate undesired electromagnetic coupling between the first filter stage and the second filter stage and between the transmitter side converter and the receiver side converter. Prevent. In this example, the first
The receiving-side converter and the second transmitting-side converter can be interconnected via a bonding wire, a gold ribbon, or a conductor pattern formed on a package accommodating the substrate.

【0019】図9は圧電性基板としてLiNbO3基板を用い
る場合に好適な変換器の構成を示す。LiNbO3基板の場
合、全体構成は、水晶基板と同様にに図1又は図8に示
す構造形態とすることができる。一方、LiNbO3基板は、
開放型浮き電極による反射係数は短絡型浮き電極による
反射係数とが互いに反対極性となるため、水晶基板とは
異なり、浮き電極として開放型浮き電極及び短絡型浮き
電極の両方を用いる必要がある。このため、図9に示す
ように、正電極11の電極指及び負電極10の電極板と
隣接するようにλ/6の中心間距離を以て開放型浮き電
極70a , ----- 70d を配置した変換器を用いる。
FIG. 9 shows the structure of a converter suitable when a LiNbO 3 substrate is used as the piezoelectric substrate. In the case of a LiNbO 3 substrate, the entire structure can be the structural form shown in FIG. 1 or FIG. 8 similarly to the crystal substrate. On the other hand, the LiNbO 3 substrate is
Since the reflection coefficient of the open floating electrode has the opposite polarity to the reflection coefficient of the short floating electrode, unlike the quartz substrate, it is necessary to use both the open floating electrode and the short floating electrode as the floating electrode. Therefore, as shown in FIG. 9, the open type floating electrodes 70a, 70d are arranged with a center distance of λ / 6 so as to be adjacent to the electrode fingers of the positive electrode 11 and the electrode plate of the negative electrode 10. The converter is used.

【0020】図10〜図13は反射器の変形例を示す線
図である。反射器の電極指の幅及び配列ピッチは上述し
た例だけに限定されるものではなく、入射してくる弾性
表面波を入射方向とは反対の方向に反射する特性を有す
る反射器であれば種々の形態のものを用いることができ
る。
10 to 13 are diagrams showing modified examples of the reflector. The width and arrangement pitch of the electrode fingers of the reflector are not limited to the above-mentioned examples, and various reflectors having a characteristic of reflecting an incident surface acoustic wave in a direction opposite to the incident direction can be used. The form can be used.

【0021】本発明は上述した実施例だけに限定されず
種々の変形や変更が可能である。例えば、上述した実施
例では、圧電性基板として水晶基板を用いたが、例え
ば、Li2B4O7 のように水晶と同程度の小さい電気機械
結合係数を有する基板材料にも適用することができる。
さらに、水晶基板を用いた実施例では、浮き電極として
短絡型浮き電極だけを用いたが、本発明では反射器を設
けて効率アップを図っているから、浮き電極として開放
型浮き電極だけを用いる電極構造を用いることもでき
る。
The present invention is not limited to the above-described embodiments, and various modifications and changes can be made. For example, in the above-mentioned embodiments, the quartz substrate is used as the piezoelectric substrate, but the present invention can be applied to a substrate material such as Li 2 B 4 O 7 having an electromechanical coupling coefficient as small as that of quartz. it can.
Further, in the embodiment using the quartz substrate, only the short-circuit type floating electrode is used as the floating electrode, but in the present invention, since the reflector is provided to improve the efficiency, only the open type floating electrode is used as the floating electrode. An electrode structure can also be used.

【0022】さらに、本発明は狭帯域フィルタだけでな
く種々の帯域幅の弾性表面波フィルタ装置に適用するこ
とができ、変換器の対数を通過帯域幅に応じて適切に設
定することにより例えば映像回路用の広帯域フィルタ、
移動体通信システム用の狭帯域フィルタ、さらには位相
特性が重視されるディジタル通信用のフィルタ装置にも
適用することができる。
Further, the present invention can be applied not only to a narrow band filter but also to a surface acoustic wave filter device having various bandwidths. For example, by appropriately setting the logarithm of the converter according to the pass bandwidth, for example, an image Wideband filter for circuits,
The present invention can be applied to a narrow band filter for mobile communication systems and further to a filter device for digital communication where phase characteristics are important.

