JPH06275273A - Nonaqueous secondary battery - Google Patents
Nonaqueous secondary batteryInfo
- Publication number
- JPH06275273A JPH06275273A JP5084132A JP8413293A JPH06275273A JP H06275273 A JPH06275273 A JP H06275273A JP 5084132 A JP5084132 A JP 5084132A JP 8413293 A JP8413293 A JP 8413293A JP H06275273 A JPH06275273 A JP H06275273A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- discharge
- battery
- auxiliary agent
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は非水系二次電池に係わ
り、詳しくはサイクル特性を向上させることを目的とし
た正極活物質の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly to improvement of a positive electrode active material for the purpose of improving cycle characteristics.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
リチウム二次電池等の非水系二次電池が、ニッケル・カ
ドミウム二次電池等の水系二次電池と異なり水の分解電
圧を考慮する必要がないため高電圧設計が可能であるな
どの理由から、脚光を浴びつつある。2. Description of the Related Art In recent years,
Because non-aqueous secondary batteries such as lithium secondary batteries do not need to consider the decomposition voltage of water unlike aqueous secondary batteries such as nickel-cadmium secondary batteries, high voltage design is possible. It is in the spotlight.
【0003】この種の電池の正負各極の材料としては種
々の材料が提案されているが、本発明者らの知得すると
ころによれば、エネルギー密度が高く放電容量が大きい
非水系二次電池を得る上で、負極材料としてはリチウム
イオンを吸蔵放出可能な炭素材料、なかでも格子面(0
02)面のd値(d002 )が3.35〜3.37であっ
て、c軸方向の結晶子の大きさ(Lc)が200Å以上
の黒鉛化度の高い炭素材料が、また正極材料としてはリ
チウムに対して3.5〜4.0Vの高い放電電位を示す
組成式Lix MOy (ただし、MはCo及び/又はNi
若しくはこれらを主成分とする遷移金属、0≦x≦1.
3、1.8≦y≦2.2である。)で表される酸化物が
好ましい。Although various materials have been proposed as materials for the positive and negative electrodes of this type of battery, it is known by the present inventors that the non-aqueous secondary battery has a high energy density and a large discharge capacity. In order to obtain the above, as a negative electrode material, a carbon material capable of inserting and extracting lithium ions, particularly a lattice plane (0
A carbon material having a high graphitization degree of which the d value (d 002 ) of the (02) plane is 3.35 to 3.37 and the crystallite size (Lc) in the c-axis direction is 200 Å or more, and the positive electrode material Is a composition formula Li x MO y (where M is Co and / or Ni) showing a high discharge potential of 3.5 to 4.0 V with respect to lithium.
Alternatively, a transition metal containing these as main components, 0 ≦ x ≦ 1.
3, 1.8 ≦ y ≦ 2.2. An oxide represented by the formula (1) is preferable.
【0004】しかしながら、黒鉛化度の高い炭素材料を
負極に、また上記Lix MOy を正極に使用した非水系
二次電池においては、正負両極の充放電効率が概ね等し
く、放電末期に両極の電位が時期を同じくして急激に変
化する。However, in a non-aqueous secondary battery in which a carbon material having a high degree of graphitization is used as the negative electrode and the above Li x MO y is used as the positive electrode, the charge and discharge efficiencies of the positive and negative electrodes are approximately the same, and at the end of discharge, The electric potential changes rapidly at the same time.
【0005】図4は、放電時の正負各極の電位の経時的
変化(放電特性)を、縦軸に正極電位又は負極電位(V
vs.Li/Li+ )を、横軸に時間(容量)をとって示
したグラフである。同図に示すように、放電末期になる
と、負極(天然黒鉛)の電位は急上昇し、また正極(L
iCoO2 又はLiNiO2 )の電位は急降下する。そ
して、正極のリチウムに対する放電電位が約1Vになる
と理由は定かでないが電解液の分解が始まる。FIG. 4 shows the time-dependent change in the potential of each of the positive and negative electrodes during discharge (discharge characteristics), with the positive electrode potential or the negative electrode potential (V
vs. Li / Li + ) is a graph showing time (capacity) on the horizontal axis. As shown in the figure, at the end of discharge, the potential of the negative electrode (natural graphite) rises sharply and the positive electrode (L
The potential of iCoO 2 or LiNiO 2 ) drops sharply. Then, when the discharge potential of the positive electrode with respect to lithium becomes about 1 V, decomposition of the electrolytic solution starts, although the reason is not clear.
