[go: up one dir, main page]

JPH06273422A - Method for determining quantity of coagulation factor of blood - Google Patents

Method for determining quantity of coagulation factor of blood

Info

Publication number
JPH06273422A
JPH06273422A JP5061915A JP6191593A JPH06273422A JP H06273422 A JPH06273422 A JP H06273422A JP 5061915 A JP5061915 A JP 5061915A JP 6191593 A JP6191593 A JP 6191593A JP H06273422 A JPH06273422 A JP H06273422A
Authority
JP
Japan
Prior art keywords
coagulation
time
blood
coagulation factor
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5061915A
Other languages
Japanese (ja)
Inventor
Tomoshige Hori
友繁 堀
Kensuke Ito
健介 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP5061915A priority Critical patent/JPH06273422A/en
Publication of JPH06273422A publication Critical patent/JPH06273422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To make it possible to perform accurate, quick measurement by obtaining the correlation between the coagulation time and the coagulation factor quantity in blood, which are obtained by measuring the temperature change of a heating sensor. CONSTITUTION:A heating sensor, which can has heating action and can measure its own temperature, is brought into contact with blood thermally. The coagulation time is measured from the temperature change of the heating sensor during the time from the input of coagulating agent to the coagulation. The quantity of the coagulation factor in the blood is determined base on the correlation between the coagulation time and the coagulation factor quantity. The correlation between the coagulation time and the coagulation factor quantity is measured by using the heating sensor, which has the heating action and can measure its own temperature and the coagulating time corresponding to diluent by changing the concentration of the blood. The correlation of both values is obtained by forming the calibration curve indicating the correlation between the coagulating time and the coagulation factor quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は血液の凝固因子の定量を
正確かつ敏速に測定することが可能な血液の凝固因子の
定量方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying blood coagulation factors, which enables accurate and rapid measurement of blood coagulation factors.

【0002】[0002]

【従来の技術】血液の凝固因子の定量は血液凝固系のス
クリーニング、及び救急医療情報として重要であり、臨
床的意味が大きい。現在では、血液凝固因子としては1
3種類が知られている。血液凝固系は因子X2もしくは
因子V3を反応開始点とする内因系と組織因子及び因子
V2を反応開始点とする外因系に大別され、反応の最終
段階では、プロトロンビンが凝固系の活性化により、ト
ロンビンに活性化され、血漿中のフィブリノーゲンに作
用してフィブリンを形成し、因子X3の作用によって不
溶性フィブリンに変化することによって完了する。 血
液凝固関係の技術文献としては、「臨床検査法提要」金
原出版株式会社発行VI−72頁からVI−77頁には
凝固因子と疾患との関係が記載されており、内因系の反
応については「チャート臨床検査診断」株式会社中外医
学社発行105〜126頁や、日本臨牀47巻・198
9年増刊号「広範囲血液・尿化学検査、免疫学的検査
(上巻)」株式会社日本臨牀社発行807〜824頁等
に詳細に記載されている。ところで、血液の各凝固因子
の定量測定は、従来、光学的測定法や抗体反応などで実
施されていたが、繰り返し精度や測定所要時間が長い等
の問題があった。
2. Description of the Related Art Quantification of blood coagulation factors is important as screening of blood coagulation system and emergency medical information, and has great clinical significance. Currently, the blood coagulation factor is 1
Three types are known. The blood coagulation system is roughly divided into an endogenous system having a reaction initiation point of factor X2 or factor V3 and an extrinsic system having a tissue factor and factor V2 as a reaction initiation point. At the final stage of the reaction, prothrombin is activated by activation of the coagulation system. , Activated by thrombin, acts on fibrinogen in plasma to form fibrin, and is completed by conversion to insoluble fibrin by the action of factor X3. As a technical document relating to blood coagulation, "Research on Clinical Laboratory Methods", Kinbara Shuppan Co., Ltd., pages VI-72 to VI-77 describes the relationship between coagulation factors and diseases. "Chart Clinical Laboratory Diagnosis", pages 105-126, published by Chugai Medical Co., Ltd.
It is described in detail in the supplementary issue of 9 years "Extensive blood / urine chemistry test, immunological test (first volume)" issued by Nihon Rinjo Co., Ltd., pp. 807-824. By the way, the quantitative measurement of each coagulation factor in blood has been conventionally carried out by an optical measuring method or an antibody reaction, but there are problems such as repetitive accuracy and long measurement time.

