JPH06275919A - Optical semiconductor device - Google Patents
Optical semiconductor deviceInfo
- Publication number
- JPH06275919A JPH06275919A JP5829093A JP5829093A JPH06275919A JP H06275919 A JPH06275919 A JP H06275919A JP 5829093 A JP5829093 A JP 5829093A JP 5829093 A JP5829093 A JP 5829093A JP H06275919 A JPH06275919 A JP H06275919A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- quantum well
- composition
- barrier layer
- strained quantum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
(57)【要約】
【目的】 光半導体素子に関し、歪量子井戸を成長させ
る際の界面に於ける原子の入り乱れ及び原子の熱的な相
互拡散の両方を低減して、特性が優れた光半導体素子を
実現させようとする。
【構成】 InP基板1上に形成したInGaAsP混
晶からなる量子井戸構造に於ける井戸層のP組成が障壁
層のP組成に比較して大きく、例えば、In0.61Ga
0.39As0.52P0.45障壁層3/In0.91Ga0.09As
0.42P0.56井戸層4/In0.61Ga0.39As0.52P0.45
障壁層5からなっている。
(57) [Abstract] [Purpose] An optical semiconductor device having excellent characteristics by reducing both the disorder of atoms at the interface and the thermal interdiffusion of atoms in the growth of strained quantum wells. I try to realize the device. [Constitution] The P composition of the well layer in the quantum well structure made of InGaAsP mixed crystal formed on the InP substrate 1 is larger than the P composition of the barrier layer, for example, In 0.61 Ga
0.39 As 0.52 P 0.45 Barrier layer 3 / In 0.91 Ga 0.09 As
0.42 P 0.56 Well layer 4 / In 0.61 Ga 0.39 As 0.52 P 0.45
It consists of a barrier layer 5.
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば、活性層に歪量
子井戸を用いたレーザ、或いは、光吸収層に歪量子井戸
を用いたフォト・ダイオードなど歪量子井戸を用いた光
半導体素子の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device using a strained quantum well such as a laser using a strained quantum well for an active layer or a photo diode using a strained quantum well for a light absorption layer. Regarding improvement.
【0002】現在、例えば、大容量光通信システムに於
ける光源として、狭スペクトル線幅で高速動作が可能な
半導体レーザの実現が要求されている。At present, for example, as a light source in a large-capacity optical communication system, it is required to realize a semiconductor laser capable of high-speed operation with a narrow spectrum line width.
【0003】量子井戸レーザは、特にスペクトル線幅の
狭小化に著しい改善効果があり、その理由は、量子サイ
ズ効果に依る状態密度関数の変化及び双極子モーメント
の増大に依る微分利得の増大、発振線幅の低減などに起
因している。Quantum well lasers have a remarkable improvement effect especially in narrowing the spectral line width because the quantum density effect changes the density of states function and the dipole moment increases the differential gain and oscillation. This is due to the reduction of line width.
【0004】歪量子井戸レーザでは、前記量子井戸レー
ザに於ける量子サイズ効果に加え、歪の効果に依って、
遷移確率の増加、或いは、正孔の有効質量の低減を図っ
て低しきい値キャリヤ密度での動作を可能にするデバイ
スであり、今後、これ等の特性を更に向上させることが
必要である。In the strained quantum well laser, in addition to the quantum size effect in the quantum well laser, the strain effect causes
It is a device that can operate at a low threshold carrier density by increasing the transition probability or reducing the effective mass of holes, and it is necessary to further improve these characteristics in the future.
【0005】[0005]
【従来の技術】通常、歪量子井戸構造では、井戸層の歪
を圧縮応力とするか、或いは、引っ張り応力とするか、
また、障壁層の歪を圧縮応力とするか、或いは、引っ張
り応力とするか、更にまた、井戸層と障壁層の何れかに
歪を与えないか、に依って、合計6通りに分類される。2. Description of the Related Art Generally, in a strained quantum well structure, whether the strain of the well layer is a compressive stress or a tensile stress,
Further, depending on whether the strain of the barrier layer is the compressive stress or the tensile stress, and whether the strain is not applied to either the well layer or the barrier layer, there are 6 types in total. .