【0006】ところで、通常の機器においては、電池は
2本直列で使用され、5.5V以下(すなわちセル電圧
2.75V以下)になると機器の作動が停止するので、
理論上は、リチウムに対する正極の放電電位が電解液の
分解電圧たる1V以下にまで降下することはない。By the way, in a normal device, two batteries are used in series, and the operation of the device is stopped when the voltage becomes 5.5 V or less (that is, the cell voltage is 2.75 V or less).
Theoretically, the discharge potential of the positive electrode with respect to lithium does not drop below 1 V, which is the decomposition voltage of the electrolytic solution.
【0007】しかしながら、実際は、正極における電極
反応が不均一であるため、放電末期においては電位が1
V又はそれ以下となる箇所が部分的に存在し、その箇所
では電解液の分解が起こることになる。このため、上記
の非水系二次電池には、放電末期の電解液の分解に起因
してサイクル特性が良くないという問題があることが分
かった。However, in reality, since the electrode reaction in the positive electrode is non-uniform, the potential is 1 at the end of discharge.
There is a portion of V or less, and the electrolytic solution is decomposed at that portion. Therefore, it has been found that the above non-aqueous secondary battery has a problem that the cycle characteristics are not good due to the decomposition of the electrolytic solution at the end of discharge.
【0008】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、放電末期に
正極側で電解液の分解が起こらない、サイクル特性に優
れた非水系二次電池を提供するにある。The present invention has been made to solve this problem, and its purpose is to prevent non-aqueous secondary electrolyte having excellent cycle characteristics, in which decomposition of the electrolytic solution does not occur on the positive electrode side at the end of discharge. To provide batteries.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系二次電池(以下、「本発明電池」
と称する。)は、負極に格子面(002)面のd値(d
002 )が3.35〜3.37Åであって、c軸方向の結
晶子の大きさ(Lc)が200Å以上であるリチウムイ
オンを吸蔵放出可能な炭素材料が使用されてなる非水系
二次電池において、正極活物質として、組成式Lix M
Oy (ただし、MはCo及び/又はNi若しくはこれら
を主成分とする遷移金属、0≦x≦1.3、1.8≦y
≦2.2である。)で表される活物質からなる主剤と、
リチウムに対する放電電位が1.4〜3.5Vである活
物質からなる副剤との混合物が使用されてなる。A non-aqueous secondary battery according to the present invention (hereinafter, referred to as "the battery of the present invention") for achieving the above object.
Called. ) Is the d value (d) of the lattice plane (002) plane on the negative electrode.
002 ) is 3.35 to 3.37Å, and the size of the crystallite in the c-axis direction (Lc) is 200Å or more and is a non-aqueous secondary battery made of a carbon material capable of inserting and extracting lithium ions. In the above, as the positive electrode active material, the composition formula Li x M
O y (where M is Co and / or Ni or a transition metal containing these as main components, 0 ≦ x ≦ 1.3, 1.8 ≦ y
≦ 2.2. ) And a main ingredient consisting of an active material,
A mixture with an auxiliary agent composed of an active material having a discharge potential of 1.4 to 3.5 V with respect to lithium is used.
【0010】本発明電池は、正極における反応が不均一
となりがちな黒鉛化度の高い炭素材料が負極に使用され
た非水系二次電池が有していた放電末期における電解液
の分解、それに伴うサイクル特性の劣化を、上記の主剤
と副剤との混合物を正極活物質として使用することによ
り解決したものである。In the battery of the present invention, the electrolytic solution is decomposed at the end of discharge, which is possessed by the non-aqueous secondary battery in which the carbon material having a high degree of graphitization, which tends to make the reaction in the positive electrode uneven, is used in the negative electrode. The deterioration of cycle characteristics is solved by using a mixture of the above-mentioned main agent and auxiliary agent as a positive electrode active material.