【0003】血液の凝固関係の先行技術としては、以下
のものがあげられる。 .特開昭54−23596号「血中フィブリノーゲン
の定量法」は、光学的測定法の一つで血漿の凝固変化に
よる特定波長における吸光度の変化とフィブリノーゲン
の濃度との相関関係からフィブリノーゲンを定量するも
のである。 .特開平1−147367号「凝固因子の測定方法及
び測定用試薬」は、モノクローナル抗体を用いて凝固因
子の定量をおこなうもので、凝固因子に対するモノクロ
ーナル抗体を感作させた不溶性担体試薬で反応させ非凝
集粒子量と凝集粒子量を比較し、その比率とフィブリン
分解産物の濃度との相関関係から凝固因子を定量するも
ので、目的の凝固因子に対応して試薬の量を調整してい
るものである。 .特開平1−227062号「血液等の粘性変化の測
定方法」は、吸熱体もしくは発熱体で構成されるセンサ
ーを用いて、計測される温度などから粘性変化を計測
し、その変化から正確な凝固時間を知ることが可能な方
法である。
The following are examples of prior art relating to blood coagulation. . Japanese Unexamined Patent Publication No. 54-23596 "Blood Fibrinogen Quantification Method" is one of optical measurement methods for quantifying fibrinogen from the correlation between the change in absorbance at a specific wavelength due to a change in coagulation of plasma and the concentration of fibrinogen. Is. . Japanese Unexamined Patent Publication No. 1-147367 "Coagulation Factor Assay Method and Assay Reagent" uses a monoclonal antibody to quantify the coagulation factor, and reacts with an insoluble carrier reagent sensitized with the monoclonal antibody against the coagulation factor. The amount of aggregated particles is compared with the amount of aggregated particles, and the coagulation factor is quantified from the correlation between the ratio and the concentration of fibrin degradation products.The amount of reagent is adjusted according to the target coagulation factor. is there. . Japanese Patent Application Laid-Open No. 1-227062 “Measurement Method of Viscosity Change of Blood etc.” uses a sensor composed of a heat absorbing body or a heat generating body to measure the viscosity change from the measured temperature, etc. It is a way to know the time.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来の凝固
因子の測定は時間がかかり救急医療に対応できないこと
や、特殊な技術と器具、試薬などを必要とし、測定単価
が高価であるとともに、人為的判断が介入する測定法な
どでは再現性が悪く信頼性にかけるという問題があっ
た。又、前記のの発明は、光学的測定法の一例である
が、分光光度計を使用して吸光度を測定しているもの
で、光学的測定法の最大の問題点として、血液等の被測
定試料用容器が透明でなければならないこと、及び全血
の測定は不可能であることなどの測定上の制限があり、
また光学測定に不可欠な様々の測定環境を整備する必要
があった。前記のの発明は抗体を利用する例である
が、抗体を利用する方法にはこの発明のほかに比色法を
用いた定量を行うものもある。このような抗体を用いる
方法は、最終的にいかなる定量法を使用しても、まず特
殊な抗体が必要であり、この抗体自体が高価であること
が問題である。臨床基準に準処して測定の繰り返しを行
う場合など測定費用に直接影響することとなる。また抗
体利用による測定法では、試料の前処理及び測定手法が
複雑となり、測定時間を飛躍的に短縮することはできな
いし、測定担当者の高度の熟練も必要である。更にの
発明は血液等と熱的に接触するセンサーを用いて凝固時
間を正確に測定するための粘性測定法であるが、この発
明の中では臨床的に有効な凝固因子の定量については開
示されていない。
By the way, the conventional measurement of coagulation factors is time-consuming and cannot be applied to emergency medical care, requires special techniques, instruments, reagents, etc., and the unit cost of measurement is expensive and artificial. There is a problem that reproducibility is poor and reliability is poor in measurement methods that involve physical judgment. Further, the invention of the above is an example of an optical measurement method, but the absorbance is measured using a spectrophotometer. There are measurement restrictions such as that the sample container must be transparent and that whole blood cannot be measured.
In addition, it was necessary to prepare various measurement environments essential for optical measurement. The above-mentioned invention is an example of utilizing an antibody, but as a method of utilizing an antibody, there is a method of performing quantification using a colorimetric method in addition to this invention. In the method using such an antibody, a special antibody is first required regardless of which assay method is finally used, and the problem is that the antibody itself is expensive. This will directly affect the measurement cost, such as when repeating the measurement in accordance with clinical standards. Further, in the measuring method using an antibody, the pretreatment of the sample and the measuring method are complicated, the measuring time cannot be drastically shortened, and a highly skilled person in charge of measuring is required. A further invention is a viscometric method for accurately measuring the coagulation time using a sensor that is in thermal contact with blood and the like, but in the present invention, clinically effective quantification of coagulation factors is disclosed. Not not.