【0023】さらに、フィルタ段は2段だけでなく、3
段又は4段のように多段直列接続した形態とすることも
できる。
Furthermore, the number of filter stages is not limited to two, but three.
It is also possible to adopt a form in which multiple stages are connected in series such as stages or four stages.

【0024】さらに、上述した実施例では、反射器の電
極指の幅をλ/4に設定したが、λ/4以外の太さに設
定することもできる。ただし、λ/4以外の太さの場合
反射率が若干低下するため、電極指の数を多くすること
が好ましい。
Further, in the above-mentioned embodiment, the width of the electrode finger of the reflector is set to λ / 4, but it may be set to a thickness other than λ / 4. However, when the thickness is other than λ / 4, the reflectance is slightly reduced, and therefore it is preferable to increase the number of electrode fingers.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、複
数個の送信側変換器及び受信側変換器を用い、複数個の
フィルタ段を構成し、これらフィルタ段を直列接続する
と共に各フィルタ段の変換器に隣接して反射器を配置
し、送信側変換器から受信側変換器とは反対方向に励振
された弾性表面波を送信側変換器に向けて反射させ、受
信側変換器を通過した弾性表面波を受信側変換器に向け
て反射させているので、帯域外減衰特性が一層改善され
ると共に挿入損失が低減され、この結果損失特性及び帯
域外減衰特性に優れた弾性表面波フィルタ装置を実現す
ることができる。
As described above, according to the present invention, a plurality of transmitting side converters and a plurality of receiving side converters are used to form a plurality of filter stages, and these filter stages are connected in series and each filter is connected. A reflector is arranged adjacent to the stage transducer, and the surface acoustic wave excited from the transmitter side transducer in the opposite direction to the receiver side transducer is reflected toward the transmitter side transducer, and the receiver side transducer is Since the transmitted surface acoustic wave is reflected toward the receiving side transducer, the out-of-band attenuation characteristic is further improved and the insertion loss is reduced. As a result, the surface acoustic wave excellent in the loss characteristic and the out-of-band attenuation characteristic is obtained. A filter device can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明による弾性表面波フィルタ装置の
一例を示す線図的平面図である。
FIG. 1 is a schematic plan view showing an example of a surface acoustic wave filter device according to the present invention.

【図2】図2は送信側変換器及び反射器の詳細な構成を
示す平面図である。
FIG. 2 is a plan view showing a detailed configuration of a transmitter converter and a reflector.

【図3】図3は受信側変換器及び反射器の詳細な構成を
示す平面図である。
FIG. 3 is a plan view showing a detailed configuration of a receiving side converter and a reflector.

【図4】図4は比較実験に用いた弾性表面波フィルタ装
置の構成を示す平面図である。
FIG. 4 is a plan view showing a configuration of a surface acoustic wave filter device used in a comparative experiment.

【図5】図5は変換器の挿入損失特性の比較実験結果を
示すグラフである。
FIG. 5 is a graph showing the results of comparative experiments on the insertion loss characteristics of converters.

【図6】図6は変換器の電極幅と挿入損失との関係を示
すグラフである。
FIG. 6 is a graph showing the relationship between the electrode width of the converter and the insertion loss.

【図7】図7は変換器の電極幅とGDTの関係を示すグ
ラフである。
FIG. 7 is a graph showing the relationship between the electrode width of the converter and GDT.

【図8】図8は本発明による弾性表面波フィルタ装置の
変形例を示す線図的平面図である。
FIG. 8 is a schematic plan view showing a modified example of the surface acoustic wave filter device according to the present invention.

【図9】図9はLiNbO3 基板に好適な変換器の構成を示
す線図である。
FIG. 9 is a diagram showing a configuration of a converter suitable for a LiNbO 3 substrate.

【図10】図10は反射器の変形例を示す線図である。FIG. 10 is a diagram showing a modification of the reflector.

【図11】図11は反射器の変形例を示す線図である。FIG. 11 is a diagram showing a modification of the reflector.