【0011】すなわち、本発明電池は、リチウムに対す
る放電電位が1.4〜3.5Vの放電末期(すなわち低
電位領域)において放電可能な副剤を主剤に添加するこ
とにより、主剤が容量を無くす放電末期に正極電位が急
激に降下することがないようにしたものである。That is, in the battery of the present invention, the main agent loses its capacity by adding an auxiliary agent which can be discharged at the end of discharge (that is, a low potential region) at a discharge potential of 1.4 to 3.5 V to lithium, to the main agent. It is designed so that the positive electrode potential does not drop sharply at the end of discharge.
【0012】主剤としては、LiCoO2 、LiNiO
2 、LiCo1-a Nia O2 (0<a<1)及びこれら
複合酸化物のCo及び/又はNiの一部を他の遷移金属
で置換したものが例示される。The main components are LiCoO 2 and LiNiO
2 , LiCo 1-a Ni a O 2 (0 <a <1) and those obtained by substituting a part of Co and / or Ni of these composite oxides with another transition metal are exemplified.
【0013】副剤としては、リチウムに対して1.4〜
3.5Vの放電電位を有するために正極が低電位となる
放電末期において放電することが可能な活物質であれば
特に制限されない。かかる活物質の好適な具体例として
は、リチウム含有マンガン酸化物、V2 O5 、Ti
S2 、MoS2 、MoO3 が挙げられる。これらの活物
質は、一種単独を使用してもよく、また二種以上を混合
使用してもよい。As an auxiliary agent, it is 1.4 to 1.4 with respect to lithium.
The active material is not particularly limited as long as it has a discharge potential of 3.5 V and can discharge at the end of discharge when the positive electrode has a low potential. Preferable specific examples of such an active material include lithium-containing manganese oxide, V 2 O 5 , and Ti.
S 2, MoS 2, MoO 3 and the like. These active materials may be used alone or in combination of two or more.
【0014】主剤と副剤との好適な配合比率は、主剤5
0〜99モル%、副剤50〜1モル%、より好適な両剤
の配合割合は、主剤70〜95モル%、副剤30〜5モ
ル%である。副剤の添加量が過剰になると、放電容量が
低下するので好ましくない。A suitable mixing ratio of the main agent and the auxiliary agent is as follows.
0 to 99 mol%, the auxiliary agent 50 to 1 mol%, and a more preferable compounding ratio of both agents is 70 to 95 mol% of the main agent and 30 to 5 mol% of the auxiliary agent. If the amount of the auxiliary agent added is excessive, the discharge capacity decreases, which is not preferable.
【0015】本発明電池は、上述した如く、負極に黒鉛
化度の高い炭素材料が使用された非水系二次電池の正極
活物質として、主剤に特定の副剤を添加してなる混合物
を使用した点に最大の特徴を有する。それゆえ、本発明
電池を構成する電解液等の他の部材については特に制限
されず、非水系二次電池用として従来使用され、或いは
提案されている種々の材料を制限無く使用することが可
能である。In the battery of the present invention, as described above, a mixture obtained by adding a specific auxiliary agent to the main agent is used as the positive electrode active material of a non-aqueous secondary battery in which a carbon material having a high degree of graphitization is used for the negative electrode. The greatest feature is the point. Therefore, other members such as the electrolytic solution constituting the battery of the present invention are not particularly limited, and various materials conventionally used for non-aqueous secondary batteries or proposed various materials can be used without limitation. Is.