【0006】この6通りの歪量子井戸構造を歪量子井戸
レーザに対して使い分けるには、低発振しきい値電流
化、大出力化、歪量の増加、長寿命化などの諸特性の何
れを優先させるかに依って選択されている。例えば、井
戸層を面内圧縮歪、障壁層を面内引っ張り歪とした構造
は、出力向上及び歪量増加の点で有利である。In order to properly use these six types of strained quantum well structures for strained quantum well lasers, any of various characteristics such as low oscillation threshold current, high output, increased strain amount, and long life is required. It is selected depending on whether to give priority. For example, a structure in which the well layer has in-plane compressive strain and the barrier layer has in-plane tensile strain is advantageous in terms of improving output and increasing strain amount.
【0007】ところで、化合物半導体を材料とする歪量
子井戸構造には、障壁層と井戸層との界面に於ける構成
原子のミキシングという特有の問題がある。Meanwhile, the strained quantum well structure made of a compound semiconductor has a peculiar problem of mixing constituent atoms at the interface between the barrier layer and the well layer.
【0008】このミキシングは、結晶の気相成長中に生
ずる界面の乱れ、即ち、原子の入り交りに起因して生ず
る凹凸、或いは、歪量子井戸構造形成後の光閉じ込め層
などの作成時に於ける熱的な相互拡散が原因となって生
じ、歪量子井戸レーザに於ける発振波長を変化させた
り、或いは、発振波長の単一性を阻害するなど、特性を
大きく劣化させる。This mixing is a disturbance of the interface that occurs during vapor phase growth of crystals, that is, unevenness caused by the intermingling of atoms, or the formation of an optical confinement layer after the formation of a strained quantum well structure. Caused by thermal mutual diffusion in the strained quantum well laser, the characteristics are greatly deteriorated, such as changing the oscillation wavelength in the strained quantum well laser or inhibiting the unity of the oscillation wavelength.
【0009】この問題を解消する手段としては、例え
ば、InGaAsP混晶半導体を用いた歪量子井戸レー
ザに於いては、障壁層と井戸層とを構成している混晶の
うち、五族原子(AsとP)を共通化、即ち、AsとP
の組成を同じにして、三族原子の組成のみで歪を発生さ
せる提案がなされている。As a means for solving this problem, for example, in a strained quantum well laser using an InGaAsP mixed crystal semiconductor, among the mixed crystals constituting the barrier layer and the well layer, a Group 5 atom ( As and P) are made common, that is, As and P
It has been proposed that the strains be the same and the strain is generated only by the composition of the group III atoms.
【0010】これは、結晶を成長させる際、適当な成長
温度に於いては、五族原子のみの相互拡散が生ずる旨の
この半導体系の特徴を利用し、相互拡散に起因するミキ
シングを抑えようとする技術である。This is because when the crystal is grown, the characteristic of this semiconductor system that the interdiffusion of only the Group 5 atoms occurs at an appropriate growth temperature is used to suppress the mixing caused by the interdiffusion. It is a technology.
【0011】[0011]
【発明が解決しようとする課題】前記説明した相互拡散
に起因するミキシングを抑止する技術に於いては、歪量
子井戸に於ける歪の効果を充分に引き出す為、歪量を大
きくした場合、障壁層と井戸層との界面近傍に加わる歪
を緩和しようとする力の為、結晶の成長中にその界面に
於けるミキシングが高められてしまう旨の問題があっ
た。その極端な例としては、結晶が島状に成長する現象
が挙げられる。In the technique for suppressing the mixing caused by the mutual diffusion described above, in order to sufficiently bring out the effect of the strain in the strained quantum well, when the strain amount is increased, the barrier There is a problem that mixing at the interface between the layers and the well layer is increased during the growth of the crystal due to the force for relaxing the strain applied near the interface. An extreme example is the phenomenon that crystals grow in islands.
【0012】本発明では、歪量子井戸を成長させる際の
界面に於ける原子の入り乱れ及び原子の熱的な相互拡散
の両方を低減して、特性が優れた光半導体素子を実現さ
せようとする。In the present invention, it is intended to realize an optical semiconductor device having excellent characteristics by reducing both the disorder of atoms at the interface and the thermal interdiffusion of atoms at the time of growing a strained quantum well. .