【図12】図12は反射器の変形例を示す線図である。FIG. 12 is a diagram showing a modification of the reflector.

【図13】図13は反射器の変形例を示す線図である。FIG. 13 is a diagram showing a modification of the reflector.

【符号の説明】[Explanation of symbols]

1 圧電性基板 2 第1の送信側変換器 3 第1の受信側変換器 4 第2の送信側変換器 5 第2の受信側変換器 6,7,8,9 反射器 10 , 20 , 30 , 40 負電極(正電極) 11 , 21 , 31 , 41 正電極(負電極) 50 信号入力端子 51 導体パターン 52 信号出力端子 53 , 54 , 55 ガード電極 DESCRIPTION OF SYMBOLS 1 Piezoelectric substrate 2 1st transmitting side converter 3 1st receiving side converter 4 2nd transmitting side converter 5 2nd receiving side converter 6,7,8,9 Reflector 10, 20, 30 , 40 Negative electrode (positive electrode) 11, 21, 31, 41 Positive electrode (negative electrode) 50 Signal input terminal 51 Conductor pattern 52 Signal output terminal 53, 54, 55 Guard electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀尾 保文 愛知県名古屋市瑞穂区白砂町2丁目74番地 ナビシナィ白砂202 (72)発明者 大島 正嗣 愛知県名古屋市天白区表山3丁目150番地 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasufumi Horio 2-74, Shirasuna-cho, Mizuho-ku, Nagoya, Aichi 202 Nabisinai Shirasuna 202 (72) Masatsugu Oshima 3-150, Omoteyama, Tenpaku-ku, Nagoya, Aichi