【0005】[0005]

【課題を解決するための手段】本発明は熱的に流体の物
性を計測する細線加熱法を用いて、測定単価が安価で人
為的判断が介在せず、迅速かつ正確な血液凝固因子の定
量法を提供することを目的としている。その構成は、発
熱作用を有するとともに自らの温度を計測可能な発熱セ
ンサーを、血液、血清、または血漿もしくはその希釈溶
液と熱的に接触させ、凝固剤を投入してから凝固するま
での発熱センサーの温度変化から凝固時間を計測する。
そして該時間と凝固因子の量との相関関係から、前記血
液、血清、または血漿中の凝固因子量を定量するもので
ある。凝固時間と凝固因子の量との相関関係は、血液、
血清または血漿の希釈溶液の濃度を変えて、希釈列に対
応する凝固時間を発熱作用を有するとともに自らの温度
を計測可能な発熱センサーを用いて計測し、凝固時間と
凝固因子の量との相関を示す校正曲線を作成することに
より、該相関関係を得ることが出来る。この相関関係を
利用して、凝固因子の定量を行うと好適である。ところ
で、発熱センサーを、血液、血清、または血漿もしくは
その希釈溶液と熱的に接触させて発熱センサーの温度を
計測して流体の状態を計測する方法は、細線加熱法と呼
ばれ、該測定方法は大別して非定常法と定常法に分類さ
れる。非定常法とは流体と熱的に接触する発熱センサー
の発熱開始直後における発熱センサー温度もしくは該温
度と流体の温度との温度差の上昇変化域(非定常状態)
を利用して、流体の熱伝導率等の計測を行う方法であ
り、定常法とは非定常状態を経過して経時的に発熱セン
サー温度もしくは該温度と流体の温度差が一定になる現
象を利用して、流体の状態の計測を行う方法である。こ
の定常状態において流体の物性変化が生じると発熱セン
サー温度もしくは該温度と流体の温度差が異なる温度に
変化して再び安定する。これは流体の物性変化により発
熱センサーの表面における熱伝達率が変化するためであ
る。このような対流熱伝達現象を利用して流体の物性変
化、特に粘度変化を熱的方法で正確かつ敏速に測定する
ことを実現したのが、本発明の基礎となるところであ
る。本発明はさらにこの測定結果が示す臨床的意味を凝
固因子の定量という形で明確にしたものである。つま
り、細線加熱法を用いた血液等の凝固時間の測定時間
と、この測定に使用される凝固剤の種類によって特定さ
れる凝固因子との関係を明確にし、これを利用して凝固
因子を定量するものである。
The present invention uses a thin wire heating method for thermally measuring the physical properties of a fluid, has a low measurement unit price, does not involve human judgment, and is a quick and accurate quantitative determination of blood coagulation factors. It is intended to provide the law. The configuration is a heat generation sensor that has a heat generation function and can measure its own temperature by making thermal contact with blood, serum, or plasma or a diluted solution thereof, and from adding the coagulant to coagulation. The coagulation time is measured from the temperature change.
Then, the amount of coagulation factor in the blood, serum or plasma is quantified from the correlation between the time and the amount of coagulation factor. Correlation between clotting time and amount of clotting factor is
Correlation between coagulation time and the amount of coagulation factor by measuring the coagulation time corresponding to the dilution series by using a fever sensor capable of measuring the temperature of itself by changing the concentration of the diluted solution of serum or plasma The correlation can be obtained by creating a calibration curve indicating It is preferable to quantify the coagulation factor using this correlation. By the way, a method of measuring the temperature of a heat generating sensor by bringing the heat generating sensor into thermal contact with blood, serum, or plasma or a diluted solution thereof is called a fine wire heating method. Are roughly classified into the unsteady method and the stationary method. The non-steady state method is an increasing change range (non-steady state) of the temperature of the heat generating sensor or the temperature difference between the temperature of the heat generating sensor and the temperature of the fluid immediately after the heat generation of the heat generating sensor that is in thermal contact with the fluid starts.