【0013】[0013]
【課題を解決するための手段】本発明は、4元混晶系の
半導体で歪量子井戸を構成する場合、障壁層及び井戸層
に於けるPの組成を適切に制御することが基本になって
いる。In the present invention, when a strained quantum well is composed of a quaternary mixed crystal semiconductor, it is basically necessary to appropriately control the composition of P in the barrier layer and the well layer. ing.
【0014】図1は本発明の原理を解説する為の歪量子
井戸に於けるP組成の深さ方向分布を従来の技術に依る
歪量子井戸と比較して表す線図である。図に於いて、
(A)は本発明に於けるP組成の深さ方向分布、(B)
は第1従来例に於けるP組成の深さ方向分布、(C)は
第2従来例に於けるP組成の深さ方向分布をそれぞれ示
している。FIG. 1 is a diagram showing the depthwise distribution of P composition in a strained quantum well in order to explain the principle of the present invention in comparison with the strained quantum well according to the prior art. In the figure,
(A) is a depth distribution of P composition in the present invention, (B)
Shows the depth distribution of the P composition in the first conventional example, and (C) shows the depth distribution of the P composition in the second conventional example.
【0015】図から明らかなように、本発明に於ける歪
量子井戸に於いては、P組成が障壁層に対して井戸層の
方が大きくなっている。これに対し、従来の技術に依る
歪量子井戸では、P組成が障壁層と井戸層とで同一(五
族組成を共通化)か、或いは、井戸層の方が小さくなっ
ている。P組成について、本発明のようにする理由は、
図2を用いて説明すると良く理解できる。As is clear from the figure, in the strained quantum well of the present invention, the P composition is larger in the well layer than in the barrier layer. On the other hand, in the strained quantum well according to the conventional technology, the P composition is the same in the barrier layer and the well layer (group 5 composition is common), or the well layer is smaller. The reason why the present invention is applied to the P composition is as follows.
This can be better understood by explaining with reference to FIG.
【0016】図2は本発明の原理を解説する為の4元混
晶の組成とエネルギ・バンド・ギャップ及び格子定数の
関係を表す線図である。図に於いて、実線はエネルギ・
バンド・ギャップ、破線は格子定数、□は障壁層、○は
井戸層、A乃至Dは試料の識別記号をそれぞれ示してい
る。尚、太い実線はInPに格子整合させた場合であ
る。FIG. 2 is a diagram showing the relationship among the composition of the quaternary mixed crystal, the energy band gap, and the lattice constant for explaining the principle of the present invention. In the figure, the solid line is energy
A band gap, a broken line indicates a lattice constant, a square indicates a barrier layer, a circle indicates a well layer, and A to D indicate sample identification symbols. The thick solid line shows the case where lattice matching with InP is performed.
【0017】本発明に於いては、図2に見られる□A及
び○Aで示された組成を採用して歪量子井戸を作成する
ものであり、その利点は、他の試料を説明することで明
らかになる。In the present invention, the strained quantum well is prepared by using the compositions shown by □ A and ○ A shown in FIG. 2, and the advantage thereof is that other samples are explained. Will be revealed in.
【0018】図に太い実線で示してあるように、InP
に格子整合する組成を採用して歪量子井戸を形成した場
合、即ち、□D及び○Dで指示した組成の場合、急峻な
界面を作る上では良い結果を得られるが、相互拡散に依
って矢印で示されている方向に組成がずれてしまう。但
し、この場合、相互拡散の進行に伴って生じる歪が相互
拡散自体を抑制するので、その相互拡散は一定以上は進
行しない。As shown by the thick solid line in the figure, InP
When a strained quantum well is formed by adopting a composition that is lattice-matched to, that is, when the composition is designated by □ D and ○ D, good results can be obtained in forming a steep interface, but it depends on mutual diffusion. The composition shifts in the direction indicated by the arrow. However, in this case, since the distortion caused by the progress of the mutual diffusion suppresses the mutual diffusion itself, the mutual diffusion does not proceed beyond a certain level.
【0019】また、□C及び○Cで指示した組成の場
合、従って、五族組成を共通化した場合、相互拡散は抑
止できるのであるが、界面の急峻性は悪くなることが知
られている。Further, in the case of the compositions indicated by □ C and ◯ C, that is, when the Group 5 composition is made common, mutual diffusion can be suppressed, but it is known that the steepness of the interface deteriorates. .
【0020】これに対し、□A及び○Aで示された組成
では、□D及び○Dの組成の場合と□C及び○Cの組成
の場合それぞれに於ける利点のみをバランス良く取り入
れることができるのである。On the other hand, in the compositions indicated by □ A and ◯ A, it is possible to take into account only the advantages of the compositions of □ D and □ D and the compositions of □ C and □ C in a well-balanced manner. You can do it.
【0021】因みに、□A及び○Aで示された組成で
は、障壁層ではInP基板に対して面内引っ張り歪が発
生し、また、井戸層ではInP基板に対して面内圧縮歪
が発生する。Incidentally, in the compositions shown by □ A and ○ A, in-plane tensile strain is generated in the barrier layer with respect to the InP substrate, and in-plane compressive strain is generated with respect to the InP substrate in the well layer. .
【0022】従来、前記面内引っ張り歪及び面内圧縮歪
の関係を実現するには、□B及び○Bで示されているよ
うに、格子整合系の量子井戸の組成を基準に組成をずら
せることが行なわれている。然しながら、その組成で
は、相互拡散に依って歪が緩和される方向に組成が変わ
る為、相互拡散を生じ易い構成なのである。Conventionally, in order to realize the relationship between the in-plane tensile strain and the in-plane compressive strain, as shown by □ B and □ B, the composition is shifted based on the composition of the quantum well of the lattice matching system. Is being done. However, in the composition, the composition changes in the direction in which the strain is relaxed due to the mutual diffusion, so that the structure is likely to cause the mutual diffusion.
【0023】前記したところから、本発明に依る光半導
体素子に於いては、 (1)GaAs或いはInPの化合物半導体基板(例え
ば基板1)上に形成したInGaAsP混晶からなる量
子井戸構造に於ける井戸層(例えば井戸層4)のP組成
が障壁層(例えば障壁層3及び4)のP組成に比較して
大きいことを特徴とするか、或いは、From the above, in the optical semiconductor device according to the present invention, (1) a quantum well structure made of an InGaAsP mixed crystal formed on a compound semiconductor substrate of GaAs or InP (eg, substrate 1) is provided. The P composition of the well layer (for example, the well layer 4) is larger than the P composition of the barrier layer (for example, the barrier layers 3 and 4), or
【0024】(2)前記(1)に於いて、量子井戸構造
に於ける井戸層が面内圧縮歪をもち且つ障壁層が面内引
っ張り歪をもつことを特徴とする。(2) In the above (1), the well layer in the quantum well structure has in-plane compressive strain and the barrier layer has in-plane tensile strain.
【0025】[0025]
【作用】前記手段を採ることに依り、歪量子井戸構造に
於ける障壁層と井戸層との間に相互拡散は発生せず、従
って、半導体歪量子井戸レーザであれば、発振波長が安
定で且つ単色性を高めることが可能となり、スペクトル
線幅の狭小化、高速動作性、低しきい値キャリヤ密度で
の動作性などの面で特性を向上させることができる。By adopting the above-mentioned means, mutual diffusion does not occur between the barrier layer and the well layer in the strained quantum well structure, so that the semiconductor strained quantum well laser has a stable oscillation wavelength. In addition, it is possible to improve monochromaticity, and it is possible to improve the characteristics in terms of narrowing the spectral line width, high-speed operability, operability at low threshold carrier density, and the like.
【0026】[0026]
【実施例】図3は本発明一実施例を解説する為の光半導
体素子に於ける半導体積層構造を表す要部切断側面図で
ある。図に於いて、1は基板、2はバッファ層、3は障
壁層、4は井戸層、5は障壁層、6はキャップ層をそれ
ぞれ示している。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 is a side sectional view showing a main part of a semiconductor laminated structure in an optical semiconductor device for explaining an embodiment of the present invention. In the figure, 1 is a substrate, 2 is a buffer layer, 3 is a barrier layer, 4 is a well layer, 5 is a barrier layer, and 6 is a cap layer.