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧電性基板と、この圧電性基板上に形成
され、相互に直列接続したN(Nは2以上の整数)個の
フィルタ段とを具え、 各フィルタ段が、送信側変換器と、受信側変換器と、こ
れら送信側変換器又は受信側変換器の少なくとも一方の
変換器に隣接するように配置した反射器とを有し、 これら送信側変換器及び受信側変換器が、インタディジ
タル型の正電極及び負電極と、これら正電極と負電極と
の間に配置され、各電極指が隣接する正電極の電極指と
負電極の電極指との間の中間位置から偏位した位置に配
置されている浮き電極とを有し、 各フィルタ段の送信側変換器から対応する受信側変換器
と反対の方向に向けて励振された弾性表面波を前記反射
器により当該送信側変換器に向けて反射させ、送信側変
換器により励振され対応する受信側変換器を通過した弾
性表面波を前記反射器により当該受信側変換器に向けて
反射させるように構成したことを特徴とする弾性表面波
フィルタ装置。
1. A piezoelectric substrate, and N (N is an integer of 2 or more) filter stages formed on the piezoelectric substrate and connected in series with each other, each filter stage being a transmitter transducer. And a receiving side converter, and a reflector arranged so as to be adjacent to at least one of the transmitting side converter or the receiving side converter, and these transmitting side converter and receiving side converter are The interdigital positive electrode and the negative electrode are arranged between the positive electrode and the negative electrode, and each electrode finger is displaced from the intermediate position between the adjacent positive electrode electrode electrode and the negative electrode electrode finger. And a floating electrode disposed at a position where the transmitter side transducer of each filter stage excites a surface acoustic wave excited in a direction opposite to the corresponding receiver side transducer by the reflector. It is reflected toward the transducer and excited by the transmitter transducer A surface acoustic wave filter device, characterized in that the surface acoustic wave passing through the corresponding receiving side transducer is reflected by the reflector toward the receiving side transducer.
【請求項2】 前記フィルタ段とフィルタ段との間にガ
ード電極を配置し、隣接する変換器が相互に電磁結合し
ないように構成したことを特徴とする請求項1に記載の
弾性表面波フィルタ装置。
2. The surface acoustic wave filter according to claim 1, wherein a guard electrode is arranged between the filter stages so that adjacent transducers are not electromagnetically coupled to each other. apparatus.
【請求項3】 前段のフィルタ段の受信側変換器の正電
極と後段のフィルタ段の送信側変換器の正電極とを圧電
性基板上に形成した導体パターンにより電気的に接続
し、この導体パターンの少なくとも一部に沿ってガード
電極を形成したことを特徴とする請求項1又は2に記載
の弾性表面波フィルタ装置。
3. A conductor pattern formed on a piezoelectric substrate to electrically connect the positive electrode of the receiving side converter of the preceding filter stage and the positive electrode of the transmitting side converter of the succeeding filter stage, and this conductor The surface acoustic wave filter device according to claim 1, wherein a guard electrode is formed along at least a part of the pattern.
【請求項4】 前記反射器が、基本弾性表面波の波長を
λとした場合に、λ/2の配列ピッチで形成した複数の
電極指を有することを特徴とする請求項1から3までの
いずれか1項に記載の弾性表面波フィルタ装置。
4. The reflector according to claim 1, wherein the reflector has a plurality of electrode fingers formed at an arrangement pitch of λ / 2, where λ is a wavelength of the surface acoustic wave. The surface acoustic wave filter device according to claim 1.
【請求項5】 前記送信側変換器の電極対数と受信側変
換器の電極対数とを互いに相異させたことを特徴とする
請求項1から4までのいずれか1項に記載の弾性表面波
フィルタ装置。
5. The surface acoustic wave according to claim 1, wherein the number of electrode pairs of the transmitter transducer and the number of electrode pairs of the receiver transducer are different from each other. Filter device.
【請求項6】 前記圧電性基板を水晶または水晶と同程
度の電気機械結合係数を有する圧電性材料で構成し、 前記送信側及び受信側変換器の正電極及び負電極の各電
極指が、基本弾性表面波の波長をλとした場合に、弾性
表面波の伝播方向に沿ってλ/2の中心間距離を以って
交互に形成され、 前記送信側変換器の浮き電極の各電極指が、これらの電
極指と隣接する正電極の電極指と負電極の電極指との間
の中間位置から弾性表面波の伝播方向の手前側にλ/12
の距離だけ離間して位置すると共に、前記受信側変換器
の浮き電極の各電極指が、これら電極指と隣接する正電
極の電極指と負電極の電極指との間の中間位置から弾性
表面波の伝播方向にλ/12の距離だけ離間して位置する
ことを特徴とする請求項1から6までのいずれか1項に
記載の弾性表面波フィルタ装置。
6. The piezoelectric substrate is made of crystal or a piezoelectric material having an electromechanical coupling coefficient similar to that of crystal, and each electrode finger of the positive electrode and the negative electrode of the transmitter-side and receiver-side converters comprises: When the wavelength of the fundamental surface acoustic wave is λ, they are alternately formed along the propagation direction of the surface acoustic wave with a center-to-center distance of λ / 2, and each electrode finger of the floating electrode of the transmitter-side converter is From the intermediate position between the electrode finger of the positive electrode and the electrode finger of the negative electrode adjacent to these electrode fingers to the front side in the propagation direction of the surface acoustic wave by λ / 12.
The electrode fingers of the floating electrode of the receiving-side transducer, which are spaced apart by a distance of, from the intermediate position between the electrode finger of the positive electrode and the electrode finger of the negative electrode adjacent to these electrode fingers are elastic surfaces. The surface acoustic wave filter device according to any one of claims 1 to 6, wherein the surface acoustic wave filter devices are located apart from each other in a wave propagation direction by a distance of λ / 12.
【請求項7】 前記正電極、負電極及び浮き電極の各電
極指の弾性表面波の伝播方向の幅dを、式 【数1】0.8 ×λ/12≦d≦ 1.3×λ/12 を満たすように設定したことを特徴とする請求項6に記
載の弾性表面波フィルタ装置。
7. The width d in the propagation direction of the surface acoustic wave of each electrode finger of the positive electrode, the negative electrode and the floating electrode satisfies the formula: 0.8 × λ / 12 ≦ d ≦ 1.3 × λ / 12 The surface acoustic wave filter device according to claim 6, wherein the surface acoustic wave filter device is set as follows.
JP06210093A 1993-03-22 1993-03-22 Surface acoustic wave filter device Expired - Fee Related JP3307455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06210093A JP3307455B2 (en) 1993-03-22 1993-03-22 Surface acoustic wave filter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06210093A JP3307455B2 (en) 1993-03-22 1993-03-22 Surface acoustic wave filter device