【0016】たとえば、電解液としては、プロピレンカ
ーボネート、エチレンカーボネート、ビニレンカーボネ
ートなどの有機溶媒や、これらとジメチルカーボネー
ト、ジエチルカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、エトキシメトキシエタ
ンなどの低沸点溶媒との混合溶媒に、LiPF6 、Li
ClO4 、LiCF3 SO3 などの電解液溶質を0.7
〜1.5M(モル/リットル)、就中1Mの割合で溶か
した溶液が例示される。For example, the electrolytic solution may be an organic solvent such as propylene carbonate, ethylene carbonate or vinylene carbonate, or dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane or ethoxymethoxyethane. In a mixed solvent with a low boiling point solvent such as LiPF 6 , Li
Electrolyte solutes such as ClO 4 and LiCF 3 SO 3 are added to 0.7
An example is a solution dissolved at a ratio of up to 1.5 M (mol / liter), especially 1 M.
【0017】[0017]
【作用】本発明電池においては、放電末期の低電位領域
において放電可能な副剤が正極活物質中に添加されてい
るので、従来問題となっていた放電末期における電解液
の分解が起こらない。In the battery of the present invention, since the auxiliary agent that can be discharged in the low potential region at the end of discharge is added to the positive electrode active material, decomposition of the electrolytic solution at the end of discharge, which has been a problem in the past, does not occur.
【0018】[0018]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.
【0019】(実施例1)扁平型の非水系二次電池(本
発明電池)を作製した。Example 1 A flat type non-aqueous secondary battery (the battery of the present invention) was produced.
【0020】〔正極の作製〕主剤としてのLiCoO2
と、副剤としてのリチウム含有マンガン酸化物とのモル
比9:1の混合物80重量部に、導電剤としての炭素粉
末10重量部と、結着剤としてのポリフッ化ビニリデン
(PVdF)10重量部とを混練して、正極合剤を作製
した。上記LiCoO2 は、Li2 CO3 とCo3 O4
とのモル比3:2の混合物を850°Cで20時間焼成
して得たものであり、また上記リチウム含有マンガン酸
化物は、LiOHとMnO2 とのモル比3:7の混合物
を375°Cで20時間焼成して得たものである。次い
で、上記正極合剤を成形圧2トン/cm2 で加圧成形し
た後、250°Cで加熱処理して、円板状の正極を作製
した。なお、正極集電体として、ステンレス鋼板(SU
S304)を使用した。[Preparation of Positive Electrode] LiCoO 2 as a main component
And 80 parts by weight of a mixture of lithium-containing manganese oxide as a side agent in a molar ratio of 9: 1, 10 parts by weight of carbon powder as a conductive agent, and 10 parts by weight of polyvinylidene fluoride (PVdF) as a binder. And were kneaded to prepare a positive electrode mixture. The above LiCoO 2 is Li 2 CO 3 and Co 3 O 4
Is obtained by calcining a mixture having a molar ratio of 3: 2 with 850 ° C. for 20 hours, and the lithium-containing manganese oxide is a mixture of LiOH and MnO 2 having a molar ratio of 3: 7 at 375 °. It was obtained by firing at C for 20 hours. Next, the positive electrode mixture was pressure-molded at a molding pressure of 2 ton / cm 2 and then heat-treated at 250 ° C. to prepare a disk-shaped positive electrode. As the positive electrode current collector, a stainless steel plate (SU
S304) was used.
【0021】〔負極の作製〕天然黒鉛(d002 =3.3
54Å;Lc=1000Å)95重量部とPVdF5重
量部との混練物を、成形圧2トン/cm2 で加圧成形し
た後、250°Cで加熱処理して、円板状の負極を作製
した。なお、負極集電体として、ステンレス鋼板(SU
S304)を使用した。[Preparation of Negative Electrode] Natural graphite (d 002 = 3.3)
54 Å; Lc = 1000 Å) A kneaded product of 95 parts by weight of PVdF and 5 parts by weight of PVdF was pressure-molded at a molding pressure of 2 ton / cm 2 and then heat-treated at 250 ° C. to prepare a disk-shaped negative electrode. . As the negative electrode current collector, a stainless steel plate (SU
S304) was used.
【0022】〔電解液の調製〕エチレンカーボネート
(EC)に、LiPF6 を1Mの割合で溶かして非水系
電解液を調製した。[Preparation of Electrolyte Solution] LiPF 6 was dissolved in ethylene carbonate (EC) at a ratio of 1 M to prepare a non-aqueous electrolyte solution.
