[go: up one dir, main page]

JPH06273773A - Ferroelectric liquid crystal display device - Google Patents

Ferroelectric liquid crystal display device

Info

Publication number
JPH06273773A
JPH06273773A JP6152593A JP6152593A JPH06273773A JP H06273773 A JPH06273773 A JP H06273773A JP 6152593 A JP6152593 A JP 6152593A JP 6152593 A JP6152593 A JP 6152593A JP H06273773 A JPH06273773 A JP H06273773A
Authority
JP
Japan
Prior art keywords
liquid crystal
thickness
cell
film
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6152593A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ito
伊藤信行
Muneyuki Motohashi
本橋宗之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6152593A priority Critical patent/JPH06273773A/en
Publication of JPH06273773A publication Critical patent/JPH06273773A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide a cell having a uniform thickness and to attain a high contrast and uniform display by specifying the thickness of a liquid crystal layer to be clamped between a pair of light transparent substrates to a specific value or below and arranging adhesive material layers on both sides of spacer members consisting of inorg. insulator film outside display pixels. CONSTITUTION:The inorg. insulator films are used as the spacer members for controlling the cell thickness of the liquid crystal display device having the cell thickness as small as <=2mum The spacers are formed outside the display pixels. The adhesive 5 layers for sticking two sheets of the substrates 2a, 2b facing each other are arranged and adhered on both sides so as to hold the spacers 9 therebetween. A silicon oxide, silicon nitride, silicon carbide, silicon nitride contg. hydrogen, silicon carbide contg. hydrogen, aluminum oxide, etc., are used as the inorg. insulator films. The spacers 9 can be arranged only outside the display pixels by using the inorg. insulator films as the spacer members. An adverse influence on the orientation characteristics and switching characteristics is thus averted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置に関す
る。さらに詳しくは、コントラストの高いマトリクス型
大容量強誘電性液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device. More specifically, the present invention relates to a matrix type large capacity ferroelectric liquid crystal display device having high contrast.

【0002】[0002]

【従来の技術】強誘電性液晶(FLC)はメモリ性、高
速応答、広視野角などの優れた特長を有しており、高精
細大表示容量の液晶表示装置への応用がさかんに研究さ
れている。
2. Description of the Related Art Ferroelectric liquid crystal (FLC) has excellent characteristics such as memory property, high-speed response and wide viewing angle, and its application to liquid crystal display devices with high definition and large display capacity has been extensively studied. ing.

【0003】図5に、強誘電性液晶セルの構造の一例
を、概略的な断面図で示す。2枚のガラス基板2a、2
bが互いに対向して配置され、一方のガラス基板2aの
表面にはインジウム錫酸化物(以下ITOと略する)等
からなる透明な信号電極Sが複数本互いに平行に配置さ
れ、その上にSiO2 等からなる透明な絶縁膜3aが形
成されている。もう一方のガラス基板2bの表面にはI
TO等からなる透明な走査電極Lが、信号電極Sと直交
する向きに複数本互いに平行に配置されており、その上
はSiO2 等からなる透明な絶縁膜3bで被覆されてい
る。各絶縁膜3a、3b上には、配向膜4a、4bが形
成されたのち、ラビング処理などの一軸配向処理が施さ
れる。配向膜はポリイミド膜、ナイロン膜、ポリビニル
アルコール膜などの有機高分子膜や、SiO斜方蒸着膜
などが用いられる。これら2枚のガラス基板2a、2b
はセル厚制御用のスペーサー8を介して、接着剤5で接
着されたのち、配向膜4a、4bで挟まれる空間内に強
誘電性液晶(FLC)6が注入される。このようにして
貼り合わせた2枚のガラス基板2a、2bは、互いの偏
光軸が直交するように配置した2枚の偏光板7a、7b
で挟まれている。
FIG. 5 is a schematic sectional view showing an example of the structure of a ferroelectric liquid crystal cell. Two glass substrates 2a, 2
b are arranged to face each other, and a plurality of transparent signal electrodes S made of indium tin oxide (hereinafter abbreviated as ITO) or the like are arranged in parallel with each other on the surface of one glass substrate 2a, and SiO is formed thereon. A transparent insulating film 3a made of 2 or the like is formed. I is on the surface of the other glass substrate 2b.
A plurality of transparent scanning electrodes L made of TO or the like are arranged in parallel to each other in a direction orthogonal to the signal electrodes S, and a transparent insulating film 3b made of SiO 2 or the like is coated thereon. After the alignment films 4a and 4b are formed on the insulating films 3a and 3b, a uniaxial alignment process such as a rubbing process is performed. As the alignment film, an organic polymer film such as a polyimide film, a nylon film, a polyvinyl alcohol film, or a SiO oblique vapor deposition film is used. These two glass substrates 2a, 2b
After being bonded with an adhesive 5 via a spacer 8 for controlling the cell thickness, a ferroelectric liquid crystal (FLC) 6 is injected into the space sandwiched between the alignment films 4a and 4b. The two glass substrates 2a and 2b thus bonded together have two polarizing plates 7a and 7b arranged so that their polarization axes are orthogonal to each other.
It is sandwiched between.

【0004】強誘電性液晶セルは、一対の透光性基板間
に挟持される液晶層の厚さ(以下セル厚と称する)を2
μm以下に非常に薄くする必要があることは、一般に知
られている。セル厚が薄くなるにともなって、わずかな
セル厚のバラツキや、配向状態の不均一性でも、コント
ラストなどの表示品質に大きく影響する。したがって、
強誘電性液晶において、このセル厚および配向状態の制
御は、従来のセル厚の厚いSTN方式等の液晶に比較し
て、重要な課題である。
In a ferroelectric liquid crystal cell, the thickness of a liquid crystal layer sandwiched between a pair of transparent substrates (hereinafter referred to as cell thickness) is 2
It is generally known that it is necessary to make the thickness very thin below μm. As the cell thickness becomes thinner, even slight variations in cell thickness and non-uniformity of the alignment state greatly affect the display quality such as contrast. Therefore,
In the ferroelectric liquid crystal, the control of the cell thickness and the alignment state is an important issue as compared with the conventional liquid crystal of the STN system or the like having a large cell thickness.

【0005】通常、強誘電性液晶セルのセル厚を制御す
る手段としては、粒形のスペーサー8を、配向膜4a、
4b上に散布し、一対の透光性基板間に介在させる方法
が一般的である。
Usually, as a means for controlling the cell thickness of a ferroelectric liquid crystal cell, a granular spacer 8 is used for the alignment film 4a,
In general, the method of spraying on 4b and interposing it between a pair of translucent substrates.

【0006】別の手段として、スペーサー部材に、感光
性ポリイミドなどの有機膜を用いる方法(特開昭61ー
73925、特開昭61ー196230、特開昭61ー
208033、特開昭61ー241727、特開昭62
ー280721等)が提案されている
As another means, a method of using an organic film such as photosensitive polyimide for the spacer member (Japanese Patent Laid-Open No. 61-73925, Japanese Patent Laid-Open No. 61-196230, Japanese Patent Laid-Open No. 61-208033, Japanese Patent Laid-Open No. 61-241727). , JP-A-62
-280721 etc.) has been proposed

【0007】[0007]

【発明が解決しようとする課題】しかし、粒形のスペー
サーを散布する方法では、厚さのバラツキが大きく、十
分に均一なセル厚を得るのは困難であった。また、この
方法では、表示画素内にも、粒形のスペーサー8が散布
され、図6に示すように、この部分の液晶の配向状態が
他の部分と異なり、スイッチング特性も異なるという問
題があった。
However, in the method in which the granular spacers are dispersed, it is difficult to obtain a sufficiently uniform cell thickness due to a large variation in thickness. Further, this method has a problem that the granular spacers 8 are also scattered in the display pixels, and as shown in FIG. 6, the alignment state of the liquid crystal in this portion is different from that in the other portions, and the switching characteristics are also different. It was

【0008】感光性ポリイミドなどの有機膜を用いる方
法では、有機膜を表示画素以外の場所に設ければ、画素
内にスペーサーが入り配向性を乱すという問題は解決さ
れる。しかし、作製工程上次の問題が発生する。つま
り、通常液晶セルを作製するには、2枚の透光性基板の
距離が所定の値より広がるのを防ぐために、スペーサー
を介して高圧でプレスしながら、接着剤で貼り合わせる
必要がある。その際に、有機膜では、機械的強度が弱い
ので、膜が崩れてしまい、所定の均一なセル厚を得るこ
とができないという問題があった。
In the method using the organic film such as photosensitive polyimide, the problem that the spacer enters the pixel and disturbs the orientation is solved by providing the organic film at a place other than the display pixel. However, the following problems occur in the manufacturing process. That is, in order to manufacture a normal liquid crystal cell, it is necessary to bond the two translucent substrates with an adhesive while pressing at high pressure via a spacer in order to prevent the distance between the two translucent substrates from expanding beyond a predetermined value. At that time, since the organic film has low mechanical strength, the film collapses and there is a problem that a predetermined uniform cell thickness cannot be obtained.

【0009】以上の問題は、セル厚の厚いSTN方式等
では、重要な問題ではなかったが、セル厚が2μm以下
の強誘電性液晶では、コントラストなどの表示品質に大
きく影響する。
The above problem is not an important problem in the STN system or the like having a large cell thickness, but a ferroelectric liquid crystal having a cell thickness of 2 μm or less has a great influence on display quality such as contrast.

【0010】本発明は、これらの問題を解決して、高コ
ントラストな、表示品質の優れた強誘電性液晶セルを提
供しようとするものである。
The present invention intends to solve these problems and provide a ferroelectric liquid crystal cell having high contrast and excellent display quality.

【0011】[0011]

【課題を解決するための手段】本発明は、強誘電性液晶
表示装置のように、セル厚が2μm以下の薄い液晶表示
装置において、セル厚制御用のスペーサー部材として無
機絶縁体膜を用い、スペーサーを表示画素外に形成する
ことを特徴とする。また、対向する2枚の基板を貼り合
わせるための接着剤層を、スペーサーを挟むように両側
に配置し、接着することを特徴とする。無機絶縁体膜と
しては、シリコン酸化物、シリコン窒化物、シリコン炭
化物、水素を含有するシリコン窒化物、水素を含有する
シリコン炭化物、アルミニウム酸化物等を使用すること
ができる。
According to the present invention, in a thin liquid crystal display device having a cell thickness of 2 μm or less, such as a ferroelectric liquid crystal display device, an inorganic insulating film is used as a spacer member for controlling the cell thickness, The spacer is formed outside the display pixel. Further, it is characterized in that adhesive layers for adhering two substrates facing each other are arranged on both sides so as to sandwich the spacer and are bonded. As the inorganic insulator film, silicon oxide, silicon nitride, silicon carbide, silicon nitride containing hydrogen, silicon carbide containing hydrogen, aluminum oxide, or the like can be used.

【0012】[0012]

【作用】スペーサー部材として無機絶縁体膜を用いるこ
とにより、表示画素内の無機絶縁体膜をエッチング等の
方法で除去して、表示画素外のみにスペーサーを配置す
ることができ、配向特性、スイッチング特性に悪影響を
及ぼさない様にできる。さらに、無機絶縁体膜は機械的
強度が強いので、基板接着のプレスの際にも膜が破壊さ
れず、所定のセル厚を保持できる。
By using the inorganic insulating film as the spacer member, the inorganic insulating film in the display pixel can be removed by a method such as etching, and the spacer can be arranged only outside the display pixel. It is possible to prevent the characteristics from being adversely affected. Furthermore, since the inorganic insulator film has high mechanical strength, the film is not destroyed even when the substrate is pressed for adhesion, and a predetermined cell thickness can be maintained.

【0013】小面積の液晶セルでは、無機絶縁体膜を用
いることにより、セル厚の均一性を確保できるが、大面
積になるほど、この均一性を保つことは、困難になって
くる。そこで、接着剤層を、スペーサーを挟むように両
側に配置することにより、セル厚の均一性をさらに向上
させることができた。以下にもう少し詳述する。
In a small-area liquid crystal cell, the use of an inorganic insulating film makes it possible to ensure the uniformity of the cell thickness, but the larger the area, the more difficult it becomes to maintain this uniformity. Therefore, by arranging the adhesive layer on both sides so as to sandwich the spacer, it was possible to further improve the uniformity of the cell thickness. More on this below.

【0014】図2は、基板の貼り合わせ方法とセル厚の
分布について詳細に検討した結果を示す断面図である。
FIG. 2 is a cross-sectional view showing the result of a detailed examination of the substrate bonding method and cell thickness distribution.

【0015】まず、スペーサー9の外側のみを接着剤5
で貼り合わせた場合には、セル中央部がふくらんでしま
い(図2(a))、逆にスペーサー9の内側のみを接着
剤5で貼り合わせた場合には、セル中央部がへこんでし
まう(図2(b))。この原因は、高圧でプレスしなが
ら接着する際に、有機膜である接着剤が硬化収縮する一
方、無機絶縁体であるスペーサーは、収縮しないためで
ある。そこで、図2(c)のように、スペーサー9を挟
んで内側と外側の両側を接着剤5によって接着すること
により、この基板のそりを緩和し、ガラス基板2a、2
bの間隔、すなわちセル厚を、スペーサー9の膜厚とほ
ぼ等しく、均一に保つことができる。
First, the adhesive 5 is applied only to the outside of the spacer 9.
When the cells are pasted together, the cell center portion bulges (FIG. 2 (a)). Conversely, when only the inside of the spacer 9 is pasted with the adhesive 5, the cell center portion is dented ( FIG. 2B). This is because the adhesive, which is an organic film, is cured and shrunk while the spacer, which is an inorganic insulator, is not shrunk when adhering while pressing under high pressure. Therefore, as shown in FIG. 2C, the inner side and the outer side of the glass substrate 2a and the outer side of the glass substrate 2a, 2a, 2a, 2a and 2d are adhered to each other with an adhesive 5 so as to sandwich the spacer 9 therebetween.
The distance b, that is, the cell thickness can be kept substantially equal to the film thickness of the spacer 9.

【0016】このように、接着剤層を、スペーサーを挟
むように両側に配置することにより、接着剤層が硬化す
る際に収縮して生じる基板のたわみを緩和し、セル厚の
均一性をさらに向上させることができる。
By thus disposing the adhesive layer on both sides so as to sandwich the spacer, the flexure of the substrate caused by shrinkage when the adhesive layer is cured is mitigated, and the uniformity of the cell thickness is further improved. Can be improved.

【0017】[0017]

【実施例1】以下、本発明をその実施例を示す図面に基
いて、具体的に説明する。
Embodiment 1 The present invention will be described in detail below with reference to the drawings showing the embodiment.

【0018】図1は、本発明の実施例である強誘電性液
晶セルの構造を示す、概略的な断面図である。本実施例
のセルは、1cm×1cmの表示面積を有する。
FIG. 1 is a schematic sectional view showing the structure of a ferroelectric liquid crystal cell which is an embodiment of the present invention. The cell of this example has a display area of 1 cm × 1 cm.