Is a method of measuring the thermal conductivity of a fluid, etc., and the steady-state method is a method in which the temperature of the heat-generating sensor or the temperature difference between the temperature and the fluid becomes constant over time after an unsteady state has passed. It is a method of measuring the state of a fluid by utilizing it. When the physical properties of the fluid change in this steady state, the temperature of the exothermic sensor or the temperature difference between the temperature and the fluid changes to a different temperature and stabilizes again. This is because the heat transfer coefficient on the surface of the heat generation sensor changes due to changes in the physical properties of the fluid. It is the basis of the present invention that the change in physical properties of a fluid, in particular, the change in viscosity can be accurately and promptly measured by a thermal method by utilizing such a convection heat transfer phenomenon. The present invention further clarifies the clinical meaning of these measurement results in the form of quantification of coagulation factors. In other words, clarify the relationship between the measurement time of blood coagulation time using the thin wire heating method and the coagulation factor specified by the type of coagulant used for this measurement, and use this to quantify the coagulation factor. To do.

【0006】[0006]

【作用】発熱作用を有するとともに自らの温度を計測可
能な発熱センサーを、血液、血清、または血漿もしくは
その希釈溶液と熱的に接触させる手法を用いて、凝固剤
を投入してから血液が凝固するまでの発熱センサーの温
度変化から凝固時間を計測する。そして予め計測した該
時間と凝固因子の量との相関関係から、前記血液、血
清、または血漿中の凝固因子量を定量する。凝固時間と
凝固因子の量との相関関係は、血液、血清または血漿の
希釈溶液の濃度を変えて、希釈列に対応する凝固時間を
発熱作用を有するとともに自らの温度を計測可能な発熱
センサーを用いて計測し、凝固時間と凝固因子の量との
相関を示す校正曲線を作成することにより、該相関関係
を得ることが出来る。
[Function] The blood is coagulated after the coagulant is added by using a method in which a heat generating sensor that has an exothermic effect and can measure its own temperature is brought into thermal contact with blood, serum, plasma or a diluted solution thereof. The coagulation time is measured from the temperature change of the heat generation sensor until the time. Then, the amount of coagulation factor in the blood, serum or plasma is quantified from the correlation between the time and the amount of coagulation factor measured in advance. The correlation between the coagulation time and the amount of coagulation factor depends on the concentration of the dilute solution of blood, serum or plasma, the coagulation time corresponding to the dilution series has an exothermic action, and a fever sensor capable of measuring its own temperature. The correlation can be obtained by making a measurement by using the calibration curve showing the correlation between the coagulation time and the amount of the coagulation factor.

【0007】[0007]

【実施例】【Example】

(実施例1)人正常血漿(血液凝固能測定用人正常血
漿、Organon Technika Corp.製)の希釈列におけるトロ
ンビン時間(TT時間)を計測し、かつ該TT時間と凝
固因子でTT時間が示唆するフィブリノーゲン濃度との
相関関係を示したものである。プレートプアプラズマ
(PPP)の希釈列としては、日本臨牀などに基づく標
準法に準拠して、生理的食塩水で10%、5%、2.5
%、1.25%に希釈した抗凝固剤添加試料を用いた。
図1のAは発熱センサー(直径0.6mm、長さ4m
m)の発熱量を0.02Wattとして測定したもので
凝固剤として充分多量のトロンビンを添加した場合の凝
固時間の測定結果であり、前記のそれぞれの濃度の希釈
液における発熱センサーの温度の経時的変化を凝固剤添
加時から連続計測したものである。 図示の通り、凝固
剤添加と同時に発熱センサーの発熱を開始しているので
計測の最初はセンサーの温度が上昇し、その上昇過程で
は非定常状態を示しており、その後一定温度で安定する
定常状態を示している。その後凝固変化が急速に現れる
と、再度センサー温度の上昇変化が見られる。これは凝
固変化が粘性変化として観測されたからであり、この時
の時間が凝固時間となる。 図1のBは、図1のAの時
間対温度差曲線の時間変化率を表したものであり、下の
表は時間対温度差曲線の変曲点で定義された凝固時間の
測定結果を示したものである。
(Example 1) The thrombin time (TT time) in a dilution series of normal human plasma (human normal plasma for measuring blood coagulation ability, manufactured by Organon Technika Corp.) was measured, and the TT time was suggested by the TT time and the coagulation factor. It shows the correlation with the fibrinogen concentration. As a dilution series of Plate Poor Plasma (PPP), 10%, 5%, 2.5% of physiological saline is used in accordance with the standard method based on Nippon Rinko.
%, 1.25% diluted anticoagulant added sample was used.
1A is a heat generation sensor (diameter 0.6 mm, length 4 m)
The measurement value of the heat generation value of m) was 0.02 Watt, which is the measurement result of the coagulation time when a sufficiently large amount of thrombin was added as a coagulant. The change is continuously measured from the time when the coagulant is added. As shown in the figure, since the heat generation of the heat generation sensor is started at the same time as the addition of the coagulant, the temperature of the sensor rises at the beginning of the measurement and shows an unsteady state during the rising process, and then a steady state that stabilizes at a constant temperature. Is shown. After that, when the change in coagulation rapidly appears, the change in the sensor temperature rises again. This is because the change in solidification was observed as a change in viscosity, and the time at this time is the solidification time. B of FIG. 1 shows the time change rate of the time-temperature difference curve of A of FIG. 1, and the table below shows the measurement results of the solidification time defined by the inflection point of the time-temperature difference curve. It is shown.

【0008】[0008]

【表1】 この表からは本発明の方法による計測値の再現性が、実
用上充分なものであることが分かる。
[Table 1] From this table, it can be seen that the reproducibility of the measured values by the method of the present invention is practically sufficient.

【0009】図2はこの実験に基づき作成したTT時間
と凝固因子量に対応する血漿濃度(VNC)の相関関係
を示す校正曲線で、TT時間に対応する凝固因子はフィ
ブリノーゲンである。
FIG. 2 is a calibration curve showing the correlation between the TT time and the plasma concentration (VNC) corresponding to the amount of coagulation factor prepared based on this experiment. The coagulation factor corresponding to TT time is fibrinogen.