【0023】〔電池の作製〕以上の正負両極及び電解液
を用いて扁平型の本発明電池BA1(電池寸法:直径2
0mm、厚み:1.6mm)を作製した。セパレータと
しては、ポリプロピレン製の微多孔膜(ポリプラスチッ
クス社製、商品名「セルガード」)を使用し、これに先
に述べた電解液を含浸させた。[Production of Battery] A flat type battery BA1 of the present invention (battery size: diameter 2
0 mm, thickness: 1.6 mm) was produced. As the separator, a polypropylene microporous film (manufactured by Polyplastics Co., trade name “Celguard”) was used and impregnated with the electrolytic solution described above.
【0024】図1は作製した本発明電池BA1を模式的
に示す断面図であり、同図に示す本発明電池BA1は、
正極1、負極2、これら両電極1,2を互いに離間する
セパレータ3、正極缶4、負極缶5、正極集電体6、負
極集電体7及びポリプロピレン製の絶縁パッキング8な
どからなる。FIG. 1 is a cross-sectional view schematically showing the produced battery BA1 of the present invention. The battery BA1 of the present invention shown in FIG.
It comprises a positive electrode 1, a negative electrode 2, a separator 3 separating these electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7 and an insulating packing 8 made of polypropylene.
【0025】正極1及び負極2は、非水系電解液を含浸
したセパレータ3を介して対向して正負両極缶4、5が
形成する電池ケース内に収容されており、正極1は正極
集電体6を介して正極缶4に、また負極2は負極集電体
7を介して負極缶5に接続され、電池内部で生じた化学
エネルギーを正極缶4及び負極缶5の両端子から電気エ
ネルギーとして外部へ取り出し得るようになっている。The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative bipolar cans 4 and 5 facing each other with a separator 3 impregnated with a non-aqueous electrolytic solution interposed therebetween. The positive electrode 1 is a positive electrode current collector. 6, and the negative electrode 2 is connected to the negative electrode can 5 via the negative electrode current collector 7 and the chemical energy generated inside the battery is converted into electrical energy from both terminals of the positive electrode can 4 and the negative electrode can 5. It can be taken out.
【0026】(実施例2)LiCoO2 と実施例1で使
用したものと同じリチウム含有マンガン酸化物とのモル
比79.2:0.8の混合物80重量部に、導電剤とし
ての炭素粉末10重量部と、結着剤としてのPVdF1
0重量部とを混練して、正極合剤を作製した。次いで、
この正極合剤を使用したこと以外は実施例1と同様にし
て、本発明電池BA2を作製した。(Example 2) 80 parts by weight of a mixture of LiCoO 2 and the same lithium-containing manganese oxide as that used in Example 1 in a molar ratio of 79.2: 0.8 was mixed with carbon powder 10 as a conductive agent. Parts by weight and PVdF1 as a binder
0 parts by weight was kneaded to prepare a positive electrode mixture. Then
A battery BA2 of the present invention was produced in the same manner as in Example 1 except that this positive electrode mixture was used.
【0027】(実施例3)LiCoO2 と実施例1で使
用したものと同じリチウム含有マンガン酸化物とのモル
比1:1の混合物80重量部に、導電剤としての炭素粉
末10重量部と、結着剤としてのPVdF10重量部と
を混練して、正極合剤を作製した。次いで、この正極合
剤を使用したこと以外は実施例1と同様にして、本発明
電池BA3を作製した。(Example 3) 80 parts by weight of a mixture of LiCoO 2 and the same lithium-containing manganese oxide as that used in Example 1 in a molar ratio of 1: 1, 10 parts by weight of carbon powder as a conductive agent, 10 parts by weight of PVdF as a binder was kneaded to prepare a positive electrode mixture. Then, a battery BA3 of the invention was produced in the same manner as in Example 1 except that this positive electrode mixture was used.