【0027】ここに示した基板1及び各半導体層に関す
る主要なデータを例示すると次の通りである。 基板1について 材料:InP バッファ層2について 材料:InP 厚さ:500〔nm〕The main data regarding the substrate 1 and each semiconductor layer shown here will be illustrated as follows. Substrate 1 Material: InP Buffer layer 2 Material: InP Thickness: 500 [nm]
【0028】 障壁層3について 材料:In0.61Ga0.39As0.52P0.45 厚さ:8〔nm〕 井戸層4について 材料:In0.91Ga0.09As0.42P0.56 厚さ:6〔nm〕About the barrier layer 3 Material: In 0.61 Ga 0.39 As 0.52 P 0.45 Thickness: 8 [nm] About the well layer 4 Material: In 0.91 Ga 0.09 As 0.42 P 0.56 Thickness: 6 [nm]
【0029】 障壁層5について 障壁層3と同じ キャップ層6について 材料:InP 厚さ:50〔nm〕About Barrier Layer 5 Same as Barrier Layer 3 About Cap Layer 6 Material: InP Thickness: 50 [nm]
【0030】この半導体積層構造を得るには、従来から
多用されている技術を利用して容易に形成することがで
きる。その条件は、例えば、 適用技術:有機金属気相成長(metalorgani
c vapor phase epitaxy:MOV
PE)法 原料ガス:トリメチルインジウム(TMIn:In(C
H3 )3 ) トリエチルガリウム(TEGa:Ga(C2 H5 )3 ) アルシン(AsH3 ) フォスフィン(PH3 ) 成長温度:650〔℃〕 成長速度:1〔μm/時間〕(全半導体層について) とする。尚、各半導体層の成長後、680〔℃〕の温度
で2〔時間〕のアニールを行なった。In order to obtain this semiconductor laminated structure, it is possible to easily form it by using a technique which has been widely used conventionally. The conditions are, for example, applied technology: metalorganic vapor phase epitaxy (metalorgani)
c vapor phase epitaxy: MOV
PE) source gas: trimethylindium (TMIn: In (C
H 3) 3) triethyl gallium (TEGa: Ga (C 2 H 5) 3) arsine (AsH 3), phosphine (PH 3) Growth Temperature: 650 [℃] Growth rate: 1 [[mu] m / Time] (for all semiconductor layers ). After the growth of each semiconductor layer, annealing was performed at a temperature of 680 [° C.] for 2 hours.
【0031】前記実施例は、図2について説明した組成
でいえば、□A及び○Aに相当するものであり、比較の
為、□B及び○B、□C及び○C、□D及び○Dの各組
成をもつ歪量子井戸を作成したので、それについて説明
すると、 □B及び○Bについて 障壁層:In0.78Ga0.22As0.30P0.70 井戸層:In0.74Ga0.26As0.79P0.21 □C及び○Cについて 障壁層:In0.62Ga0.38As0.47P0.53 井戸層:In0.89Ga0.11As0.47P0.53 □D及び○Dについて 障壁層:In0.88Ga0.12As0.28P0.72 井戸層:In0.70Ga0.30As0.68P0.32 であり、この他の成長諸条件は本発明と全く同じにし
た。The above-mentioned examples correspond to □ A and □ A in terms of the composition described with reference to FIG. 2, and for comparison, □ B and □ B, □ C and □ C, □ D and □. Since the strained quantum wells having the respective compositions of D were prepared, the explanation will be given below. For □ B and ○ B, barrier layers: In 0.78 Ga 0.22 As 0.30 P 0.70 well layers: In 0.74 Ga 0.26 As 0.79 P 0.21 □ C and About ○ C Barrier layer: In 0.62 Ga 0.38 As 0.47 P 0.53 Well layer: In 0.89 Ga 0.11 As 0.47 P 0.53 □ D and About ○ D Barrier layer: In 0.88 Ga 0.12 As 0.28 P 0.72 Well layer: In 0.70 Ga 0.30 As 0.68 P 0.32 , and other growth conditions were exactly the same as in the present invention.