【0019】2枚のガラス基板2a、2bが互いに対向
して配置され、一方のガラス基板2bの表面にはITO
等からなる透明な走査電極Lが複数本互いに平行に配置
され、その上にSiO2 等からなる透明な絶縁膜3bが
形成されている。絶縁膜3b上には配向膜4bが形成さ
れている。配向膜はポリイミド膜、ナイロン膜、ポリビ
ニルアルコール膜などの有機高分子膜や、SiO斜方蒸
着膜などが用いられる。もう一方のガラス基板2aの表
面には、ITO等からなる透明な信号電極Sが、走査電
極Lと直交する向きに複数本互いに平行に配置されてお
り、その上にSiO2 からなる無機絶縁体膜を形成し、
エッチングによりパターニングを行ってスペーサー9を
形成する。スペーサー9の形成方法を詳述すると、以下
のとおりである。
Two glass substrates 2a and 2b are arranged to face each other, and ITO is formed on the surface of one glass substrate 2b.
A plurality of transparent scanning electrodes L made of, for example, are arranged in parallel with each other, and a transparent insulating film 3b made of SiO 2 or the like is formed thereon. An alignment film 4b is formed on the insulating film 3b. As the alignment film, an organic polymer film such as a polyimide film, a nylon film, a polyvinyl alcohol film, or a SiO oblique vapor deposition film is used. On the surface of the other glass substrate 2a, a plurality of transparent signal electrodes S made of ITO or the like are arranged in parallel to each other in a direction orthogonal to the scanning electrodes L, and an inorganic insulator made of SiO 2 is formed thereon. Forming a film,
Patterning is performed by etching to form the spacer 9. The method for forming the spacer 9 will be described in detail below.

【0020】無機絶縁体膜として、東京応化製OCDty
pe7を使用した。このOCDtype7を、スピンナーによ
り回転数1500rpmで塗布し、350℃で1時間焼
成するこにより、膜厚1.5μmのSiO2 膜を得るこ
とができる。この上にフォトレジストを塗布し、表示画
素部の周囲を囲むような形状のフォトマスクパターンを
使用して露光、現像する。その際、液晶の注入口を同時
形成するために、パターンの一部を除去したものを用い
るとよい。その後、SiO2 膜が表示画素内に残らない
ようにフッ酸にてエッチングし、表示画素の周囲を囲む
ように、表示画素外にのみ無機絶縁体膜を残して、セル
厚制御用スペーサー9とした。スペーサー9の幅は20
0μmである。
As an inorganic insulating film, OCDty manufactured by Tokyo Ohka
pe7 was used. A SiO 2 film having a thickness of 1.5 μm can be obtained by applying this OCD type 7 with a spinner at a rotation speed of 1500 rpm and baking it at 350 ° C. for 1 hour. A photoresist is applied on this, and exposure and development are performed using a photomask pattern having a shape surrounding the periphery of the display pixel portion. At this time, in order to form the liquid crystal injection port at the same time, it is preferable to use a pattern with a part removed. After that, etching is performed with hydrofluoric acid so that the SiO 2 film does not remain in the display pixel, and the inorganic insulating film is left only outside the display pixel so as to surround the periphery of the display pixel. did. The width of the spacer 9 is 20
It is 0 μm.

【0021】このようにしてスペーサー9を形成した
後、その上をさらにSiO2 等からなる透明な絶縁膜3
aで被覆し、絶縁膜3a上にはラビング処理などの一軸
配向処理が施された配向膜4aを形成した。この2枚の
ガラス基板2a、2bの配向膜4a、4bを内側にして
貼り合わせ、ガラス基板の外側から1cm2 あたり1K
gの圧力をかけてプレスしながら、一部に注入口を残し
てスペーサー9の外側のみを、接着剤5で接着した。接
着剤として、三井東圧製XN−21Fを用い、通常のス
クリーン印刷法により、厚さ5μmに塗布した。
After the spacer 9 is formed in this manner, a transparent insulating film 3 made of SiO 2 or the like is further formed on the spacer 9.
An alignment film 4a covered with a and subjected to uniaxial alignment treatment such as rubbing treatment was formed on the insulating film 3a. The two glass substrates 2a and 2b are bonded together with the alignment films 4a and 4b inside, and 1K per cm 2 from the outside of the glass substrates.
While pressing with a pressure of g, only the outside of the spacer 9 was bonded with the adhesive 5 while leaving an injection port in a part. As an adhesive, XN-21F manufactured by Mitsui Toatsu was used and applied to a thickness of 5 μm by a usual screen printing method.

【0022】以上のようにして作製したセルについて、
各点のセル厚を光学干渉法により測定したところ、すべ
ての箇所でスペーサー9の膜厚とほぼ等しいセル厚、
1.45〜1.55μm(1.5±0.05μm)を得
ることができた。配向膜として、チッソ製ポリイミド配
向膜PSI−A−2101を用いて上記工程を行い、注
入口から強誘電性液晶6としてメルク製SCE−8を注
入し、上記注入口を接着剤5で封止した。配向状態を観
察したところ、図6のような、粒形スペーサーを散布し
たセルで見られるスペーサー8からのジグザグ欠陥の発
生が無く、全面均一なC2U(C2ーユニフォーム)配
向が得られた。実際に信号電圧を印加し駆動したとこ
ろ、セル厚及び配向状態が極めて均一であるため非常に
コントラストの高い表示を得ることができた。
Regarding the cell manufactured as described above,
When the cell thickness at each point was measured by an optical interference method, the cell thickness was almost equal to the film thickness of the spacer 9 at all points,
It was possible to obtain 1.45 to 1.55 μm (1.5 ± 0.05 μm). The above process is performed using a polyimide alignment film PSI-A-2101 made by Chisso as an alignment film, SCE-8 made by Merck as a ferroelectric liquid crystal 6 is injected from an injection port, and the injection port is sealed with an adhesive 5. did. When the orientation state was observed, zigzag defects were not generated from the spacers 8 as seen in the cell in which the granular spacers were scattered, and a uniform C2U (C2-uniform) orientation was obtained. When a signal voltage was actually applied and driven, a display with a very high contrast could be obtained because the cell thickness and the alignment state were extremely uniform.

【0023】本実施例で示したスピンナーで塗布する方
法は、スピンナーの回転数を変えて膜厚を制御すること
ができるので、セル厚を容易に制御することができる。
また、ディッピングや印刷などの簡単な方法でも成膜可
能である。他に、無機絶縁体膜を形成する方法として
は、真空蒸着、スパッタ、エレクトロンビーム(EB)
蒸着、プラズマCVDなどの方法が知られているが、こ
れらの方法では大掛かりな装置が必要とされ、また、2
μm程度の厚膜をえるには繰り返し成膜を行う必要があ
り、工業的には問題が多い。
In the method of coating with the spinner shown in this embodiment, the film thickness can be controlled by changing the rotation speed of the spinner, so that the cell thickness can be easily controlled.
Further, the film can be formed by a simple method such as dipping or printing. Other methods for forming the inorganic insulating film include vacuum deposition, sputtering, and electron beam (EB).
Although methods such as vapor deposition and plasma CVD are known, these methods require large-scale equipment and
In order to obtain a thick film of about μm, it is necessary to repeat the film formation, which is industrially problematic.

【0024】[0024]

【実施例2】実施例1では、小面積の液晶セルを作製し
たが、本実施例では10cm×10cmの表示面積のセ
ルを作製した。大面積になるほど、セル厚の均一性を保
つことは、困難になってくる。
Example 2 A liquid crystal cell having a small area was manufactured in Example 1, but a cell having a display area of 10 cm × 10 cm was manufactured in this example. The larger the area, the more difficult it becomes to keep the cell thickness uniform.

【0025】実施例1と同様に、2枚のガラス基板2
a、2b上に、透明電極SおよびL、絶縁膜3aおよび
3b、配向膜4aおよび4b,さらにスペーサー9等を
形成する。
Similar to the first embodiment, two glass substrates 2 are used.
Transparent electrodes S and L, insulating films 3a and 3b, alignment films 4a and 4b, and spacers 9 are formed on a and 2b.

【0026】つぎに、図2(c)のように、スペーサー
9を挟んで内側と外側の両側を接着剤5によって接着し
た。接着剤の幅は、スペーサー9の内側、外側ともに
0.2mmで、スクリーン印刷法により、厚さ5μmに
塗布した。
Next, as shown in FIG. 2 (c), the inner side and the outer side are bonded with the adhesive 5 with the spacer 9 interposed therebetween. The width of the adhesive was 0.2 mm both inside and outside the spacer 9, and was applied to a thickness of 5 μm by the screen printing method.

【0027】このようにして作製したセルについて、各
点のセル厚を光学干渉法により測定したところ、セル厚
は1.45〜1.55μmで、良好な均一性を得ること
ができた。
When the cell thickness at each point of the cell thus manufactured was measured by an optical interference method, the cell thickness was 1.45 to 1.55 μm, and good uniformity could be obtained.

【0028】さらに実施例1と同様に強誘電性液晶を注
入して作製した強誘電性液晶表示装置を、図3および図
4に示す。配向状態を観察したところ、大面積であって
も、実施例1と同様に、均一でコントラストの高い表示
を得ることができた。
Further, a ferroelectric liquid crystal display device manufactured by injecting a ferroelectric liquid crystal as in Example 1 is shown in FIGS. 3 and 4. As a result of observing the alignment state, it was possible to obtain a uniform and high-contrast display as in Example 1 even with a large area.

【0029】[0029]

【発明の効果】本発明を用いることにより、強誘電性液
晶表示装置の様なセル厚が2μm以下の液晶表示装置に
おいて、スイッチング特性、配向特性に悪影響を及ぼす
ことがなく、均一な厚さのセルを提供でき、コントラス
トが高く均一な表示を達成できる。
EFFECTS OF THE INVENTION By using the present invention, in a liquid crystal display device having a cell thickness of 2 μm or less like a ferroelectric liquid crystal display device, a uniform thickness can be obtained without adversely affecting switching characteristics and alignment characteristics. A cell can be provided and a high contrast and uniform display can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の強誘電性液晶セルの構造を示
す、概略断面図である。
FIG. 1 is a schematic cross-sectional view showing the structure of a ferroelectric liquid crystal cell according to an example of the present invention.

【図2】基板の貼り合わせ方法と、セル厚分布の関係を
示す、概略断面図である。
FIG. 2 is a schematic cross-sectional view showing a relationship between a substrate bonding method and a cell thickness distribution.

【図3】本発明の別の実施例を示す、概略断面図であ
る。
FIG. 3 is a schematic cross-sectional view showing another embodiment of the present invention.

【図4】図3の斜視図である。FIG. 4 is a perspective view of FIG.

【図5】従来の強誘電性液晶セルの構造を示す、概略断
面図である。
FIG. 5 is a schematic cross-sectional view showing the structure of a conventional ferroelectric liquid crystal cell.

【図6】スペーサー部からのジグザグ欠陥を示す図であ
る。
FIG. 6 is a diagram showing zigzag defects from a spacer portion.

【符号の説明】[Explanation of symbols]

S 信号電極 L 走査電極 2a,2b ガラス基板 3a,3b 絶縁膜 4a,4b 配向膜 5 接着剤 6 強誘電性液晶 7a,7b 偏光板 8 粒形スペーサー 9 無機絶縁体膜スペーサー S signal electrode L scan electrode 2a, 2b glass substrate 3a, 3b insulating film 4a, 4b alignment film 5 adhesive 6 ferroelectric liquid crystal 7a, 7b polarizing plate 8 granular spacer 9 inorganic insulating film spacer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極膜および配向膜を有する一対の透光
性基板間に液晶を介在させた液晶表示装置において、前
記一対の透光性基板間に挟持される液晶層の厚さが2μ
m以下で、表示画素外に無機絶縁体膜から成るスペーサ
ー部材が形成されていることを特徴とする強誘電性液晶
表示装置。
1. In a liquid crystal display device in which liquid crystal is interposed between a pair of transparent substrates having an electrode film and an alignment film, the thickness of the liquid crystal layer sandwiched between the pair of transparent substrates is 2 μm.
A ferroelectric liquid crystal display device characterized in that a spacer member made of an inorganic insulating film is formed outside the display pixel with a thickness of m or less.
【請求項2】 上記スペーサー部材を挟んで両側に接着
材層が配置されていることを特徴とする請求項1記載の
強誘電性液晶表示装置。
2. A ferroelectric liquid crystal display device according to claim 1, wherein adhesive layers are arranged on both sides of the spacer member.
JP6152593A 1993-03-22 1993-03-22 Ferroelectric liquid crystal display device Pending JPH06273773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6152593A JPH06273773A (en) 1993-03-22 1993-03-22 Ferroelectric liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6152593A JPH06273773A (en) 1993-03-22 1993-03-22 Ferroelectric liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH06273773A true JPH06273773A (en) 1994-09-30

Family

ID=13173608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6152593A Pending JPH06273773A (en) 1993-03-22 1993-03-22 Ferroelectric liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH06273773A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498635B1 (en) * 1999-03-05 2002-12-24 Chartered Semiconductor Manufacturing Ltd. Method of forming insulating material alignment posts associated with active device structures
WO2007029334A1 (en) * 2005-09-09 2007-03-15 Fujitsu Limited Liquid crystal display device
JP2010032775A (en) * 2008-07-29 2010-02-12 Citizen Finetech Miyota Co Ltd Ferroelectric liquid crystal display element, and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498635B1 (en) * 1999-03-05 2002-12-24 Chartered Semiconductor Manufacturing Ltd. Method of forming insulating material alignment posts associated with active device structures
WO2007029334A1 (en) * 2005-09-09 2007-03-15 Fujitsu Limited Liquid crystal display device
JPWO2007029334A1 (en) * 2005-09-09 2009-03-26 富士通株式会社 Liquid crystal display
JP2010032775A (en) * 2008-07-29 2010-02-12 Citizen Finetech Miyota Co Ltd Ferroelectric liquid crystal display element, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5548429A (en) Process for producing liquid crystal device whereby curing the sealant takes place after pre-baking the substrates
JP3472422B2 (en) Liquid crystal device manufacturing method
JP3103981B2 (en) Semiconductor single crystal substrate liquid crystal panel device
US5991000A (en) Cavity uniformity having patterned spaces of aluminum oxide or silicon dioxide
JPH09127495A (en) Liquid crystal display device
JPS62192724A (en) Ferroelectric liquid crystal element and its production
JPH06273773A (en) Ferroelectric liquid crystal display device
JPH08248428A (en) Thin-film liquid-crystal display element panel and its manufacture
JPS61173221A (en) Formation of liquid crystal display device
JP3410754B2 (en) Liquid crystal display
JP3395884B2 (en) Liquid crystal display panel and method of manufacturing the same
KR20060032349A (en) Manufacturing method of transverse electric field type liquid crystal display device
JP2818985B2 (en) Light valve device and manufacturing method thereof
JPH05303099A (en) Liquid crystal display panel and liquid crystal display device
JPH06332012A (en) Production of liquid crystal electrooptical device
JPH0475025A (en) Lcd panel
JP2000231109A (en) Liquid crystal display device and its production
JPH09258230A (en) Liquid crystal display panel
JPH01201624A (en) Liquid crystal display panel
JPH09146095A (en) Liquid crystal display device and its production
JPH07191333A (en) Liquid crystal display element
JP3386697B2 (en) Liquid crystal display device and manufacturing method thereof
JPS5853527Y2 (en) Cell structure of field-effect birefringence-controlled liquid crystal display element
JPH1115004A (en) Electrooptical device and production therefor
JPS62267721A (en) Manufacture of liquid crystal element