Publications (2)

Publication Number Publication Date
JPH06276048A true JPH06276048A (en) 1994-09-30
JP3307455B2 JP3307455B2 (en) 2002-07-24

Family

ID=13190294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06210093A Expired - Fee Related JP3307455B2 (en) 1993-03-22 1993-03-22 Surface acoustic wave filter device

Country Status (1)

Country Link
JP (1) JP3307455B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850167A (en) * 1995-04-11 1998-12-15 Kinseki, Limited Surface acoustic wave device
JP2012034082A (en) * 2010-07-29 2012-02-16 Japan Radio Co Ltd Surface acoustic wave device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966051A (en) * 1972-10-30 1974-06-26
JPS60123123A (en) * 1983-10-14 1985-07-01 イギリス国 Acoustic converter
JPS6217406A (en) * 1985-07-16 1987-01-26 Sakagami Seisakusho:Kk Cushion seal
JPS6261413A (en) * 1985-09-11 1987-03-18 Toyo Commun Equip Co Ltd Shield pattern for multi-stage connection saw multiplex mode filter
JPH03133209A (en) * 1989-10-19 1991-06-06 Toyo Commun Equip Co Ltd Unidirectional saw filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966051A (en) * 1972-10-30 1974-06-26
JPS60123123A (en) * 1983-10-14 1985-07-01 イギリス国 Acoustic converter
JPS6217406A (en) * 1985-07-16 1987-01-26 Sakagami Seisakusho:Kk Cushion seal
JPS6261413A (en) * 1985-09-11 1987-03-18 Toyo Commun Equip Co Ltd Shield pattern for multi-stage connection saw multiplex mode filter
JPH03133209A (en) * 1989-10-19 1991-06-06 Toyo Commun Equip Co Ltd Unidirectional saw filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850167A (en) * 1995-04-11 1998-12-15 Kinseki, Limited Surface acoustic wave device
JP2012034082A (en) * 2010-07-29 2012-02-16 Japan Radio Co Ltd Surface acoustic wave device

Also Published As

Publication number Publication date
JP3307455B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
US6346864B1 (en) Saw resonator filter and duplexer utilizing SH waves, substrate edge reflection, and sub-interdigital transducer portions
KR100290803B1 (en) Surface acoustic wave device
US7425879B2 (en) Surface acoustic wave filter apparatus and branching filter
KR100317162B1 (en) Transversely Coupled Resonator Type Surface Wave Filter And Longitudinally Coupled Resonator Type Surface Wave Filter
EP1037385B1 (en) Surface acoustic wave filter, duplexer, and communications device
US6771145B2 (en) Surface acoustic wave device
EP1207621B1 (en) Transversal surface acoustic wave filter
US6297713B1 (en) Surface acoustic wave device with split electrodes and outermost electrodes of a different width than the split electrodes
JP3438705B2 (en) Surface wave device and communication device
JPH0563488A (en) Surface acoustic wave transducer
US6600391B2 (en) End surface reflection type surface acoustic wave apparatus utilizing waves with a longitudinal wave or shear vertical wave main component
JP3268179B2 (en) Surface acoustic wave converter and surface acoustic wave filter using this converter
US4365220A (en) Surface wave circuit device
JP3307455B2 (en) Surface acoustic wave filter device
JP3234669B2 (en) Surface acoustic wave filter device
JP3419949B2 (en) Vertically coupled dual mode SAW filter
US6310524B1 (en) Edge reflection type longitudinally coupled saw resonator filter
JP3299438B2 (en) Surface acoustic wave converter and surface acoustic wave device
JP2915735B2 (en) Surface acoustic wave filter device
JPH0766678A (en) Surface acoustic wave filter device
JPH06260873A (en) Surface acoustic wave filter device
JPH05251986A (en) Surface acoustic wave filter
JP4843862B2 (en) Surface acoustic wave device
JP2001185978A (en) Surface acoustic wave filter device
JPH07264001A (en) Surface acoustic wave filter device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees