[go: up one dir, main page]

JPH06274938A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPH06274938A
JPH06274938A JP5284831A JP28483193A JPH06274938A JP H06274938 A JPH06274938 A JP H06274938A JP 5284831 A JP5284831 A JP 5284831A JP 28483193 A JP28483193 A JP 28483193A JP H06274938 A JPH06274938 A JP H06274938A
Authority
JP
Japan
Prior art keywords
change
thin film
recording medium
information recording
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5284831A
Other languages
Japanese (ja)
Inventor
Nobuo Akahira
信夫 赤平
Eiji Ono
鋭二 大野
Kenichi Nishiuchi
健一 西内
Kenichi Osada
憲一 長田
Yoshitaka Sakagami
嘉孝 坂上
Noboru Yamada
昇 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5284831A priority Critical patent/JPH06274938A/en
Publication of JPH06274938A publication Critical patent/JPH06274938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

(57)【要約】 【目的】 本発明はオーバライト書換え可能で反射率が
大きく複製盤との互換が取りやすい光学的情報記録媒体
をを提供することを目的とする。 【構成】 基材上に、レーザー光照射によって光学定数
が変化する薄膜材料を設けて、変化の前後で入射した光
の反射光の位相が変化しこの位相変化による再生系へ到
達する全体の反射光量の変化を検知する構成で、かつ変
化の前後で光吸収の変化が小さい構成とする。 【効果】 反射率変化を必要としないので吸収率差が小
さく、記録部と未記録部でのオーバライト記録時の昇温
条件の差による記録状態の歪が抑えられ、高反射率でも
オーバライト書換えが可能となる。
(57) [Summary] [Object] It is an object of the present invention to provide an optical information recording medium that is rewritable by overwriting, has a large reflectance, and is easily compatible with a duplication plate. [Structure] A thin film material whose optical constant changes by laser light irradiation is provided on the base material, and the phase of the reflected light of the incident light changes before and after the change, and the total reflection reaching the reproduction system due to this phase change The configuration is such that a change in light amount is detected, and a change in light absorption is small before and after the change. [Effect] Since the change in reflectance is not required, the difference in absorptance is small, and distortion in the recording state due to the difference in temperature rise condition during overwriting recording in the recorded area and the unrecorded area is suppressed, and the overwrite is performed even at high reflectance. Rewriting is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー光を用いて高
密度に情報を記録再生する光学的情報記録媒体に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording medium for recording / reproducing information with high density by using a laser beam.

【0002】[0002]

【従来の技術】レーザー光をレンズ系によって収束させ
ると直径がその光の波長のオーダーの小さな光スポット
を作ることができる。したがって小さい出力の光源から
でも単位面積あたりのエネルギー密度の高い光スポット
を作ることが可能である。したがって物質の微少な領域
を変化させることが可能であり、またその微少領域の変
化を読みだすことも可能である。これを情報の記録・再
生に利用したものが光学的情報記録媒体である。
2. Description of the Related Art When a laser beam is focused by a lens system, a light spot whose diameter is on the order of the wavelength of the light can be formed. Therefore, it is possible to form a light spot having a high energy density per unit area even from a light source having a small output. Therefore, it is possible to change a minute area of the substance, and it is also possible to read out the change of the minute area. An optical information recording medium uses this for recording / reproducing information.

【0003】光記録媒体の基本的な構造は表面が平坦な
基板上にレーザースポット光照射によって何らかの状態
が変化する記録薄膜層を設けたものである。信号の記録
・再生は以下のような方法を用いる。すなわち、平板状
の媒体を例えばモーター等による回転手段や並進手段に
より移動させ、この媒体の記録薄膜面上にレーザー光を
収束し照射する。記録薄膜はレーザー光を吸収し昇温す
る。レーザー光の出力をある閾値以上に大きくすると記
録薄膜の状態が変化して情報が記録される。この閾値は
記録薄膜自体の特性の他に基材の熱的な特性・媒体の光
スポットに対する相対速度等に依存する量である。記録
された情報は記録部に前記閾値よりも十分低い出力のレ
ーザー光スポットを照射し、その光学的特性が記録部と
未記録部で異なることを検出して信号を再生する。
The basic structure of an optical recording medium is that a recording thin film layer whose state is changed by laser spot light irradiation is provided on a substrate having a flat surface. The following methods are used for recording / reproducing signals. That is, a flat plate-shaped medium is moved by, for example, a rotating unit such as a motor or a translation unit, and a laser beam is converged and irradiated onto the recording thin film surface of this medium. The recording thin film absorbs laser light and heats up. When the output of laser light is increased above a certain threshold value, the state of the recording thin film changes and information is recorded. This threshold value is an amount that depends on the thermal characteristics of the substrate, the relative speed to the light spot of the medium, and the like in addition to the characteristics of the recording thin film itself. The recorded information is irradiated with a laser light spot having an output sufficiently lower than the threshold value to the recording portion, and it is detected that the optical characteristics are different between the recording portion and the unrecorded portion, and the signal is reproduced.

【0004】光学的情報記録媒体の中に相変化型と呼ば
れる、ほとんど形状の変化を伴わずに光学的な変化をす
る記録媒体がある。これは記録薄膜材料の結晶性の変化
による光学定数変化を用いた記録媒体である。すなわち
レーザー光照射により薄膜材料をアモルファス状態と結
晶状態の間で変化させ、薄膜材料の消衰係数あるいは屈
折率のうち少なくともいずれか1つが変化して記録を行
い、この部分で反射率、言い替えると反射光の振幅が変
化し、その結果検出系に至る反射光量が変化することを
検出して信号を再生するものである。相変化型の記録媒
体はほとんど形状変化を伴わないので穴明け型媒体のよ
うな複雑なエアーサンドイッチ構造を用いる必要がな
く、簡単な密着保護構造が使え媒体の製造が容易で低コ
ストの媒体である。
Among the optical information recording media, there is a recording medium called a phase change type which makes an optical change with almost no change in shape. This is a recording medium that uses a change in optical constant due to a change in crystallinity of a recording thin film material. That is, the thin film material is changed between an amorphous state and a crystalline state by laser light irradiation, and at least one of the extinction coefficient and the refractive index of the thin film material is changed for recording, and the reflectance, in other words, the reflectivity at this portion. The signal is reproduced by detecting that the amplitude of the reflected light changes and, as a result, the amount of reflected light reaching the detection system changes. Since the phase change type recording medium hardly changes its shape, there is no need to use a complicated air sandwich structure like a perforated type medium, and a simple adhesion protection structure can be used and the medium is easy to manufacture and is a low cost medium. is there.

【0005】記録薄膜材料としてはアモルファスカルコ
ゲン化物薄膜が知られている。例えば、テルルおよび酸
化テルルからなるTe−TeO2 を主成分とする酸化物
系薄膜がある(特公昭54−3725号公報、米国特許
公報3971874号参照)。また、Te−TeO2
Pdを主成分とする薄膜も知られている(特公平2−9
955号公報、米国特許公報4624914号参照)。
また、Ge−Sb−Teを主成分とする薄膜も知られて
いる(特開昭62−209742公報、特開昭62−2
25934公報および「"High speed overwritable pha
se change optical disk material", Japanese Journal
of Applied Physics, vol.26 (1987) suppl. 26-4」参
照)。
An amorphous chalcogenide thin film is known as a recording thin film material. For example, there is an oxide-based thin film mainly comprising Te-TeO 2 consisting of tellurium and tellurium oxide (JP-B 54-3725, JP-reference U.S. Patent Publication No. 3,971,874). In addition, Te-TeO 2 -
A thin film containing Pd as a main component is also known (Japanese Patent Publication No. 2-9).
955, U.S. Pat. No. 4,624,914).
Further, a thin film containing Ge-Sb-Te as a main component is also known (JP-A-62-209742 and JP-A-62-2).
25934 and "" High speed overwritable pha
se change optical disk material ", Japanese Journal
of Applied Physics, vol. 26 (1987) suppl. 26-4 ”).

【0006】相変化型の光記録媒体は信号の記録に際し
て、レーザー光のパワーレベルを記録パワーと消去パワ
ーの2つのレーザパワーの間で変調することによりすで
に記録された信号を消しながら新たな信号を記録するい
わゆるオーバライト記録が可能である(特公平2ー58
690号公報参照)。アモルファス化は記録パワーによ
り薄膜材料を融点以上に昇温し急冷することで得られ、
結晶化は弱い消去パワーで結晶化温度まで昇温すること
で実現している。したがって記録前にどのような状態に
あっても、記録パワーが照射されたところはアモルファ
ス化し、消去パワーが照射されたところは結晶化される
ため、1つのレーザビームを1回通過させるだけでオー
バーライト記録が実現できる。
When recording a signal, the phase change type optical recording medium modulates the power level of the laser light between two laser powers, a recording power and an erasing power, to erase a signal already recorded and to generate a new signal. It is possible to use so-called overwrite recording for recording (Japanese Patent Publication No. 2-58).
690). Amorphization can be obtained by heating the thin film material above its melting point by recording power and then quenching it.
Crystallization is realized by raising the temperature to the crystallization temperature with weak erase power. Therefore, no matter what the state before recording, the portion irradiated with the recording power becomes amorphous and the portion irradiated with the erasing power becomes crystallized, so that one laser beam can be passed once. Write recording can be realized.

【0007】相変化型の光記録媒体は一般的に基材上に
その基材と屈折率が異なる第一の透明層を設け、その上
に記録薄膜層を設け、さらにその上に第二の透明層を設
け、その上に反射層を設けた構造を用いている。透明層
は高融点の無機誘電体、反射層は金属が用いられる。こ
のような構造を用いることによって記録薄膜層が相変化
とくにアモルファス化する場合に溶融状態を経ても形状
がほとんど変化することがない。また各層の厚さを選ん
で相変化に際して反射率変化が大きくかつ光吸収が大き
くなるように設計するのが普通である。
In a phase change type optical recording medium, generally, a first transparent layer having a refractive index different from that of the substrate is provided on a substrate, a recording thin film layer is provided thereon, and a second transparent layer is further provided thereon. A structure in which a transparent layer is provided and a reflective layer is provided thereon is used. A high melting point inorganic dielectric is used for the transparent layer, and a metal is used for the reflective layer. By using such a structure, the shape of the recording thin film layer hardly changes even when it goes through a molten state when the recording thin film layer changes in phase, particularly when it becomes amorphous. Further, it is usual that the thickness of each layer is selected and designed so that the reflectance change is large and the light absorption is large during the phase change.

【0008】[0008]

【発明が解決しようとする課題】相変化光記録媒体は反
射光量変化で信号を再生できるのでその反射率の絶対値
が大きければビデオディスク(商品名レーザーディス
ク)やディジタルオーディオディスク(商品名コンパク
トディスク)のような凹凸ピットによって予め信号が記
録された記録媒体(複製盤)と互換をとることができる
可能性がある。すなわちそれらを専用に再生する装置で
信号を再生することが可能である。複製盤は通常凹凸ピ
ットを刻んだ樹脂基盤にアルミニウム(Al)などの反
射率の大きい金属薄膜を設けているため平面部では70
%以上の反射率を持っている。反射率がこの値に近いほ
ど互換がとりやすい。
Since the phase change optical recording medium can reproduce a signal by changing the reflected light amount, if the absolute value of the reflectance is large, a video disk (trade name laser disk) or a digital audio disk (trade name compact disk). There is a possibility that it can be compatible with a recording medium (reproduction disc) in which a signal is recorded in advance by the uneven pits such as the above). That is, it is possible to reproduce the signal with a device for exclusively reproducing them. Since a replica disk is usually provided with a metal thin film having a high reflectance such as aluminum (Al) on a resin substrate having concave and convex pits, it is 70
It has a reflectance of at least%. The closer the reflectance is to this value, the easier it is to achieve compatibility.

【0009】しかしながら従来の相変化型光記録媒体は
前記のような構造を用いるため入射レーザー光はほとん
ど透過せずに一部は吸収され、残りは反射される。もち
ろん反射層での吸収もあるがそれは無視しうるほど小さ
い。また、相変化型光記録媒体は反射率変化を検出する
ことによって信号を再生するが、反射率変化の変調度
(記録による反射率変化と記録前の反射率の比)を大き
くしようとするとアモルファス状態あるいは結晶状態の
一方の反射率は大きく他方は小さくしなければならな
い。その場合それぞれの状態での光吸収は逆に一方は小
さく他方は大きくなってしまう。例えば未記録状態(結
晶状態)の反射率Rc、記録状態(アモルファス状態)
の反射率がRaとすると光吸収率はそれぞれおおよそ
(1−Rc)と(1−Ra)になりその比は(1−R
c)/(1−Ra)になる。この比が大きい記録媒体で
は信号が記録されている状態に新たな信号をオーバライ
トすると以前の状態がアモルファスの部分と結晶の部分
では同じレーザーパワーが照射されても吸収差のため到
達温度が異なり記録マークの大きさが異なったり、記録
マークの形状が歪んだりして正常な記録が行なわれな
い。従来の相変化記録媒体はレーザー光の反射率が結晶
状態で20〜30%、アモルファス状態で0〜10%程
度にして反射率差20%程度を得るものであった。この
場合は吸収率は結晶状態で70〜80%、アモルファス
状態で90%程度以上になりその比は比較的小さくオー
バライトの特性への影響は小さかった。反射率を未記録
状態で70%に近づけて変調度を大きくとろうとして、
例えば記録状態での反射率を30%以下にすると結晶状
態の光吸収率は30%以下、アモルファス状態の光吸収
率は70%以上、その比は2倍以上になり実質的にオー
バライトができない状態になる。
However, since the conventional phase-change type optical recording medium uses the above-mentioned structure, the incident laser light is hardly transmitted, but is partially absorbed and the rest is reflected. Of course, there is absorption in the reflective layer, but it is negligible. In addition, the phase change type optical recording medium reproduces a signal by detecting a change in reflectance, but if an attempt is made to increase the modulation degree of the change in reflectance (the ratio of the change in reflectance due to recording to the reflectance before recording), it will be amorphous. The reflectance of one of the states and the crystalline state must be large and the reflectance of the other must be small. In that case, the light absorption in each state is conversely small in one and large in the other. For example, the reflectance Rc in the unrecorded state (crystalline state), the recorded state (amorphous state)
If the reflectance of Ra is Ra, the light absorptivities are approximately (1-Rc) and (1-Ra), respectively, and the ratio is (1-Rc).
c) / (1-Ra). In a recording medium with a large ratio, when a new signal is overwritten while the signal is being recorded, the temperature reached in the previous state is different due to the difference in absorption even if the same laser power is applied to the amorphous part and the crystalline part. Normal recording cannot be performed because the recording marks have different sizes or the shape of the recording marks is distorted. In the conventional phase change recording medium, the reflectance of the laser light is 20 to 30% in the crystalline state and about 0 to 10% in the amorphous state to obtain a reflectance difference of about 20%. In this case, the absorptance was 70 to 80% in the crystalline state and about 90% or more in the amorphous state, and the ratio was relatively small and the influence on the overwrite characteristics was small. In an unrecorded state, the reflectance was brought close to 70% to increase the modulation degree,
For example, if the reflectance in the recording state is 30% or less, the light absorptance in the crystalline state is 30% or less, the light absorptance in the amorphous state is 70% or more, and the ratio is double or more, so that overwrite cannot be substantially performed. It becomes a state.

【0010】すなわち相変化記録媒体では反射率が大き
くて複製盤と互換のとれるオーバライトの可能な記録媒
体が得られないという課題があった。
In other words, the phase change recording medium has a problem that it is impossible to obtain a recording medium which can be overwritten and which is compatible with the duplication disk because of its large reflectance.

【0011】薄膜の吸収差を選ぶことによるによる消去
特性の改善方法はすでに提案されている(特開平1−1
49238号公報参照)。相変化記録媒体において記録
薄膜層の吸収がアモルファス状態と結晶状態で略等しく
なるように多層薄膜構造の光学設計を行なうことにより
オーバライト特性が改善することが開示されている。ま
たアモルファス状態と結晶状態では同じエネルギー量を
吸収しても、両者の熱伝導率や融解潜熱といった熱物性
の差により昇温条件が異なりアモルファス状態の方がよ
り高温になりやすいことから、むしろ若干結晶状態の方
の吸収が大きい方が良好な結果を与えることも開示され
ている。しかしながらこの場合も信号再生には反射率変
化を用いており、高反射率でかつ大きな反射率変化や変
調度を得ることは難しい。
A method for improving the erasing characteristic by selecting the absorption difference of the thin film has already been proposed (Japanese Patent Laid-Open No. 1-1.
(See Japanese Patent Publication No. 49238). It is disclosed that in a phase change recording medium, overwrite characteristics are improved by optical design of a multilayer thin film structure such that absorption of a recording thin film layer is substantially equal in an amorphous state and a crystalline state. In addition, even if the same amount of energy is absorbed in the amorphous state and the crystalline state, the temperature raising conditions differ due to the difference in thermal properties such as the thermal conductivity and the latent heat of fusion of the two, and the amorphous state tends to reach a higher temperature. It is also disclosed that greater absorption in the crystalline state gives better results. However, also in this case, the reflectance change is used for signal reproduction, and it is difficult to obtain a high reflectance change and a large reflectance change or modulation degree.

【0012】本発明の目的は、記録部と未記録部でのオ
ーバライト記録時の昇温条件の差による記録状態の歪が
抑えられ、高反射率でもオーバライト書換えが可能な記
録媒体を提供することにある。
An object of the present invention is to provide a recording medium in which distortion in a recording state due to a difference in temperature rising condition during overwrite recording in a recorded portion and an unrecorded portion is suppressed, and overwrite rewriting is possible even at a high reflectance. To do.

【0013】[0013]

【課題を解決するための手段】基材上に、レーザー光照
射によって光学定数が変化する薄膜材料を設けて、変化
の前後で入射した光の反射光の位相が変化しこの位相変
化による再生系へ到達する全体の反射光量の変化を検知
する構成で、かつ変化の前後で光吸収の変化が小さい構
成とする。
[Means for Solving the Problems] A thin film material whose optical constant is changed by laser light irradiation is provided on a base material, and the phase of reflected light of incident light is changed before and after the change, and a reproducing system by this phase change is provided. The configuration is such that a change in the total amount of reflected light that reaches the light source is detected, and the change in light absorption before and after the change is small.

【0014】具体的には基材上に基材と屈折率が異なる
第一の透明層を設け、その上に記録薄膜層を設け、さら
にその上に第二の透明層を設け、その上に反射層を設け
た構造において、第一の透明層、記録薄膜層、第二の透
明層および反射層の膜厚を、記録材料が形状の変化をほ
とんど伴わずに光学定数の変化をした時に、入射した光
の反射光の位相が変化し、かつ変化の前後で記録薄膜材
料層の光吸収の変化が小さくなるように選んだ構成とす
る。
Specifically, a first transparent layer having a refractive index different from that of the substrate is provided on a substrate, a recording thin film layer is provided on the first transparent layer, and a second transparent layer is further provided on the first transparent layer. In the structure provided with a reflective layer, the thickness of the first transparent layer, the recording thin film layer, the second transparent layer and the reflective layer, when the recording material changes the optical constants with almost no change in shape, The configuration is selected so that the phase of the reflected light of the incident light changes and the change in the light absorption of the recording thin film material layer before and after the change is small.

【0015】[0015]

【作用】上記のような構成にすると信号は反射率変化で
はなく位相変化に起因する反射光量変化で再生されるた
めに、上記のような吸収差を発生させずに大きな変調度
の信号が得ることができる。変化部と未変化部で光吸収
の変化が小さいことから、すでに記録された状態の上に
新たな記録を行なう場合以前の状態にかかわらず同じ記
録薄膜の昇温条件が得られ同じ記録状態が得られる。そ
の結果消し残りの少ない良好なオーバライト書換えがで
きる。したがって反射率の高い媒体でもオーバライトが
可能になる。
With the above-described structure, the signal is reproduced not by the reflectance change but by the reflected light amount change caused by the phase change, so that a signal with a large modulation degree is obtained without causing the absorption difference as described above. be able to. Since the change in light absorption between the changed part and the unchanged part is small, when performing new recording on the already recorded state, the same temperature rise condition of the recording thin film can be obtained regardless of the previous state and the same recording state can be obtained. can get. As a result, good overwrite rewriting with little erasure remaining can be performed. Therefore, overwriting is possible even with a medium having a high reflectance.

【0016】またこのような構成にすることにより光学
的には凹凸による位相変化記録と等価な記録が行える。
従って、相変化記録でありながら記録密度の大きい記録
が行なえ、凹凸ピットによる複製盤(オーディオディス
ク、ビデオディスク等)との互換もさらにとりやすくな
る。
Further, with such a structure, optically equivalent recording to phase change recording by unevenness can be performed.
Therefore, it is possible to perform recording with a high recording density even though it is phase change recording, and it becomes easier to achieve compatibility with a duplication disk (audio disk, video disk, etc.) due to the uneven pits.

【0017】光は波動であり振幅と位相によって記述さ
れる。光は反射することにより振幅と位相が変化する
が、ここでは主として反射光の振幅が変化する場合を反
射率変化、主として位相が変化する場合を位相変化と言
う。複製盤のような凹凸ピットに光が照射された場合は
ピット部と周辺部では反射率は同じであるが凹凸の段差
により反射光の位相が異なる。その結果ピット部と周辺
部からの反射光は干渉して打ち消しあい結果として検出
系に入射する光量が減少する。一方、従来の相変化形の
記録媒体の場合は記録部と未記録部では反射率が異な
り、反射した光の振幅が異なって結果として検出系に入
射する光量が変化する。このように位相変化形の媒体と
反射率変化型の媒体では、ともに検出系に至る光量の差
で信号を再生するが光量の変化する原理が異なるもので
ある。
Light is a wave and is described by its amplitude and phase. The light changes its amplitude and phase by being reflected. Here, the case where the amplitude of the reflected light mainly changes is called reflectance change, and the case where the phase changes mainly are called phase change. When light is applied to an uneven pit such as a replica disk, the reflectance is the same in the pit portion and the peripheral portion, but the phase of the reflected light differs depending on the unevenness. As a result, the reflected light from the pit portion and the peripheral portion interfere with each other to cancel each other, and as a result, the amount of light incident on the detection system decreases. On the other hand, in the case of the conventional phase-change type recording medium, the reflectance differs between the recorded portion and the unrecorded portion, and the amplitude of the reflected light differs, resulting in a change in the amount of light incident on the detection system. As described above, both the phase change type medium and the reflectance change type medium reproduce the signal by the difference in the amount of light reaching the detection system, but the principles of changing the amount of light are different.

【0018】位相変化型の相変化媒体はすでに本発明者
らによって提案されている。(特開平2−73537号
公報、特開平2−113451号公報および特開平3−
41638号公報参照)。位相変化型の相変化型記録媒
体は、光学的には凹凸による位相変化記録と等価な記録
が行えるため、相変化記録でありながら記録密度の大き
い記録が行なえ、凹凸ピットによる複製盤(オーディオ
ディスク、ビデオディスク等)との互換も取り易いこと
が開示されている。また、相変化記録は形状変化を伴わ
ず材料を選ぶことによって記録した状態をもとに戻す、
すなわち消去・書き換えも可能であり、書き換え型の位
相変化記録が実現できることが開示されている。
The phase change type phase change medium has already been proposed by the present inventors. (JP-A-2-73537, JP-A-2-113451, and JP-A-3-
41638 gazette). The phase-change recording medium of phase-change type can perform recording that is optically equivalent to phase-change recording due to unevenness, so that it is possible to perform recording with a high recording density even though it is phase-change recording. , Video discs, etc.) is also easy to obtain. In addition, phase change recording restores the recorded state by selecting the material without changing the shape.
That is, it is disclosed that erasing / rewriting is possible and rewritable phase change recording can be realized.

【0019】本発明ではこのような位相変化型の相変化
記録媒体においてさらに記録部と未記録部でのレーザー
光の吸収条件を選んで両者での昇温条件を等しくするこ
とを提案するものである。
The present invention proposes that in such a phase change type phase change recording medium, the conditions for absorbing the laser light in the recorded portion and the unrecorded portion are further selected so that the temperature rising conditions are the same. is there.

【0020】反射光の位相変化は(1±2N)π(Nは
整数)のとき最も反射光量変化が大きく、この値に近い
ことが、特に略々等しいことが望ましい。これは位相差
がπのとき記録部と未記録部でそれぞれの部分からの反
射光の干渉効果が最も大きいためである。さらに(1±
2N)π±π/2の範囲にあれば干渉効果が十分存在し
実用状十分使える。つまり位相差Δφが3π/2≧Δφ
≧π/2あるいは−3π/2≦Δφ≦−π/2であれば
よい。
When the phase change of the reflected light is (1 ± 2N) π (N is an integer), the change of the reflected light amount is the largest, and it is preferable that the change is almost equal to this value. This is because when the phase difference is π, the interference effect of the reflected light from each of the recorded portion and the unrecorded portion is the largest. Furthermore (1 ±
If it is within the range of 2N) π ± π / 2, there is sufficient interference effect and it can be used practically. That is, the phase difference Δφ is 3π / 2 ≧ Δφ
It may be ≧ π / 2 or −3π / 2 ≦ Δφ ≦ −π / 2.

【0021】記録部と未記録部でのレーザー光の吸収差
ΔAは小さいほどよく略々ゼロが望ましいが絶対値で±
10%以下(入射光量全体を100%として)なら十分
である。またアモルファス状態と結晶状態での熱伝導率
や融解潜熱などの熱物性の差が無視できないほど大きい
場合は吸収は温度の上がりにくい結晶状態の方が大きく
なるように選ぶほうがよい場合がある。この場合はΔA
=(結晶の吸収率Ac−アモルファスの吸収率Aa)と
すると10%≧ΔA≧0%が良好な範囲であり、20%
≧ΔA≧0%の範囲でも効果がある。
The smaller the difference ΔA in absorption of the laser light between the recorded portion and the unrecorded portion, the better it is.
It is sufficient if it is 10% or less (assuming the total amount of incident light is 100%). If the difference in thermal properties such as thermal conductivity or latent heat of fusion between the amorphous state and the crystalline state is not negligible, it may be better to select absorption so that the crystalline state in which the temperature does not rise easily becomes larger. In this case ΔA
= (Crystal absorptivity Ac-amorphous absorptivity Aa), a good range is 10% ≧ ΔA ≧ 0%, and 20%
It is also effective in the range of ≧ ΔA ≧ 0%.

【0022】反射率の絶対値は大きい方が信号振幅が大
きく有利であり、前述のように複製盤との互換を考えて
も大きい方がよい。70%以上であれば理想的であるが
通常の再生装置のダイナミックレンジから考えると40
%以上あればよく、20%以上でも十分使える。
The larger the absolute value of the reflectance is, the larger the signal amplitude is, which is advantageous, and the larger the absolute value of the reflectance, the better it is in consideration of compatibility with the duplicating disk as described above. It is ideal if it is 70% or more, but it is 40 when considering the dynamic range of a normal playback device.
% Or more is sufficient, and 20% or more is sufficient.

【0023】反射率が20%以上でかつ位相変化が大き
い記録媒体を得るには記録薄膜層材料の光学定数が重要
である。消衰係数kが比較的小さくかつ屈折率nの変化
の大きい材料が望ましい。変化の前後のどちらか一方で
消衰係数kがk≦1.0を満たし、また屈折率nはその
値の変化が1.5倍以上あればよい。
The optical constants of the recording thin film layer material are important for obtaining a recording medium having a reflectance of 20% or more and a large phase change. A material having a relatively small extinction coefficient k and a large change in the refractive index n is desirable. It suffices that the extinction coefficient k satisfies k ≦ 1.0 either before or after the change, and the change in the refractive index n is 1.5 times or more.

【0024】さらに反射率が40%以上でかつ位相変化
が大きい記録媒体を得るには、変化の前後で消衰係数k
がk≦1.0を満たし、また屈折率nはn≧2.0を満
たしかつnの変化が1.5倍以上あればよい。
Furthermore, in order to obtain a recording medium having a reflectance of 40% or more and a large phase change, the extinction coefficient k before and after the change.
Satisfying k ≦ 1.0, the refractive index n satisfying n ≧ 2.0, and the change of n is 1.5 times or more.

【0025】つぎに、具体的な実施例を使って説明をす
る。
Next, a concrete example will be described.

【0026】[0026]

【実施例】記録媒体の構成としては第1図に示すように
基材1上に透明な誘電体等の透明層2を設けその上に記
録薄膜層3を設けさらに誘電体等の透明層4を設けさら
に反射層5を設ける。さらにその上に透明な密着した保
護層6を設ける。この他に図には示さないが保護層を施
さない構成でもよい。この場合は保護層の代わりに空気
(屈折率1.0)を考えると光学的には同等であり同じ
効果が得られる。透明層2には基材1と屈折率の異なる
材質を用いる。
EXAMPLE As the construction of a recording medium, as shown in FIG. 1, a transparent layer 2 such as a transparent dielectric material is provided on a substrate 1, a recording thin film layer 3 is provided thereon, and a transparent layer 4 such as a dielectric material is provided. And the reflective layer 5 is further provided. Further, a transparent protective layer 6 is provided thereon. In addition, although not shown in the figure, a structure in which a protective layer is not provided may be used. In this case, considering air (refractive index 1.0) instead of the protective layer, they are optically equivalent and the same effect can be obtained. A material having a refractive index different from that of the substrate 1 is used for the transparent layer 2.

【0027】これらの記録薄膜層3の厚さt3、透明光
学層2、4の厚さt2、t4および反射層5の厚さt5
適当に選ぶことによって位相変化がの大きくかつ吸収率
変化の小さい媒体を得ることができる。
The thickness t 3 of these recording thin film layer 3, large and phase changes in by choosing the thickness t 5 of the thickness t 2, t 4 and the reflective layer 5 of the transparent optical layer 2 and 4 appropriately It is possible to obtain a medium having a small change in absorptance.

【0028】基材としてはガラス・樹脂等の透明で平滑
な平板を用いる。また基材表面にトラッキングガイド用
の溝状の凹凸があってもよい。
As the base material, a transparent and flat plate such as glass or resin is used. Further, the surface of the base material may have groove-shaped irregularities for a tracking guide.

【0029】保護層としては樹脂を溶剤に溶かして塗布
・乾燥したものや樹脂板を接着剤で接着したもの等が使
える。
As the protective layer, those obtained by dissolving and coating a resin in a solvent and drying and those obtained by adhering a resin plate with an adhesive can be used.

【0030】相変化型の記録薄膜層の材料としてはアモ
ルファス・結晶間の相変化をする材料たとえばSbTe
系、InTe系、GeTeSn系、SbSe系、TeS
eSb系、SnTeSe系、InSe系、TeGeSn
O系、TeGeSnAu系、TeGeSnSb系、等の
カルコゲン化合物などが存在する。Te−TeO2系、
Te−TeO2−Au系、Te−TeO2−Pd系等の酸
化物系材料も知られている。また、結晶・結晶間の相転
移をするAgZn系、InSb系等の金属化合物も知ら
れている。
As a material of the phase change type recording thin film layer, a material which changes phase between amorphous and crystalline, such as SbTe.
System, InTe system, GeTeSn system, SbSe system, TeS
eSb system, SnTeSe system, InSe system, TeGeSn
There are O-based, TeGeSnAu-based, TeGeSnSb-based chalcogen compounds and the like. Te-TeO 2 system,
Te-TeO 2 -Au system, also known oxide-based material 2 -Pd system such as Te-TeO. Further, a metal compound such as AgZn-based or InSb-based metal compound that causes a crystal-crystal phase transition is also known.

【0031】本発明に適した材料としては消衰係数kが
比較的小さくかつ屈折率nの変化の大きい材料が望まし
い。なかでもゲルマニウム(Ge)とテルル(Te)の
化合物GeTeが適している。この材料が記録薄膜層材
料として使えることはたとえば特開昭62−40648
号公報に開示されている。またSeを含む系は一般的に
消衰係数が小さい。なかでもアンチモン(Sb)とセレ
ン(Se)の化合物Sb2Se3が適している。この材料
が記録薄膜層材料として使えることはたとえば特開平2
−266978号公報に開示されている。またゲルマニ
ウム(Ge)とアンチモン(Sb)とテルル(Te)の
化合物も適している。
As a material suitable for the present invention, a material having a relatively small extinction coefficient k and a large change in the refractive index n is desirable. Of these, the compound GeTe of germanium (Ge) and tellurium (Te) is suitable. The fact that this material can be used as a recording thin film layer material is disclosed in, for example, JP-A-62-40648
It is disclosed in the publication. Further, a system containing Se generally has a small extinction coefficient. Among them, the compound Sb 2 Se 3 of antimony (Sb) and selenium (Se) is suitable. The fact that this material can be used as a recording thin film layer material is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 2
It is disclosed in Japanese Patent Publication No.-266978. Further, compounds of germanium (Ge), antimony (Sb) and tellurium (Te) are also suitable.

【0032】透明層の材料としては高融点の誘電体であ
るSiO2、SiO、TiO2、MgO、GeO2等の酸
化物、Si34、BN、等の窒化物、ZnS、ZnT
e、PbS等の硫化物あるいはそれらの混合物が使え
る。
As the material of the transparent layer, oxides such as SiO 2 , SiO, TiO 2 , MgO and GeO 2 which are high melting point dielectrics, nitrides such as Si 3 N 4 and BN, ZnS and ZnT.
e, PbS, and other sulfides or mixtures thereof can be used.

【0033】反射層の材料としてはAu、Al、Cu等
の金属材料あるいは所定の波長の反射率の大きな誘電体
多層膜等が使える。
As the material of the reflection layer, a metal material such as Au, Al, Cu or a dielectric multilayer film having a large reflectance at a predetermined wavelength can be used.

【0034】これらの材料を作る方法としては多元蒸着
源を用いた真空蒸着法やモザイク状の複合ターゲットを
用いたスパッタリング法その他が使える。
As a method for producing these materials, a vacuum evaporation method using a multi-source evaporation source, a sputtering method using a mosaic-shaped composite target, and the like can be used.

【0035】(実施例1)記録薄膜層材料にゲルマニウ
ム(Ge)とテルル(Te)の化合物GeTeを用い
た。形成法としてGeとTeの合金をターゲットに用い
たDCスパッタリング法を用いる。記録薄膜はアモルフ
ァス状態で形成される。ガラス板上に上記組成のGeT
eだけを蒸着したアモルファス状態の薄膜の光学定数を
測定したところ、波長780nmにおいて複素屈折率n
+kiが4.15+0.98iであった。これを300
℃で5分間不活性ガス雰囲気中で熱処理して結晶状態に
して光学定数を測定したところ6.37+3.97iで
あった。したがってGeTeは波長780nmにおい
て、アモルファス状態での消衰係数kがk≦1.0かつ
屈折率nの変化が1.5倍以上ある。
Example 1 A compound GeTe of germanium (Ge) and tellurium (Te) was used as a recording thin film layer material. As a forming method, a DC sputtering method using an alloy of Ge and Te as a target is used. The recording thin film is formed in an amorphous state. GeT of the above composition on a glass plate
When the optical constant of a thin film in an amorphous state in which only e was vapor-deposited was measured, the complex refractive index n at a wavelength of 780 nm
The + ki was 4.15 + 0.98i. 300 this
The optical constant was 6.37 + 3.97i as measured by heat treatment in an inert gas atmosphere at 5 ° C for 5 minutes to obtain a crystalline state. Therefore, GeTe has an extinction coefficient k in the amorphous state of k ≦ 1.0 and a change of the refractive index n of 1.5 times or more at a wavelength of 780 nm.

【0036】本発明の1実施例として図1に示すように
基材1としてポリカーボネート樹脂板(PC、屈折率
1.58)上に透明層2として硫化亜鉛と2酸化珪素の
混合体(ZnS−SiO2 、モル比4:1、屈折率2.
10)をマグネトロンスパッタリング法で厚さt2 で蒸
着したうえに記録薄膜層3としてGeTeを前記の方法
で厚さt3 で形成しさらに透明層4としてZnS−Si
2 を厚さt4 で同様にスパッタ法で成膜した。この上
に反射層5として金(Au、屈折率0.18+4.64
i)を厚さt5 だけDCスパッタリング法で形成し、さ
らに保護層6として基材と同じ屈折率を持つ樹脂材料を
コーティングした。
As one embodiment of the present invention, as shown in FIG. 1, as a base material 1, a polycarbonate resin plate (PC, refractive index of 1.58) is used as a transparent layer 2, and a mixture of zinc sulfide and silicon dioxide (ZnS-) is used as a transparent layer 2. SiO 2 , molar ratio 4: 1, refractive index 2.
10) is deposited by magnetron sputtering to a thickness of t 2 , GeTe is formed as the recording thin film layer 3 to a thickness of t 3 by the above-described method, and ZnS—Si is formed as the transparent layer 4.
A film of O 2 having a thickness t 4 was similarly formed by the sputtering method. On top of this, as a reflection layer 5, gold (Au, refractive index 0.18 + 4.64)
i) was formed to a thickness of t 5 by the DC sputtering method, and the protective layer 6 was coated with a resin material having the same refractive index as the base material.

【0037】このような構成の場合のアモルファス状態
と結晶状態での反射率Ra、Rcおよび反射率変化ΔR
(=Rc−Ra)、記録薄膜層の吸収率Aa、Acおよ
び吸収率変化ΔA(=Ac−Aa)、反射光の位相変化
Δφをそれぞれ各層2、3、4および5の膜厚t2 、t
3 、t4 およびt5 を変化させて計算した。
In the case of such a structure, the reflectances Ra and Rc in the amorphous state and the crystalline state and the reflectance change ΔR
(= Rc-Ra), the absorptances Aa and Ac of the recording thin film layer and the absorptance change ΔA (= Ac-Aa), and the phase change Δφ of the reflected light are the film thickness t 2 of each layer 2, 3, 4 and 5, respectively. t
Calculations were performed by changing 3 , t 4 and t 5 .

【0038】反射率、吸収率および反射光の位相の計算
には各層の複素屈折率と膜厚からマトリックス法で計算
できる。(たとえば、久保田広著「波動光学」岩波書
店、1971年 第3章、または Leo Levi, Applied O
ptics II. p62-72, John Wiley& Sons, Inc.,(1968)参
照)また、基材1と密着保護層は6は無限大の膜厚をも
つものとして(基材−空気界面、密着保護層−空気界面
の効果を無視)、反射率Rは基材から入射した光の基材
中に出射してくる比率としてもとめ、位相は基材1と透
明層2の界面での位相を基準としてもとめた。位相は1
波長λに相当する2πの周期で等価であるので以下に説
明する図の中ではこれを考慮して光学長でλ/2(反射
光の場合往復で1波長λに相当)の範囲を示しているあ
る。
The reflectance, the absorptance, and the phase of the reflected light can be calculated by the matrix method from the complex refractive index and the film thickness of each layer. (For example, Hiro Wave Kubota, "Wave Optics," Iwanami Shoten, Chapter 3, 1971, or Leo Levi, Applied O.
ptics II. p62-72, see John Wiley & Sons, Inc., (1968)) Further, the base material 1 and the adhesion protection layer 6 have an infinite film thickness (base material-air interface, adhesion protection layer). -Ignore the effect of the air interface), the reflectance R is determined as the ratio of the light incident from the base material to be emitted into the base material, and the phase is determined based on the phase at the interface between the base material 1 and the transparent layer 2. It was Phase is 1
Since it is equivalent to the period of 2π corresponding to the wavelength λ, in the figures described below, the range of λ / 2 (corresponding to one wavelength λ in the case of reflected light in a round trip) is shown in consideration of this. There is

【0039】図2は波長λ=780nmにおける記録薄
膜層の膜厚t3 が5nm、反射層の膜厚t5 が50nm
の場合の反射光の位相変化Δφ、吸収率変化ΔAおよび
反射率変化ΔRの透明層2、4の厚さt2 、t4 依存性
の計算結果を示す。図中で透明層2、4の厚さt2 、t
4 は光学長(屈折率×物理的長さ)を波長λの尺度で表
している。この場合透明層2、4の屈折率はn=2.1
なのでλ/2は780÷2.1÷2=185.7nmに
相当する。図2において吸収差ΔA=10%の線(波
線)とΔA=−10%の線の間が吸収差ΔAの絶対値が
10%以下である。またΔR=10%の線(細実線)と
ΔR=−10%の線の間がΔRの絶対値が10%以下で
反射率変化の小さい領域である。またΔφ=−π/2の
曲線(太実線)とΔφ=−3π/2の曲線の間が位相差
が大きい。したがってt3 =5nm、t5 =50nmの
条件では吸収差が小さい領域は反射率差も小さくかつ位
相差も小さい。従ってここではオーバライト可能で信号
の大きい領域は存在しない。
In FIG. 2, the film thickness t 3 of the recording thin film layer is 5 nm and the film thickness t 5 of the reflective layer is 50 nm at the wavelength λ = 780 nm.
The calculation results of the thickness changes t 2 and t 4 of the transparent layers 2 and 4 of the phase change Δφ, the absorption rate change ΔA, and the reflectance change ΔR of the reflected light in the case of are shown. In the figure, the thicknesses t 2 and t of the transparent layers 2 and 4 are
4 indicates the optical length (refractive index × physical length) on the scale of wavelength λ. In this case, the refractive index of the transparent layers 2 and 4 is n = 2.1.
Therefore, λ / 2 corresponds to 780 / 2.1 / 2/2 = 185.7 nm. In FIG. 2, the absolute value of the absorption difference ΔA is 10% or less between the line (wavy line) with the absorption difference ΔA = 10% and the line with ΔA = −10%. Further, a region between the line of ΔR = 10% (thin solid line) and the line of ΔR = −10% is a region where the absolute value of ΔR is 10% or less and the change in reflectance is small. Further, the phase difference is large between the curve of Δφ = −π / 2 (thick solid line) and the curve of Δφ = −3π / 2. Therefore, under the conditions of t 3 = 5 nm and t 5 = 50 nm, the region where the absorption difference is small has a small reflectance difference and a small phase difference. Therefore, there is no area where overwriting is possible and the signal is large.

【0040】図3は同様に波長λ=780nmにおける
記録薄膜層の膜厚t3 =10nm、反射層の膜厚t5
50nmの場合の反射光の位相変化Δφ、吸収率変化Δ
Aおよび反射率変化ΔRの透明層2、4の厚さt2 、t
4 依存性の計算結果を示す。図中斜線を施した領域が吸
収差ΔAの絶対値が10%以下かつ位相差が−π/2よ
り小さく−3π/2より大きい(位相差の絶対値が大き
い)領域である。またこの領域では反射率差ΔRの絶対
値も10%以下で小さい。図中には示していないがこの
領域での反射率の絶対値は約20%前後であった。
Similarly, in FIG. 3, the film thickness t 3 = 10 nm of the recording thin film layer and the film thickness t 5 = of the reflective layer at the wavelength λ = 780 nm.
Phase change Δφ and absorptance change Δ of reflected light in the case of 50 nm
A and the thicknesses t 2 and t of the transparent layers 2 and 4 having the reflectance change ΔR
4 shows the calculation results of the dependence. The shaded region in the drawing is a region where the absolute value of the absorption difference ΔA is 10% or less and the phase difference is smaller than −π / 2 and larger than −3π / 2 (the absolute value of the phase difference is large). Further, in this region, the absolute value of the reflectance difference ΔR is as small as 10% or less. Although not shown in the figure, the absolute value of the reflectance in this region was about 20%.

【0041】図4は同様に波長λ=780nmにおける
記録薄膜層の膜厚t3 =20nm、反射層の膜厚t5
50nmの場合の反射光の位相変化Δφ、吸収率変化Δ
Aおよび反射率変化ΔRの透明層2、4の厚さt2 、t
4 依存性の計算結果を示す。図中の破線を施した領域が
吸収差ΔAの絶対値が10%以下かつ位相差が−π/2
より小さく−3π/2より大きい(位相差の絶対値が大
きい)領域がかなり大きくなっていることが示されてい
る。同様にこの領域は反射率差ΔRの絶対値が10%以
下で小さい領域の中に入っている。反射率の絶対値は約
25%前後であった。
Similarly, FIG. 4 shows that the recording thin film layer has a thickness t 3 = 20 nm and the reflective layer has a thickness t 5 = at a wavelength λ = 780 nm.
Phase change Δφ and absorptance change Δ of reflected light in the case of 50 nm
A and the thicknesses t 2 and t of the transparent layers 2 and 4 having the reflectance change ΔR
4 shows the calculation results of the dependence. In the region shown by the broken line in the figure, the absolute value of the absorption difference ΔA is 10% or less and the phase difference is −π / 2.
It is shown that the region that is smaller and is larger than −3π / 2 (the absolute value of the phase difference is large) is considerably large. Similarly, this area is included in a small area where the absolute value of the reflectance difference ΔR is 10% or less. The absolute value of reflectance was about 25%.

【0042】図5は同様に波長λ=780nmにおける
記録薄膜層の膜厚t3 =35nm、反射層の膜厚t5
50nmの場合の反射光の位相変化Δφ、吸収率変化Δ
Aおよび反射率変化ΔRの透明層2、4の厚さt2 、t
4 依存性の計算結果を示す。図中の破線を施した領域が
吸収差ΔAの絶対値が10%以下かつ位相差が−π/2
より小さく−3π/2より大きい(位相差の絶対値が大
きい)領域がかなり大きくなっていることが示されてい
る。同様にこの領域は反射率差ΔRの絶対値が10%以
下で小さい領域の中に入っている。反射率の絶対値は約
20%前後であった。
FIG. 5 similarly shows that the film thickness t 3 = 35 nm of the recording thin film layer and the film thickness t 5 = of the reflective layer at the wavelength λ = 780 nm.
Phase change Δφ and absorptance change Δ of reflected light in the case of 50 nm
A and the thicknesses t 2 and t of the transparent layers 2 and 4 having the reflectance change ΔR
4 shows the calculation results of the dependence. In the region shown by the broken line in the figure, the absolute value of the absorption difference ΔA is 10% or less and the phase difference is −π / 2.
It is shown that the region that is smaller and is larger than −3π / 2 (the absolute value of the phase difference is large) is considerably large. Similarly, this area is included in a small area where the absolute value of the reflectance difference ΔR is 10% or less. The absolute value of reflectance was about 20%.

【0043】図6は同様にそれぞれ反射層の膜厚はt5
=50nmと一定で記録薄膜層の膜厚t3 が40nmの
場合の計算結果を示したものである。この場合は吸収差
ΔAの絶対値が10%以下の領域は存在するが位相差が
−π/2より小さく−3π/2より大きい(位相差の絶
対値が大きい)領域は存在しないことが示されている。
同様に反射層の膜厚がt5 =50nmで記録薄膜層の膜
厚t3 が40nmより厚い場合には吸収差が小さく位相
差が大きい膜厚構成は存在しないことが計算の結果から
判明した。
Similarly, in FIG. 6, the film thickness of each reflective layer is t 5.
5 shows a calculation result in the case where the film thickness t 3 of the recording thin film layer is 40 nm and is constant at 50 nm. In this case, there is a region where the absolute value of the absorption difference ΔA is 10% or less, but there is no region where the phase difference is smaller than −π / 2 and larger than −3π / 2 (the absolute value of the phase difference is large). Has been done.
Similarly, when the film thickness of the reflective layer is t 5 = 50 nm and the film thickness t 3 of the recording thin film layer is thicker than 40 nm, it is found from the calculation result that there is no film thickness structure having a small absorption difference and a large phase difference. .

【0044】図7は反射層の厚さt5 を10nmと薄く
したときの計算結果で、記録薄膜層の厚さはt3 =20
nmである。図中の破線を施した領域が吸収差ΔAの絶
対値が10%以下かつ位相差が−π/2より小さく−3
π/2より大きい(位相差の絶対値が大きい)領域がか
なり大きくなっていることが示されている。この場合は
反射層が薄く透過率が大きいことから反射率差ΔRの絶
対値が10%以下の領域は必ずしも吸収差が小さい領域
とは一致していない。反射率の絶対値は未記録状態で約
25%前後、記録状態で7%以下であった。
FIG. 7 shows a calculation result when the thickness t 5 of the reflective layer is thinned to 10 nm. The thickness of the recording thin film layer is t 3 = 20.
nm. In the region shown by the broken line in the figure, the absolute value of the absorption difference ΔA is 10% or less and the phase difference is smaller than −π / 2 −3
It is shown that the region larger than π / 2 (the absolute value of the phase difference is large) is considerably large. In this case, since the reflection layer is thin and the transmittance is high, the region where the absolute value of the reflectance difference ΔR is 10% or less does not necessarily coincide with the region where the absorption difference is small. The absolute value of reflectance was about 25% in the unrecorded state and 7% or less in the recorded state.

【0045】なお、反射層の厚さt5 を10nmと薄く
して記録層の厚さt3 をさらに変化させた計算を行なっ
たところt3 =10nm以下あるいは30nm以上のい
ずれの場合においても上記のような条件は存在しないこ
とがわかった。したがって反射層膜厚によっても上記条
件は左右されるので、反射層膜厚も適当に選ばなければ
ならない。
When the calculation was carried out while the thickness t 5 of the reflective layer was reduced to 10 nm and the thickness t 3 of the recording layer was further changed, it was found that t 3 = 10 nm or less or 30 nm or more. It turns out that there is no such condition. Therefore, the above conditions are also influenced by the film thickness of the reflective layer, and therefore the film thickness of the reflective layer must be appropriately selected.

【0046】以上の結果をもとにして以下の実験を行な
った。基材として厚さ1.2mm・直径130mmのポ
リカーボネート樹脂板(PC、屈折率1.58)上に透
明層2として硫化亜鉛と二酸化ケイ素の混合誘電体(Z
nS−SiO2)をマグネトロンスパッタ法で厚さt2
46nm(λ/8相当)成膜したうえに記録薄膜層3と
して記録薄膜GeTeを同様にマグネトロンスパッタ法
で厚さt3=20nm形成しさらに透明層4としてZn
S−SiO2を厚さt4=81nm(7λ/32相当)同
様に蒸着した。この上に反射層5としてアルミニウム
(Al)を厚さt5=50nm同様にで形成し、さらに
保護材6として基材と同じPC円盤を接着剤で貼りあわ
せ光記録媒体を形成した。
The following experiment was conducted based on the above results. As a base material, on a polycarbonate resin plate (PC, refractive index 1.58) having a thickness of 1.2 mm and a diameter of 130 mm, a mixed dielectric of zinc sulfide and silicon dioxide (Z
nS-SiO 2 ) by magnetron sputtering to a thickness t 2 =
After forming a film having a thickness of 46 nm (equivalent to λ / 8), a recording thin film GeTe as the recording thin film layer 3 was similarly formed by a magnetron sputtering method to a thickness t 3 = 20 nm, and a Zn transparent layer 4 was formed.
S-SiO 2 was vapor-deposited in the same manner as the thickness t 4 = 81 nm (corresponding to 7λ / 32). Aluminum (Al) was formed thereon as the reflective layer 5 in the same manner as the thickness t 5 = 50 nm, and the same PC disk as the base material was bonded as the protective material 6 with an adhesive to form an optical recording medium.

【0047】この記録媒体を回転させ線速度8m/se
cの線速度で波長780nmの半導体レーザー光を開口
数0.55のレンズ系で絞って記録薄膜上に焦点をあわ
せて照射した。まず記録薄膜面上で10mWの連続出力
でレーザー光を照射しトラック上の記録薄膜を一様に結
晶化させた。このトラックを1mWの連続出力(再生パ
ワー)を照射してその反射光をフォトディテクターで検
出したところ反射率は25%に相当することが確認され
た。このトラック上にレーザー光出力を記録膜面上での
出力22mW(記録パワー)と11mW(消去パワー)
との間で単一周波数5MHz変調度(duty)50%で変調
した光を照射して記録薄膜を部分的にアモルファス化さ
せてマークを形成し記録を行った。さらに1mWの再生
光を照射してその反射光をフォトディテクターで検出し
て再生を行ったところ1MHzの再生信号が得られ、こ
の再生信号をスペクトルアナライザーで測定したところ
CN比(信号対雑音比)54dB(周波数分解能30k
Hz、以下同様)が得られた。このトラックにさらに同
様にレーザー光出力22mW(記録パワー)と11W
(消去パワー)との間で異なる単一周波数2MHz変調
度(duty)50%で変調した光を照射してオーバライト記
録を行った。記録パワーが照射された部分はアモルファ
ス化され、消去パワーが照射された部分は結晶化される
ため、すでに記録されていたマークは消去されて新たな
マークが形成された。この状態で同じ再生パワーで再生
信号を測定したところ2MHzの信号のCN比は55d
Bであった。また5MHzの周波数成分としてCN比1
6dBが得られた。これはすでに記録されていた1MH
zの信号が38dB減衰したことを示している。一般に
この記録状態の再生信号のCN比と消去状態の消し残り
再生信号の差を消去率と定義しているが、この場合の消
去率は38dBとなる。一般に消去率は26dB以上あ
れば実用上十分であり、上記の結果は実用上十分である
と言える。したがって本実施例の記録媒体は高反射率で
すぐれたオーバライト特性を持つ記録媒体であるといえ
る。
By rotating this recording medium, a linear velocity of 8 m / se
A semiconductor laser beam having a wavelength of 780 nm at a linear velocity of c was focused by a lens system having a numerical aperture of 0.55 and focused on the recording thin film for irradiation. First, the recording thin film on the track was uniformly crystallized by irradiating the recording thin film surface with laser light at a continuous output of 10 mW. When this track was irradiated with a continuous output (reproduction power) of 1 mW and the reflected light was detected by a photodetector, it was confirmed that the reflectance was equivalent to 25%. The laser light output on this track is 22 mW (recording power) and 11 mW (erasing power) on the surface of the recording film.
The recording thin film was partially amorphized by irradiating light modulated with a single frequency of 5 MHz and a modulation degree (duty) of 50% between the recording and recording, and recording was performed. Furthermore, when reproducing light of 1 mW was radiated and the reflected light was detected by a photodetector and reproduced, a 1 MHz reproduction signal was obtained. When this reproduction signal was measured by a spectrum analyzer, the CN ratio (signal to noise ratio) was obtained. 54 dB (frequency resolution 30 k
Hz, and so on). Similarly, laser light output of 22 mW (recording power) and 11 W was applied to this track.
Overwrite recording was performed by irradiating light modulated at a single frequency of 2 MHz and a modulation degree (duty) of 50%, which was different from (erasing power). The portion irradiated with the recording power is made amorphous, and the portion irradiated with the erasing power is crystallized, so that the already recorded mark is erased and a new mark is formed. When the reproduction signal was measured with the same reproduction power in this state, the CN ratio of the 2 MHz signal was 55d.
It was B. Also, as a frequency component of 5 MHz, the CN ratio is 1
6 dB was obtained. This was already recorded 1MH
This shows that the z signal is attenuated by 38 dB. Generally, the difference between the CN ratio of the reproduced signal in the recorded state and the unerased reproduced signal in the erased state is defined as the erase rate. In this case, the erase rate is 38 dB. Generally, if the erasing rate is 26 dB or more, it is practically sufficient, and the above result can be said to be practically sufficient. Therefore, it can be said that the recording medium of this embodiment is a recording medium having a high reflectance and excellent overwrite characteristics.

【0048】(実施例2)記録薄膜層材料にアンチモン
(Sb)とセレン(Se)の化合物Sb2Se3を用い
た。形成法としてSbとSeの合金をターゲットに用い
たDCスパッタリング法を用いる。記録薄膜はアモルフ
ァス状態で形成される。ガラス板上に上記組成のSb2
Se3だけを蒸着したアモルファス状態の光学定数を測
定したところ、波長780nmにおいて複素屈折率n+
kiが3.00+0.15iであった。これを300℃
で5分間不活性ガス雰囲気中で熱処理して結晶状態にし
て光学定数を測定したところ4.70+0.70iであ
った。
(Example 2) A compound Sb 2 Se 3 of antimony (Sb) and selenium (Se) was used as a recording thin film layer material. As a forming method, a DC sputtering method using an alloy of Sb and Se as a target is used. The recording thin film is formed in an amorphous state. Sb 2 of the above composition on the glass plate
When the optical constant of the amorphous state in which only Se 3 was vapor-deposited was measured, the complex refractive index n + was found at a wavelength of 780 nm.
The ki was 3.00 + 0.15i. This is 300 ℃
When heat-treated in an inert gas atmosphere for 5 minutes to obtain a crystalline state, the optical constant was measured and found to be 4.70 + 0.70i.

【0049】本発明の1実施例として第1図に示すよう
に基材1としてポリカーボネート樹脂板(PC、屈折率
1.58)上に透明層2として硫化亜鉛と2酸化珪素の
混合体(ZnS−SiO2、モル比4:1、屈折率2.
10)をマグネトロンスパッタリング法で厚さt2蒸着
したうえに記録薄膜層3としてSb2Se3を前記の方法
で厚さt3形成しさらに透明層4としてZnS−SiO2
を厚さt4同様にスパッタ法で成膜した。この上に反射
層5として金(Au、屈折率0.18+4.64i)を
厚さt5DCスパッタリング法で形成し、さらに保護層
6として基材と同じ屈折率の材質の樹脂をコーティング
した。
As one embodiment of the present invention, as shown in FIG. 1, a mixture of zinc sulfide and silicon dioxide (ZnS) is used as a transparent layer 2 on a polycarbonate resin plate (PC, refractive index 1.58) as a substrate 1. -SiO 2, the molar ratio of 4: 1, the refractive index 2.
10) is vapor-deposited by magnetron sputtering to a thickness of t 2 , Sb 2 Se 3 is formed as a recording thin film layer 3 to a thickness of t 3 by the above method, and ZnS-SiO 2 is formed as a transparent layer 4.
Was formed in the same manner as the thickness t 4 by the sputtering method. On this, gold (Au, refractive index 0.18 + 4.64i) was formed as a reflective layer 5 by a thickness t 5 DC sputtering method, and a resin having the same refractive index as the base material was coated as a protective layer 6.

【0050】このような構成の場合のアモルファス状態
と結晶状態での反射率Ra、Rcおよび反射率変化ΔR
(=Rc−Ra)、記録薄膜層の吸収率Aa、Acおよ
び吸収率変化ΔA(=Ac−Aa)、反射光の位相変化
Δφをそれぞれ各層2、3、4および5の膜厚t2
3、t4およびt5を変化させて実施例1と同様に計算
した。
The reflectances Ra and Rc and the reflectance change ΔR in the amorphous state and the crystalline state in the case of such a configuration.
(= Rc-Ra), the absorptances Aa and Ac of the recording thin film layer and the absorptance change ΔA (= Ac-Aa), and the phase change Δφ of the reflected light are the film thickness t 2 of each layer 2, 3, 4 and 5, respectively.
The calculation was performed in the same manner as in Example 1 except that t 3 , t 4 and t 5 were changed.

【0051】図8は波長λ=780nmにおける記録薄
膜層の膜厚t3が20nm、反射層の膜厚t5が50n
mの場合の反射光の位相変化Δφ、吸収率変化ΔAおよ
び反射率変化ΔRの透明層2、4の厚さt2、t4依存性
の計算結果を示す。図8において吸収差ΔA=10%の
線(波線)の間が吸収差ΔAが10%以下である。また
ΔR=−10%の線(一点鎖線)の間がΔR≧−10%
で反射率変化の小さい領域である。またΔφ=−π/2
の曲線(実線)の内側が位相差が−π/2より小さい。
したがってt3=20nm、t5=50nmの条件では吸
収差が小さい領域は反射率差も小さくかつ位相差も小さ
い。したがってここではオーバライト可能で信号の大き
い領域は存在しない。
In FIG. 8, the film thickness t3 of the recording thin film layer is 20 nm and the film thickness t5 of the reflective layer is 50 n at the wavelength λ = 780 nm.
The calculation results of the thicknesses t 2 and t 4 of the transparent layers 2 and 4 of the phase change Δφ of the reflected light, the absorption rate change ΔA, and the reflectance change ΔR in the case of m are shown. In FIG. 8, the absorption difference ΔA is 10% or less between the lines (wavy lines) where the absorption difference ΔA = 10%. Also, ΔR ≧ −10% between the lines of ΔR = −10% (dashed line)
This is a region where the reflectance change is small. Also, Δφ = −π / 2
The phase difference inside the curve (solid line) is smaller than -π / 2.
Therefore, under the conditions of t 3 = 20 nm and t 5 = 50 nm, the region where the absorption difference is small has a small reflectance difference and a small phase difference. Therefore, there is no area where overwriting is possible and the signal is large.

【0052】図9は同様に波長λ=780nmにおける
記録薄膜層の膜厚t3=30nm、反射層の膜厚t5
50nmの場合の反射光の位相変化Δφ、吸収率変化Δ
Aおよび反射率変化ΔRの透明層2、4の厚さt2、t4
依存性の計算結果を示す。図中斜線を施した領域が吸収
差ΔAが10%以下かつ位相差が−π/2より小さい
(位相差の絶対値が大きい)領域である。この領域は反
射率差ΔR≧−10%で小さい。図中には示していない
がこの領域での反射率の絶対値は約55%あった。
Similarly, in FIG. 9, the film thickness t3 of the recording thin film layer at the wavelength λ = 780 nm is t3 = 30 nm, and the film thickness of the reflective layer is t 5 =
Phase change Δφ and absorptance change Δ of reflected light in the case of 50 nm
A and the thicknesses t 2 and t 4 of the transparent layers 2 and 4 having the reflectance change ΔR
The calculation result of dependence is shown. The shaded region in the figure is a region where the absorption difference ΔA is 10% or less and the phase difference is smaller than −π / 2 (the absolute value of the phase difference is large). This area is small because the reflectance difference ΔR ≧ −10%. Although not shown in the figure, the absolute value of the reflectance in this region was about 55%.

【0053】図10は同様に波長λ=780nmにおけ
る記録薄膜層の膜厚t3=40nm、反射層の膜厚t5
50nmの場合の反射光の位相変化Δφ、吸収率変化Δ
Aおよび反射率変化ΔRの透明層2、4の厚さt2、t4
依存性の計算結果を示す。図中の破線を施した領域が吸
収差ΔAが10%以下かつ位相差が−π/2より小さい
(位相差の絶対値が大きい)領域がかなり大きくなって
いることが示されている。同様にこの領域は反射率差Δ
R≧−10%で小さい領域の中に入っている。反射率の
絶対値は約45%であった。
Similarly, FIG. 10 shows that the recording thin film layer has a thickness t 3 = 40 nm and the reflective layer has a thickness t 5 = at a wavelength λ = 780 nm.
Phase change Δφ and absorptance change Δ of reflected light in the case of 50 nm
A and the thicknesses t 2 and t 4 of the transparent layers 2 and 4 having the reflectance change ΔR
The calculation result of dependence is shown. It is shown that the region shown by the broken line in the figure has a considerably large region where the absorption difference ΔA is 10% or less and the phase difference is smaller than −π / 2 (the absolute value of the phase difference is large). Similarly, this area has a reflectance difference Δ
It is within a small area with R ≧ −10%. The absolute value of reflectance was about 45%.

【0054】図11、12、13および14は同様にそ
れぞれ反射層の膜厚はt5=50nmと一定で記録薄膜
層の膜厚t3が80nm、120nm、160nmおよ
び320nmの場合の計算結果を示したものである。い
ずれも破線を施した領域が吸収差ΔAが10%以下かつ
位相差がπ/2より大きく最大πになる領域が存在す
る。これらの場合でも領域はほぼ反射率差が10%≧Δ
R≧−10%の領域と一致している。反射率の絶対値は
それぞれ40%、40%、20%および10%と記録薄
膜層が厚くなるにしたがって小さくなる傾向であった。
逆に吸収率の絶対値は記録薄膜層が大きいほど大きくな
る。
Similarly, FIGS. 11, 12, 13 and 14 show the calculation results when the thickness of the reflective layer is constant at t 5 = 50 nm and the thickness t 3 of the recording thin film layer is 80 nm, 120 nm, 160 nm and 320 nm. It is a thing. In each case, there is a region in which the absorption difference ΔA is 10% or less and the phase difference is larger than π / 2 and becomes maximum π in the region indicated by the broken line. Even in these cases, the reflectance difference in the region is approximately 10% ≧ Δ
This matches the region of R ≧ −10%. The absolute values of reflectance were 40%, 40%, 20% and 10%, respectively, and tended to decrease as the recording thin film layer became thicker.
On the contrary, the absolute value of the absorption rate increases as the recording thin film layer increases.

【0055】図15および16は反射層の厚さt5を1
0nmと薄くしたときの計算結果で、それぞれ記録薄膜
層の厚さt3=20nmおよび40nmである。いずれ
の場合においても上記のような条件は存在しない。した
がって反射層膜厚も適当に選ばなければならない。
15 and 16 show that the thickness t 5 of the reflection layer is 1.
The calculation results obtained when the thickness is reduced to 0 nm show that the thickness t 3 of the recording thin film layer is 20 nm and 40 nm, respectively. In any case, the above condition does not exist. Therefore, the thickness of the reflective layer must be selected appropriately.

【0056】以上の結果をもとにして以下の実験を行な
った。基材として厚さ1.2mm・直径130mmのポ
リカーボネート樹脂板(PC、屈折率1.58)上に透
明層2として硫化亜鉛と二酸化ケイ素の混合誘電体(Z
nS−SiO2)をマグネトロンスパッタ法で厚さt2
197nm(17λ/32相当)成膜したうえに記録薄
膜層3として記録薄膜Sb2Te3を同様にマグネトロン
スパッタ法で厚さt 3=40nm形成しさらに透明層4
としてZnS−SiO2を厚さt4=163nm(7λ/
16相当)同様に蒸着した。この上に反射層5としてア
ルミニウム(Al)を厚さt5=50nm同様にで形成
し、さらに保護材6として基材と同じPC円盤を接着剤
で貼りあわせ光記録媒体を形成した。
The following experiment was conducted based on the above results.
It was. A base material with a thickness of 1.2 mm and a diameter of 130 mm
Transparent on a polycarbonate resin plate (PC, refractive index 1.58)
As the light layer 2, a mixed dielectric of zinc sulfide and silicon dioxide (Z
nS-SiO2) By magnetron sputtering method2=
197 nm (equivalent to 17λ / 32) film formation and recording thin
Recording thin film Sb as the film layer 32Te3As well as the magnetron
Thickness t by sputtering method 3= 40 nm and transparent layer 4
As ZnS-SiO2The thickness tFour= 163 nm (7λ /
16 equivalent) was vapor-deposited similarly. A reflective layer 5 is formed on top of this.
Luminium (Al) thickness tFive= 50nm
In addition, the same PC disk as the base material is glued as the protective material 6.
To form an optical recording medium.

【0057】この記録媒体を回転させ線速度1.3m/
secの線速度で波長780nmの半導体レーザー光を
開口数0.55のレンズ系で絞って記録薄膜上に焦点を
あわせて照射した。まず記録薄膜面上で8.5mWの連
続出力でレーザー光を照射しトラック上の記録薄膜を一
様に結晶化させた。このトラックを1mWの連続出力
(再生パワー)を照射してその反射光をフォトディテク
ターで検出したところ反射率は45%に相当することが
確認された。このトラック上にレーザー光出力を記録膜
面上での出力19mW(記録パワー)と9mW(消去パ
ワー)との間で単一周波数1MHz変調度(duty)50%
で変調した光を照射して記録薄膜を部分的にアモルファ
ス化させてマークを形成し記録を行った。さらに1mW
の再生光を照射してその反射光をフォトディテクターで
検出して再生を行ったところ1MHzの再生信号が得ら
れた。再生信号をスペクトルアナライザーで測定したと
ころCN比52dB(周波数分解能10kHz、以下同
様)が得られた。このトラックにさらに同様にレーザー
光出力15mW(記録パワー)と8mW(消去パワー)
との間で異なる単一周波数200kHz変調度(duty)5
0%で変調した光を照射してオーバライト記録を行っ
た。記録パワーが照射された部分はアモルファス化さ
れ、消去パワーが照射された部分は結晶化され、すでに
記録されていたマークは消去され新たなマークが形成さ
れた。この状態で同じ再生パワーで再生信号を測定した
ところ200kHzの信号のCN比は53dBであっ
た。また1MHzの周波数成分としてCN比18dBが
得られた。すなわち消去率は33dBであり、実用上十
分な値であった。したがって本実施例の記録媒体は高反
射率ですぐれたオーバライト特性を持つ記録媒体である
といえる。
This recording medium was rotated to obtain a linear velocity of 1.3 m /
A semiconductor laser beam having a wavelength of 780 nm was focused at a linear velocity of sec with a lens system having a numerical aperture of 0.55 and focused on the recording thin film for irradiation. First, the recording thin film on the track was uniformly crystallized by irradiating the recording thin film surface with laser light at a continuous output of 8.5 mW. When this track was irradiated with a continuous output (reproduction power) of 1 mW and the reflected light was detected by a photodetector, it was confirmed that the reflectance was equivalent to 45%. The laser light output on this track is a single frequency 1 MHz between the output on the recording film surface of 19 mW (recording power) and 9 mW (erasing power) and the modulation degree (duty) 50%.
The recording thin film was partially amorphized by irradiating the light modulated by the above to form a mark for recording. 1mW
When the reproduction light was irradiated and the reflected light was detected by a photo detector to reproduce, a reproduction signal of 1 MHz was obtained. When the reproduced signal was measured with a spectrum analyzer, a CN ratio of 52 dB (frequency resolution 10 kHz, the same applies hereinafter) was obtained. Similarly, a laser light output of 15 mW (recording power) and 8 mW (erasing power) was applied to this track.
Single frequency 200kHz which is different between and
Overwrite recording was performed by irradiating light modulated at 0%. The part irradiated with the recording power was made amorphous, the part irradiated with the erasing power was crystallized, and the already recorded mark was erased to form a new mark. When the reproduction signal was measured with the same reproduction power in this state, the CN ratio of the 200 kHz signal was 53 dB. A CN ratio of 18 dB was obtained as a frequency component of 1 MHz. That is, the erasing rate was 33 dB, which was a practically sufficient value. Therefore, it can be said that the recording medium of this embodiment is a recording medium having a high reflectance and excellent overwrite characteristics.

【0058】以上の実施例に示すように第一の透明層、
記録薄膜層、第二の透明層および反射層の膜厚を選ぶこ
とにより入射した光の反射光の位相が変化し、かつ変化
の前後で記録薄膜材料層の光吸収の変化が小さくなるよ
うにすると、高反射率でも吸収差による昇温条件差を発
生させない条件が可能である。
As shown in the above examples, the first transparent layer,
By selecting the film thickness of the recording thin film layer, the second transparent layer and the reflective layer, the phase of the reflected light of the incident light changes, and the change in the light absorption of the recording thin film material layer before and after the change is reduced. Then, even under high reflectance, a condition that does not cause a temperature rise condition difference due to an absorption difference is possible.

【0059】[0059]

【発明の効果】以上のように位相変化を用いることによ
って反射率変化では達成できない小さい吸収率変化が可
能で、記録部と未記録部でのオーバライト記録時の昇温
条件の差による記録状態の歪が抑えられ、高反射率でも
オーバライト書換えが可能となる。
As described above, by using the phase change, a small change in the absorptance that cannot be achieved by the change in the reflectance is possible, and the recording state is caused by the difference in the temperature rising condition during the overwrite recording in the recorded portion and the unrecorded portion. Distortion is suppressed and overwrite rewriting is possible even with high reflectance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例の構成を示す模式図FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention.

【図2】本発明の実施例において最適な領域を求める計
算結果を図示した特性図
FIG. 2 is a characteristic diagram illustrating a calculation result for obtaining an optimum area in the embodiment of the present invention.

【図3】本発明の実施例において最適な領域を求める計
算結果を図示した特性図
FIG. 3 is a characteristic diagram showing calculation results for obtaining an optimum area in the embodiment of the present invention.

【図4】本発明の実施例において最適な領域を求める計
算結果を図示した特性図
FIG. 4 is a characteristic diagram showing calculation results for obtaining an optimum area in the embodiment of the present invention.

【図5】本発明の実施例において最適な領域を求める計
算結果を図示した特性図
FIG. 5 is a characteristic diagram showing calculation results for obtaining an optimum area in the embodiment of the present invention.

【図6】本発明の実施例において最適な領域を求める計
算結果を図示した特性図
FIG. 6 is a characteristic diagram illustrating calculation results for obtaining an optimum area in the embodiment of the present invention.

【図7】本発明の実施例において最適な領域を求める計
算結果を図示した特性図
FIG. 7 is a characteristic diagram showing calculation results for obtaining an optimum area in the embodiment of the present invention.

【図8】本発明の実施例において最適な領域を求める計
算結果を図示した特性図
FIG. 8 is a characteristic diagram illustrating a calculation result for obtaining an optimum area in the embodiment of the present invention.

【図9】本発明の実施例において最適な領域を求める計
算結果を図示した特性図
FIG. 9 is a characteristic diagram illustrating a calculation result for obtaining an optimum area in the embodiment of the present invention.

【図10】本発明の実施例において最適な領域を求める
計算結果を図示した特性図
FIG. 10 is a characteristic diagram illustrating a calculation result for obtaining an optimum area in the embodiment of the present invention.

【図11】本発明の実施例において最適な領域を求める
計算結果を図示した特性図
FIG. 11 is a characteristic diagram illustrating a calculation result for obtaining an optimum area in the embodiment of the present invention.

【図12】本発明の実施例において最適な領域を求める
計算結果を図示した特性図
FIG. 12 is a characteristic diagram illustrating calculation results for obtaining an optimum area in the embodiment of the present invention.

【図13】本発明の実施例において最適な領域を求める
計算結果を図示した特性図
FIG. 13 is a characteristic diagram illustrating a calculation result for obtaining an optimum area in the embodiment of the present invention.

【図14】本発明の実施例において最適な領域を求める
計算結果を図示した特性図
FIG. 14 is a characteristic diagram illustrating a calculation result for obtaining an optimum area in the embodiment of the present invention.

【図15】本発明の実施例において最適な領域を求める
計算結果を図示した特性図
FIG. 15 is a characteristic diagram illustrating a calculation result for obtaining an optimum area in the embodiment of the present invention.

【図16】本発明の実施例において最適な領域を求める
計算結果を図示した特性図
FIG. 16 is a characteristic diagram showing calculation results for obtaining an optimum area in the example of the present invention.

【符号の説明】[Explanation of symbols]

1 基材 2 透明層 3 記録薄膜層 4 透明層 5 反射層 6 保護材 1 Base Material 2 Transparent Layer 3 Recording Thin Film Layer 4 Transparent Layer 5 Reflective Layer 6 Protective Material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長田 憲一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 坂上 嘉孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山田 昇 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Nagata 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yoshitaka Sakagami, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 72) Inventor Noboru Yamada 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】基材上に、レーザー光照射によって光学的
に検知し得る変化を生じる記録薄膜材料層を設けた光学
的情報記録媒体であって、 薄膜材料はレーザー光照射により形状の変化をほとんど
伴わずに光学定数が変化し、検知し得る変化が主として
入射した光の反射光の位相の変化に起因するものであ
り、 変化の前後で記録薄膜材料層の光吸収の変化が小さいこ
とを特徴とする光学的情報記録媒体。
1. An optical information recording medium comprising a substrate and a recording thin film material layer which produces a change which can be optically detected by laser light irradiation, wherein the thin film material changes its shape by laser light irradiation. The optical constant changes with almost no change, and the change that can be detected is mainly due to the change in the phase of the reflected light of the incident light, and the change in the light absorption of the recording thin film material layer before and after the change is small. A characteristic optical information recording medium.
【請求項2】変化の前後で入射した光の反射光振幅の変
化が小さいことを特徴とする請求項1記載の光学的情報
記録媒体。
2. The optical information recording medium according to claim 1, wherein a change in reflected light amplitude of incident light before and after the change is small.
【請求項3】基材上に基材と屈折率が異なる第一の透明
層を設け、その上に記録薄膜層を設け、さらにその上に
第二の透明層を設け、その上に反射層を設けた構造の光
学的情報記録媒体であって、前記第一の透明層、記録薄
膜層、第二の透明層および反射層の膜厚が、記録材料の
形状の変化をほとんど伴わない光学定数の変化に際して
入射した光の反射光の位相が変化し、かつ変化の前後で
記録薄膜材料層の光吸収の変化が小さくなるように選ば
れたことを特徴とする請求項1ないし2記載の光学的情
報記録媒体。
3. A first transparent layer having a refractive index different from that of the substrate is provided on a substrate, a recording thin film layer is provided thereon, and a second transparent layer is provided thereon, and a reflective layer is provided thereon. An optical information recording medium having a structure, wherein the film thickness of the first transparent layer, the recording thin film layer, the second transparent layer and the reflective layer is an optical constant with almost no change in the shape of the recording material. 3. The optics according to claim 1 or 2, wherein the phase of the reflected light of the incident light is changed upon the change of the above, and the change of the light absorption of the recording thin film material layer before and after the change is reduced. Information recording medium.
【請求項4】変化の前後で光吸収の変化が±10%以内
であることを特徴とする請求項3記載の光学的情報記録
媒体。
4. The optical information recording medium according to claim 3, wherein the change in light absorption before and after the change is within ± 10%.
【請求項5】位相変化Δφが略々 (1±2N)π N:整数 であることを特徴とする請求項1ないし2記載の光学的
情報記録媒体。
5. The optical information recording medium according to claim 1, wherein the phase change Δφ is approximately (1 ± 2N) π N: an integer.
【請求項6】位相変化Δφが3π/2≧Δφ≧π/2あ
るいは−3π/2≦Δφ≦−π/2の範囲であることを
特徴とする請求項1ないし2記載の光学的情報記録媒
体。
6. The optical information recording according to claim 1, wherein the phase change Δφ is in the range of 3π / 2 ≧ Δφ ≧ π / 2 or −3π / 2 ≦ Δφ ≦ −π / 2. Medium.
【請求項7】変化の前後で反射率が40%以上であるこ
とを特徴とする請求項2記載の光学的情報記録媒体。
7. The optical information recording medium according to claim 2, wherein the reflectance is 40% or more before and after the change.
【請求項8】変化の前後で反射率が20%以上であるこ
とを特徴とする請求項2記載の光学的情報記録媒体。
8. The optical information recording medium according to claim 2, wherein the reflectance is 20% or more before and after the change.
【請求項9】基材上に、レーザー光照射によって光学的
に検知し得る変化を生じる記録薄膜材料層を設けた光学
的情報記録媒体であって、 薄膜材料はレーザー光照射により形状の変化をほとんど
伴わずに光学定数が変化し、使用する波長での薄膜材料
の消衰係数kが変化の前後のどちらか一方で k≦1.0 の範囲であり、かつ変化の前後で屈折率nの変化が1.
5倍以上であり、 検知し得る変化が主として入射した光の反射光の位相の
変化に起因するものであることを特徴とする光学的情報
記録媒体。
9. An optical information recording medium comprising a substrate and a recording thin film material layer which produces a change which can be optically detected by laser light irradiation, wherein the thin film material changes its shape by laser light irradiation. The optical constant changes with almost no change, the extinction coefficient k of the thin film material at the wavelength used is in the range of k ≦ 1.0 either before or after the change, and the refractive index n before and after the change. The change is 1.
An optical information recording medium, which is 5 times or more, and a detectable change is mainly due to a change in a phase of reflected light of incident light.
【請求項10】基材上に、レーザー光照射によって光学
的に検知し得る変化を生じる記録薄膜材料層を設けた光
学的情報記録媒体であって、 薄膜材料はレーザー光照射により形状の変化をほとんど
伴わずに光学定数が変化し、薄膜材料の屈折率nおよび
消衰係数kが変化の前後で n≧2.0、k≦1.0 の範囲であり、かつ屈折率nの変化が1.5倍以上であ
り、 検知し得る変化が主として入射した光の反射光の位相の
変化に起因するものであることを特徴とする光学的情報
記録媒体。
10. An optical information recording medium having a recording thin film material layer provided on a base material, the recording thin film material layer causing a change which can be optically detected by the laser light irradiation, wherein the thin film material changes its shape by the laser light irradiation. The optical constant changes with almost no change, the refractive index n and the extinction coefficient k of the thin film material are within the range of n ≧ 2.0 and k ≦ 1.0 before and after the change, and the change of the refractive index n is 1 or less. An optical information recording medium, which is 5 times or more, and the detectable change is mainly due to the change in the phase of the reflected light of the incident light.
【請求項11】基材上に基材と屈折率が異なる第一の透
明層を設け、その上に記録薄膜層を設け、さらにその上
に第二の透明層を設け、その上に反射層を設けた構造の
光学的情報記録媒体であって、記録薄膜層が相変化によ
り形状の変化を伴わずに光学定数が変化する記録材料か
らなり、前記第一の透明層、記録薄膜層、第二の透明層
および反射層の膜厚が、記録材料の変化に際して入射し
た光の反射光の位相が変化し、かつ変化の前後で記録薄
膜材料層の光吸収の変化が小さくなるように選ばれたこ
とを特徴とする光学的情報記録媒体。
11. A first transparent layer having a refractive index different from that of the substrate is provided on a substrate, a recording thin film layer is provided thereon, and a second transparent layer is further provided thereon, and a reflective layer is provided thereon. An optical information recording medium having a structure, wherein the recording thin film layer is made of a recording material whose optical constant changes without a change in shape due to a phase change, and the first transparent layer, recording thin film layer, The thicknesses of the second transparent layer and the reflective layer are selected so that the phase of the reflected light of the incident light changes when the recording material changes, and the change in the light absorption of the recording thin film material layer before and after the change is small. An optical information recording medium characterized by the above.
【請求項12】変化の前後で光吸収の変化が±10%以
内であることを特徴とする請求項11記載の光学的情報
記録媒体。
12. The optical information recording medium according to claim 11, wherein the change in light absorption before and after the change is within ± 10%.
【請求項13】結晶状態の光吸収Acとアモルファス状
態の光吸収率Aaの差ΔA(=Ac−Aa)が20%≧
ΔA≧0%の範囲であることを特徴とする請求項11記
載の光学的情報記録媒体
13. The difference ΔA (= Ac−Aa) between the light absorption Ac in the crystalline state and the light absorption rate Aa in the amorphous state is 20% ≧.
12. The optical information recording medium according to claim 11, wherein ΔA ≧ 0%.
【請求項14】結晶状態の光吸収Acとアモルファス状
態の光吸収率Aa野差ΔA(=Ac−Aa)が10%≧
ΔA≧0%の範囲であることを特徴とする請求項11記
載の光学的情報記録媒体。
14. The difference between the light absorption Ac in the crystalline state and the light absorption rate Aa in the amorphous state ΔA (= Ac-Aa) is 10% ≧.
The optical information recording medium according to claim 11, wherein ΔA ≧ 0%.
【請求項15】位相変化Δφが略々 (1±2N)π N:整数 であることを特徴とする請求項11ないし12記載の光
学的情報記録媒体。
15. The optical information recording medium according to claim 11, wherein the phase change Δφ is approximately (1 ± 2N) π N: integer.
【請求項16】位相変化Δφが3π/2≧Δφ≧π/2
あるいは−3π/2≦Δφ≦−π/2の範囲であること
を特徴とする請求項11ないし12記載の光学的情報記
録媒体。
16. A phase change Δφ of 3π / 2 ≧ Δφ ≧ π / 2
Alternatively, the optical information recording medium according to any one of claims 11 to 12, wherein the range is -3π / 2 ≤ Δφ ≤ -π / 2.
【請求項17】変化の前後で反射率が40%以上である
ことを特徴とする請求項11記載の光学的情報記録媒
体。
17. The optical information recording medium according to claim 11, wherein the reflectance is 40% or more before and after the change.
【請求項18】変化の前後で反射率が20%以上である
ことを特徴とする請求項11記載の光学的情報記録媒
体。
18. The optical information recording medium according to claim 11, wherein the reflectance is 20% or more before and after the change.
【請求項19】基材上に、レーザー光照射によって光学
的に検知し得る変化を生じる記録薄膜材料層を設けた光
学的情報記録媒体であって、 薄膜材料はレーザー光照射により相変化により形状の変
化をほとんど伴わずに光学定数が変化し、使用する波長
での薄膜材料の消衰係数kが変化の前後のどちらか一方
で k≦1.0 の範囲であり、かつ変化の前後で屈折率nの変化が1.
5倍以上であり、 検知し得る変化が主として入射した光の反射光の位相の
変化に起因するものであることを特徴とする光学的情報
記録媒体。
19. An optical information recording medium having a recording thin film material layer provided on a base material, the recording thin film material layer causing a change which can be optically detected by laser light irradiation, wherein the thin film material is formed by a phase change by laser light irradiation. The optical constant changes with almost no change, and the extinction coefficient k of the thin film material at the wavelength used is within the range of k ≦ 1.0 either before or after the change, and refraction before and after the change. The change in the rate n is 1.
An optical information recording medium, which is 5 times or more, and a detectable change is mainly due to a change in a phase of reflected light of incident light.
【請求項20】基材上に、レーザー光照射によって光学
的に検知し得る変化を生じる記録薄膜材料層を設けた光
学的情報記録媒体であって、 薄膜材料はレーザー光照射により相変化により形状の変
化をほとんど伴わずに光学定数が変化し、薄膜材料の屈
折率nおよび消衰係数kが変化の前後で n≧2.0、k≦1.0 の範囲であり、かつ屈折率nの変化が1.5倍以上であ
り、 検知し得る変化が主として入射した光の反射光の位相の
変化に起因するものであることを特徴とする光学的情報
記録媒体。
20. An optical information recording medium comprising a substrate and a recording thin film material layer which produces a change which can be optically detected by laser light irradiation, wherein the thin film material is shaped by a phase change by laser light irradiation. The optical constants change with almost no change, and the refractive index n and the extinction coefficient k of the thin film material are within the range of n ≧ 2.0 and k ≦ 1.0 before and after the change, and the refractive index n An optical information recording medium, wherein the change is 1.5 times or more, and the detectable change is mainly due to a change in the phase of reflected light of incident light.
【請求項21】薄膜材料がアンチモン(Sb)およびセ
レン(Se)からなる材料を主成分とすることを特徴と
する請求項11記載の光学的情報記録媒体。
21. The optical information recording medium according to claim 11, wherein the thin film material contains a material composed of antimony (Sb) and selenium (Se) as main components.
【請求項22】薄膜材料がゲルマニウム(Ge)および
テルル(Te)からなる材料を主成分とすることを特徴
とする請求項11記載の光学的情報記録媒体。
22. The optical information recording medium according to claim 11, wherein the thin film material contains a material composed of germanium (Ge) and tellurium (Te) as main components.
JP5284831A 1992-11-25 1993-11-15 Optical information recording medium Pending JPH06274938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5284831A JPH06274938A (en) 1992-11-25 1993-11-15 Optical information recording medium

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP31481192 1992-11-25
JP639993 1993-01-19
JP5-6399 1993-01-19
JP4-314811 1993-01-19
JP5284831A JPH06274938A (en) 1992-11-25 1993-11-15 Optical information recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001142991A Division JP2002008265A (en) 1992-11-25 2001-05-14 Optical information recording medium

Publications (1)

Publication Number Publication Date
JPH06274938A true JPH06274938A (en) 1994-09-30

Family

ID=27277152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5284831A Pending JPH06274938A (en) 1992-11-25 1993-11-15 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPH06274938A (en)

Similar Documents

Publication Publication Date Title
JP2806274B2 (en) Optical information recording medium
JP2512087B2 (en) Optical recording medium and optical recording method
JPH08287515A (en) Optical information recording medium
JP2602314B2 (en) Laser beam overwriting method for phase change optical disk and apparatus for phase change optical disk using the same
KR0160363B1 (en) Phase change optical disk
JP4339999B2 (en) Optical information recording medium, manufacturing method thereof, recording / reproducing method, and recording / reproducing apparatus
KR100365675B1 (en) Optical information recording medium and method of manufacturing the same, recording regeneration method, and recording regeneration device
JP3076412B2 (en) Optical information recording medium and optical information recording / reproducing method
JPH0734267B2 (en) Reversible optical information recording medium and recording / reproducing method
JPH07105574A (en) Optical information recording medium
US5527661A (en) Optical information recording medium
JP3012734B2 (en) Optical information recording medium and structure design method thereof
JP2778237B2 (en) Optical information recording medium and optical recording / erasing method
JP2000215516A (en) Optical information recording medium, manufacturing method thereof, recording / reproducing method and recording / reproducing apparatus
JP2661293B2 (en) Optical information recording medium
JP3049864B2 (en) Optical information recording medium
JP2001023236A (en) Optical information recording medium and its initialization method
JPH08329528A (en) Optical recording medium and recording / reproducing method
JP3087454B2 (en) Optical information recording medium and structure design method thereof
JPH07105063B2 (en) Optical information recording medium
JPH06274938A (en) Optical information recording medium
JPH07105064B2 (en) Optical information recording medium
JP2001028148A (en) Optical information recording medium, manufacturing method thereof, recording / reproducing method, and recording / reproducing apparatus
JP2002008265A (en) Optical information recording medium
JP2782910B2 (en) Optical information recording method, reproducing method and erasing method