【0028】(比較例)LiCoO2 80重量部に、導
電剤としての炭素粉末10重量部と、結着剤としてのP
VdF10重量部とを混練して、正極合剤を作製した。
次いで、この正極合剤を使用したこと以外は実施例1と
同様にして、比較電池BC1を作製した。(Comparative Example) 80 parts by weight of LiCoO 2, 10 parts by weight of carbon powder as a conductive agent, and P as a binder.
10 parts by weight of VdF was kneaded to prepare a positive electrode mixture.
Next, a comparative battery BC1 was produced in the same manner as in Example 1 except that this positive electrode mixture was used.
【0029】〔電極電位の変化〕本発明電池BA1につ
いて、室温(25°C)下、3mAで充電終止電圧4.
1Vまで充電した後、3mAで放電終止電圧2.75V
まで放電したときの正負両極の電位の経時的変化を調べ
た。結果を図2に示す。[Change in Electrode Potential] With respect to the battery BA1 of the present invention, at the room temperature (25 ° C.) and 3 mA, the final charging voltage was 4.
After charging to 1V, discharge end voltage 2.75V at 3mA
The change with time of the potentials of the positive and negative electrodes when discharged up to. The results are shown in Figure 2.
【0030】図2は、放電時の正負各極の電位の経時的
変化(放電特性)を、縦軸に各極の電位(V vs.Li/
Li+ )を、また横軸に時間(容量)をとって示したグ
ラフであり、同図に示すように本発明電池BA1では、
放電末期においても正極電位が急激に低下することがな
いことが分かる。FIG. 2 shows the time-dependent changes in the potentials of the positive and negative poles during discharge (discharge characteristics), and the vertical axis represents the potential of each pole (V vs. Li /
Is a graph showing Li + ) and time (capacity) on the horizontal axis. As shown in FIG.
It can be seen that the positive electrode potential does not drop sharply even at the end of discharge.
【0031】〔サイクル特性)各電池について、室温
(25°C)下、3mAで充電終止電圧4.1Vまで充
電した後、3mAで放電終止電圧2.75Vまで放電す
る工程を1サイクルとするサイクル試験を行い、各電池
のサイクル特性を評価した。結果を図3に示す。[Cycling Characteristics] For each battery, at room temperature (25 ° C.), the process of charging at 3 mA to the end-of-charge voltage of 4.1 V and then discharging at 3 mA to the end-of-discharge voltage of 2.75 V is one cycle. A test was conducted to evaluate the cycle characteristics of each battery. The results are shown in Fig. 3.
【0032】図3は、各電池のサイクル特性を、縦軸に
放電容量(mAh)を、また横軸にサイクル数(回)を
とって示したグラフであり、同図に示すように本発明電
池BA1〜BA3は、比較電池BC1に比し、放電末期
における電解液の分解が起こらないためサイクル特性に
優れていることが分かる。FIG. 3 is a graph showing the cycle characteristics of each battery, in which the vertical axis represents the discharge capacity (mAh) and the horizontal axis represents the number of cycles (times). As shown in FIG. It can be seen that the batteries BA1 to BA3 are superior to the comparative battery BC1 in cycle characteristics because decomposition of the electrolytic solution at the end of discharge does not occur.
【0033】叙上の実施例では、本発明を扁平型の非水
系二次電池に適用する場合を例に挙げて説明したが、電
池の形状は特に限定されず、円筒型、角型など種々の形
状の非水系二次電池に適用し得るものである。In the above embodiments, the case where the present invention is applied to the flat type non-aqueous secondary battery has been described as an example, but the shape of the battery is not particularly limited, and various types such as a cylindrical type and a square type are used. It can be applied to a non-aqueous secondary battery having the above shape.
【0034】また、実施例では、副剤としてリチウム含
有マンガン酸化物を使用した電池を例に挙げて説明した
が、リチウムに対する放電電位が1.4〜3.5Vであ
るV2 O5 、TiS2 、MoS2 、MoO3 などを使用
した場合についても同様の結果が得られる。In the examples, a battery using a lithium-containing manganese oxide as an auxiliary agent has been described as an example, but V 2 O 5 , TiS having a discharge potential of 1.4 to 3.5 V with respect to lithium is used. Similar results are obtained when 2 , 2 , MoS 2 , MoO 3 or the like is used.