【0032】図4は本発明実施例及び従来例に関するフ
ォトルミネセンス(photoluminescenc
e:PL)測定の結果を表す線図である。尚、このデー
タ収集は、試料を液体ヘリウム中に浸漬した状態、即
ち、4.2〔K〕で行なった。FIG. 4 shows the photoluminescence of the embodiment of the present invention and the conventional example.
It is a diagram showing the result of e: PL) measurement. The data collection was performed while the sample was immersed in liquid helium, that is, 4.2 [K].
【0033】図に於いて、(A)は本発明に依る歪量子
井戸、(B)は□B及び○Bの組成をもつ歪量子井戸、
(C)は□C及び○Cの組成をもつ歪量子井戸、(D)
は□D及び○Dの組成をもつ歪量子井戸それぞれに関す
るフォトルミネセンス・ピークを示している。In the figure, (A) is a strained quantum well according to the present invention, (B) is a strained quantum well having a composition of □ B and ◯ B,
(C) is a strained quantum well having a composition of □ C and ○ C, (D)
Shows the photoluminescence peaks for the strained quantum wells having the compositions of □ D and ◯ D, respectively.
【0034】この図に見られる成長直後のフォトルミネ
センス・ピークに於ける半値幅は界面に於ける急峻性を
表す指標となり、また、アニールした後に見られるフォ
トルミネセンス・ピークの移動は熱的安定性を表す指標
となる。The full width at half maximum of the photoluminescence peak immediately after growth shown in this figure serves as an index showing the steepness at the interface, and the movement of the photoluminescence peak observed after annealing is thermal. It is an indicator of stability.
【0035】前記指標からすると、本発明に依って歪量
子井戸レーザを構成した場合、従来の技術に依る歪量子
井戸を用いる場合に比較し、波長が安定で、且つ、単色
性が高いものとなることが看取されよう。From the above-mentioned index, when the strained quantum well laser is constructed according to the present invention, the wavelength is stable and the monochromaticity is high as compared with the case where the strained quantum well laser according to the prior art is used. It will be taken care of.
【0036】[0036]
【発明の効果】本発明に依る光半導体素子に於いては、
GaAs或いはInPの化合物半導体基板上に形成した
InGaAsP混晶からなる量子井戸構造に於ける井戸
層のP組成が障壁層のP組成に比較して大きいことを特
徴とする。In the optical semiconductor device according to the present invention,
It is characterized in that the P composition of the well layer in the quantum well structure made of InGaAsP mixed crystal formed on the compound semiconductor substrate of GaAs or InP is larger than that of the barrier layer.
【0037】前記構成を採ることに依り、歪量子井戸構
造に於ける障壁層と井戸層との間に相互拡散は発生せ
ず、従って、例えば半導体歪量子井戸レーザであれば、
発振波長が安定で且つ単色性を高めることが可能とな
り、スペクトル線幅の狭小化、高速動作性、低しきい値
キャリヤ密度での動作性などの面で特性を向上させるこ
とができる。By adopting the above structure, mutual diffusion does not occur between the barrier layer and the well layer in the strained quantum well structure. Therefore, for example, in the case of a semiconductor strained quantum well laser,
The oscillation wavelength is stable and monochromaticity can be improved, and the characteristics can be improved in terms of narrowing the spectral line width, high-speed operability, and operability at low threshold carrier density.
【図1】本発明の原理を解説する為の歪量子井戸に於け
るP組成の深さ方向分布を従来の技術に依る歪量子井戸
と比較して表す線図である。FIG. 1 is a diagram showing the distribution of P composition in the depth direction in a strained quantum well in comparison with a strained quantum well according to a conventional technique for explaining the principle of the present invention.
【図2】本発明の原理を解説する為の4元混晶の組成と
エネルギ・バンド・ギャップ及び格子定数の関係を表す
線図である。FIG. 2 is a diagram showing a relationship among a composition of a quaternary mixed crystal, an energy band gap, and a lattice constant for explaining the principle of the present invention.
【図3】本発明一実施例を解説する為の光半導体素子に
於ける半導体積層構造を表す要部切断側面図である。FIG. 3 is a cross-sectional side view of essential parts showing a semiconductor laminated structure in an optical semiconductor element for explaining an embodiment of the present invention.
【図4】本発明実施例及び従来例に関するフォトルミネ
センス測定の結果を表す線図である。FIG. 4 is a diagram showing the results of photoluminescence measurement regarding an example of the present invention and a conventional example.
1 基板 2 バッファ層 3 障壁層 4 井戸層 5 障壁層 6 キャップ層 1 substrate 2 buffer layer 3 barrier layer 4 well layer 5 barrier layer 6 cap layer
Claims (2)
上に形成したInGaAsP混晶からなる量子井戸構造
に於ける井戸層のP組成が障壁層のP組成に比較して大
きいことを特徴とする光半導体素子。1. An optical semiconductor, wherein the P composition of a well layer in a quantum well structure made of an InGaAsP mixed crystal formed on a compound semiconductor substrate of GaAs or InP is larger than that of a barrier layer. element.
をもち且つ障壁層が面内引っ張り歪をもつことを特徴と
する請求項1記載の光半導体素子。2. The optical semiconductor device according to claim 1, wherein the well layer in the quantum well structure has in-plane compressive strain and the barrier layer has in-plane tensile strain.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5829093A JPH06275919A (en) | 1993-03-18 | 1993-03-18 | Optical semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5829093A JPH06275919A (en) | 1993-03-18 | 1993-03-18 | Optical semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06275919A true JPH06275919A (en) | 1994-09-30 |
Family
ID=13080081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5829093A Withdrawn JPH06275919A (en) | 1993-03-18 | 1993-03-18 | Optical semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06275919A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001308463A (en) * | 2000-04-27 | 2001-11-02 | Sony Corp | Compound semiconductor device and its manufacturing method and semiconductor light emitting device and its manufacturing method |
-
1993
- 1993-03-18 JP JP5829093A patent/JPH06275919A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001308463A (en) * | 2000-04-27 | 2001-11-02 | Sony Corp | Compound semiconductor device and its manufacturing method and semiconductor light emitting device and its manufacturing method |
JP4560885B2 (en) * | 2000-04-27 | 2010-10-13 | ソニー株式会社 | Compound semiconductor device and manufacturing method thereof, and semiconductor light emitting device and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2724827B2 (en) | Infrared light emitting device | |
JPH0418476B2 (en) | ||
JPS6174327A (en) | superlattice device | |
KR910003465B1 (en) | Optical semiconductor device | |
JPH0821748B2 (en) | Semiconductor laser device | |
US5416884A (en) | Semiconductor waveguide structure of a II-VI group compound | |
JP2969979B2 (en) | Semiconductor structures for optoelectronic components | |
JP2661563B2 (en) | Semiconductor laser | |
JP3768790B2 (en) | Quantum dot structure and semiconductor device apparatus having the same | |
JP4078891B2 (en) | Compound semiconductor epitaxial wafer manufacturing method and compound semiconductor epitaxial wafer | |
JPH06275919A (en) | Optical semiconductor device | |
JP3869641B2 (en) | Semiconductor device and semiconductor laser device | |
JP3582021B2 (en) | Optical semiconductor device | |
EP0003079A1 (en) | Infra red light emissive devices | |
JPH03166785A (en) | Semiconductor laser element | |
JPH0541560A (en) | Semiconductor laser element | |
JPH10190143A (en) | Compressive-strain multiple quantum well structure | |
JPH10242511A (en) | Strained multiple quantum well structure | |
JPH0799370A (en) | Semiconductor optical waveguide | |
JPH08172216A (en) | Manufacture of strained quantum well semiconductor light emitting device | |
JPH0529715A (en) | Semiconductor element having distortion quantum well structure | |
JP3072155B2 (en) | Method for manufacturing semiconductor laser device | |
JP2708750B2 (en) | Method for manufacturing semiconductor device | |
JPS6174385A (en) | Semiconductor laser | |
JPH10256658A (en) | Doped distortion multiple quantum well structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000530 |