【0035】[0035]
【発明の効果】本発明電池は放電末期に電解液の分解が
起こらないのでサイクル特性に優れるなど、本発明は優
れた特有の効果を奏する。INDUSTRIAL APPLICABILITY The battery of the present invention has excellent cycle characteristics because the electrolyte does not decompose at the end of discharge and thus has excellent cycle characteristics.
【図1】扁平型の本発明電池の断面図である。FIG. 1 is a cross-sectional view of a flat type battery of the present invention.
【図2】実施例1で作製した本発明電池BA1の放電時
の正負各極の電位の経時的変化を示すグラフである。FIG. 2 is a graph showing changes over time in the potentials of the positive and negative electrodes during discharge of the battery BA1 of the present invention manufactured in Example 1.
【図3】実施例1〜3及び比較例で作製した各電池のサ
イクル特性を示すグラフである。FIG. 3 is a graph showing cycle characteristics of each battery manufactured in Examples 1 to 3 and Comparative Example.
【図4】従来電池の放電時の正負各極の電位の経時的変
化を示すグラフである。FIG. 4 is a graph showing changes over time in the potentials of the positive and negative electrodes during discharge of a conventional battery.
BA1 本発明電池 1 正極 2 負極 3 セパレータ BA1 Inventive battery 1 Positive electrode 2 Negative electrode 3 Separator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nishio 2-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Denki Within the corporation
Claims (3)
(d002 )が3.35〜3.37Åであって、c軸方向
の結晶子の大きさ(Lc)が200Å以上であるリチウ
ムイオンを吸蔵放出可能な炭素材料が使用されてなる非
水系二次電池において、正極活物質として、組成式Li
x MOy (ただし、MはCo及び/又はNi若しくはこ
れらを主成分とする遷移金属、0≦x≦1.3、1.8
≦y≦2.2である。)で表される活物質からなる主剤
と、リチウムに対する放電電位が1.4〜3.5Vであ
る活物質からなる副剤との混合物が使用されていること
を特徴とする非水系二次電池。1. Lithium having a lattice plane (002) plane d value (d 002 ) of 3.35-3.37 Å and a crystallite size (Lc) in the c-axis direction of 200 Å or more in the negative electrode. In a non-aqueous secondary battery using a carbon material capable of occluding and releasing ions, the composition formula Li is used as the positive electrode active material.
x MO y (where M is Co and / or Ni or a transition metal containing these as main components, 0 ≦ x ≦ 1.3, 1.8
≦ y ≦ 2.2. ) A non-aqueous secondary battery characterized in that a mixture of a main agent composed of an active material represented by (4) and an auxiliary material composed of an active material having a discharge potential of 1.4 to 3.5 V with respect to lithium is used. .
と前記副剤50〜1モル%とからなる請求項1記載の非
水系二次電池。2. The mixture contains 50 to 99 mol% of the main agent.
The non-aqueous secondary battery according to claim 1, which comprises 50 to 1 mol% of the auxiliary agent.
物、V2 O5 、TiS2 、MoS2 及びMoO3 よりな
る群から選ばれた少なくとも一種の活物質である請求項
1又は2記載の非水系二次電池。3. The auxiliary agent according to claim 1, which is at least one active material selected from the group consisting of lithium-containing manganese oxide, V 2 O 5 , TiS 2 , MoS 2 and MoO 3 . Non-aqueous secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5084132A JPH06275273A (en) | 1993-03-17 | 1993-03-17 | Nonaqueous secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5084132A JPH06275273A (en) | 1993-03-17 | 1993-03-17 | Nonaqueous secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06275273A true JPH06275273A (en) | 1994-09-30 |
Family
ID=13821982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5084132A Pending JPH06275273A (en) | 1993-03-17 | 1993-03-17 | Nonaqueous secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06275273A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0845498A (en) * | 1994-05-26 | 1996-02-16 | Sony Corp | Nonaqueous electrolytic liquid secondary battery |
JP2000106174A (en) * | 1998-09-30 | 2000-04-11 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP2001283852A (en) * | 2000-04-03 | 2001-10-12 | Japan Storage Battery Co Ltd | Positive active material for nonaqueous electrolyte secondary battery |
JP2002170567A (en) * | 2000-12-04 | 2002-06-14 | Sony Corp | Nonaqueous electrolyte cell |
JP2008532221A (en) * | 2005-02-23 | 2008-08-14 | エルジー・ケム・リミテッド | Secondary battery with improved lithium ion mobility and battery capacity |
JP2011108505A (en) * | 2009-11-18 | 2011-06-02 | Toyota Motor Corp | Lithium ion secondary battery |
-
1993
- 1993-03-17 JP JP5084132A patent/JPH06275273A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0845498A (en) * | 1994-05-26 | 1996-02-16 | Sony Corp | Nonaqueous electrolytic liquid secondary battery |
JP2000106174A (en) * | 1998-09-30 | 2000-04-11 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP2001283852A (en) * | 2000-04-03 | 2001-10-12 | Japan Storage Battery Co Ltd | Positive active material for nonaqueous electrolyte secondary battery |
JP2002170567A (en) * | 2000-12-04 | 2002-06-14 | Sony Corp | Nonaqueous electrolyte cell |
JP2008532221A (en) * | 2005-02-23 | 2008-08-14 | エルジー・ケム・リミテッド | Secondary battery with improved lithium ion mobility and battery capacity |
JP2011181528A (en) * | 2005-02-23 | 2011-09-15 | Lg Chem Ltd | Secondary battery in which lithium ion mobility and battery capacity are improved |
JP2014029881A (en) * | 2005-02-23 | 2014-02-13 | Lg Chem Ltd | Secondary battery improved in lithium ion mobility and battery capacity |
US9276259B2 (en) | 2005-02-23 | 2016-03-01 | Lg Chem, Ltd. | Secondary battery of improved lithium ion mobility and cell capacity |
US9666862B2 (en) | 2005-02-23 | 2017-05-30 | Lg Chem, Ltd. | Secondary battery of improved lithium ion mobility and cell capacity |
JP2011108505A (en) * | 2009-11-18 | 2011-06-02 | Toyota Motor Corp | Lithium ion secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3213459B2 (en) | Non-aqueous electrolyte secondary battery | |
US20070054191A1 (en) | Non- aqueous electrolyte secondary battery | |
JPH08236114A (en) | Lithium secondary battery | |
JP2000195516A (en) | Lithium secondary battery | |
JPH1140156A (en) | Nonaqueous electrolyte secondary battery | |
JPH06243871A (en) | Nonaqueous secondary battery | |
JPH09147863A (en) | Nonaqueous electrolyte battery | |
JP3717544B2 (en) | Lithium secondary battery | |
US6391496B1 (en) | Lithium secondary battery with orthorhombic molybdenum and niobium oxide electrodes | |
JP3197684B2 (en) | Non-aqueous electrolyte secondary battery | |
US6482546B1 (en) | Rechargeable lithium battery | |
JP5153134B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2002270181A (en) | Non-aqueous electrolyte battery | |
JP3188032B2 (en) | Lithium secondary battery | |
JP3268924B2 (en) | Non-aqueous electrolyte battery | |
JP3519766B2 (en) | Non-aqueous secondary battery | |
JPH06275273A (en) | Nonaqueous secondary battery | |
JPH08171936A (en) | Lithium secondary battery | |
JPH06243869A (en) | Nonaqueous secondary battery | |
JP3188108B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3426900B2 (en) | Non-aqueous electrolyte battery | |
JPH1027627A (en) | Lithium secondary battery | |
JPH04171659A (en) | Nonaqueous-electrolyte secondary battery | |
JP3188052B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2000106188A (en) | Nonaqueous electrolyte secondary battery |