【0010】(実施例2)実施例1と同一の条件で10
%濃度の希釈全血を用いて、活性化部分トロンボプラス
チン時間(APTT時間)を測定した結果であり、図4
のA及びBは、図1と同様に本実験における発熱センサ
ー温度の経時間的変化を凝固時から連続計測したもので
ある。これは凝固変化が希釈全血の粘性変化として検出
されたものである。実施例1と同様に凝固時間を定義す
れば、本実施例では凝固時間は、249.3秒と算出さ
れた。本測定に基づいて5%、2.5%、1.25%に
それぞれ希釈して得た血漿に関するAPTT時間と凝固
因子量に対応する血漿濃度の相関を示す校正曲線が、図
3である。同図は最小自棄法による多項式近似によって
求めたものであり、又同図中、Actin, Platelin Plus A
ctivator ,aActivated Thrombofaxは、APTT測定用
の試薬であり、試薬の種類によって、同一試料でも異な
る凝固時間が観測され、試薬間格差は、試料が低濃度に
なる程拡大していることが分かった。但しここでは内因
系のAPTT時間に関係する4つの凝固因子が含まれた
状態でその活性を測定していることになり、異常の場合
は既知の方法でさらに4つの因子を詳細に測定すること
になる。
(Embodiment 2) Under the same conditions as in Embodiment 1, 10
FIG. 4 shows the results of measuring the activated partial thromboplastin time (APTT time) using diluted whole blood of% concentration.
Similarly to FIG. 1, A and B of FIG. 1 are continuous measurements of the temporal change in the temperature of the exothermic sensor in this experiment from the time of solidification. This is because a change in coagulation was detected as a change in viscosity of diluted whole blood. If the coagulation time was defined as in Example 1, the coagulation time was calculated to be 249.3 seconds in this example. FIG. 3 is a calibration curve showing the correlation between the APTT time and the plasma concentration corresponding to the amount of coagulation factor regarding plasma obtained by diluting to 5%, 2.5%, and 1.25% based on this measurement. This figure was obtained by polynomial approximation by the least desperation method. In the figure, Actin, Platelin Plus A
The ctivator and aActivated Thrombofax are reagents for measuring APTT, and different coagulation times were observed in the same sample depending on the type of reagent, and it was found that the disparity between reagents increased as the concentration of the sample decreased. However, in this case, the activity is measured in the state that four coagulation factors related to the APTT time of the endogenous system are included, and in the case of abnormality, further four factors should be measured in detail by a known method. become.

【0011】なお、血液や血漿等を希釈して測定する際
には、希釈用試薬のロットが変化すると、凝固時間と凝
固因子量の相関関係が一致しなくなることがあるため、
通常は希釈用試薬のロットごとに、前記相関関係を決定
する校正曲線をつくり直す必要がある。又、本発明の方
法によれば、未希釈から1000倍希釈程度であれば、
容易に測定が可能であり、希釈倍率が大きくなるほど本
発明の方法の有効性が顕著となる。
When diluting and measuring blood, plasma, or the like, if the lot of the diluting reagent changes, the correlation between the coagulation time and the amount of coagulation factor may not match.
Usually, it is necessary to remake a calibration curve for determining the above correlation for each lot of the diluting reagent. Further, according to the method of the present invention, if it is from undiluted to about 1000-fold diluted,
It can be easily measured, and the effectiveness of the method of the present invention becomes more remarkable as the dilution ratio increases.

【0012】[0012]

【発明の効果】本発明の方法によれば、測定可能な上限
及び下限濃度を従来法に比べていづれも大幅に拡大する
ことができ、特に従来測定不可能であった低濃度域にお
ける測定が可能になるため、定量試料による計測等臨床
的利用の範囲が拡大し、医療技術の向上が期待できる。
又、本発明は従来法に比較して人為的判断の介在する余
地がほとんど無いため、迅速かつ正確な凝固因子の自動
定量が可能となる。
According to the method of the present invention, the measurable upper and lower limit concentrations can be greatly expanded as compared with the conventional method, and the measurement in the low concentration range, which was conventionally impossible to measure, can be performed. Since it will be possible, the range of clinical use such as measurement with a quantitative sample will be expanded, and improvement of medical technology can be expected.
In addition, since the present invention has almost no room for intervention of human judgment as compared with the conventional method, rapid and accurate automatic determination of the coagulation factor becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】TT時間の発熱センサー温度と時間との関係を
示すグラフ
FIG. 1 is a graph showing the relationship between heat generation sensor temperature and time during TT time.

【図2】TT時間と凝固因子量に対応する血漿濃度(V
NC)の相関を示すグラフ
FIG. 2 Plasma concentration (V corresponding to TT time and amount of coagulation factor)
Graph showing the correlation of NC)

【図3】APTT時間と凝固因子量に対応する血漿濃度
の相関を示すグラフ
FIG. 3 is a graph showing a correlation between APTT time and plasma concentration corresponding to the amount of coagulation factor.

【図4】APTT時間の発熱センサー温度と時間との関
係を示すグラフ
FIG. 4 is a graph showing the relationship between heat generation sensor temperature and time during APTT time.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発熱作用を有するとともに自らの温度を
計測可能な発熱センサーを、血液、血清、または血漿も
しくはその希釈溶液と熱的に接触させ、凝固剤を投入し
てから凝固するまでの発熱センサーの温度変化から凝固
時間を計測し、該時間と凝固因子の量との相関関係か
ら、前記血液、血清または血漿中の凝固因子量を定量す
る血液の凝固因子の定量方法。
1. A heat generating sensor, which has a heat generating effect and can measure its own temperature, is brought into thermal contact with blood, blood serum, blood plasma, or a diluted solution thereof, and heat is generated from the addition of a coagulant to the coagulation. A method for quantifying a blood coagulation factor, which comprises measuring a coagulation time from a temperature change of a sensor and quantifying the amount of the coagulation factor in the blood, serum or plasma from the correlation between the time and the amount of the coagulation factor.
【請求項2】 凝固時間と凝固因子の量との相関関係
は、血液、血清または血漿の希釈溶液の濃度を変えて、
希釈列に対応する凝固時間を発熱作用を有するとともに
自らの温度を計測可能な発熱センサーを用いて計測し、
凝固時間と凝固因子の量との相関を示す校正曲線を作成
して、該曲線により凝固因子の定量を行う請求項1記載
の血液の凝固因子の定量方法。
2. The correlation between the coagulation time and the amount of coagulation factor is determined by changing the concentration of a dilute solution of blood, serum or plasma.
The coagulation time corresponding to the dilution series is measured using a heat generation sensor that has an exothermic action and can measure its own temperature.
The method for quantifying a blood coagulation factor according to claim 1, wherein a calibration curve showing a correlation between the coagulation time and the amount of the coagulation factor is prepared and the coagulation factor is quantified by the curve.
JP5061915A 1993-03-22 1993-03-22 Method for determining quantity of coagulation factor of blood Pending JPH06273422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5061915A JPH06273422A (en) 1993-03-22 1993-03-22 Method for determining quantity of coagulation factor of blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5061915A JPH06273422A (en) 1993-03-22 1993-03-22 Method for determining quantity of coagulation factor of blood

Publications (1)

Publication Number Publication Date
JPH06273422A true JPH06273422A (en) 1994-09-30

Family

ID=13184941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5061915A Pending JPH06273422A (en) 1993-03-22 1993-03-22 Method for determining quantity of coagulation factor of blood

Country Status (1)

Country Link
JP (1) JPH06273422A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227062A (en) * 1988-03-07 1989-09-11 Snow Brand Milk Prod Co Ltd Measurement of change in viscosity for blood or the like
JPH0560749A (en) * 1990-09-14 1993-03-12 Sankyo Co Ltd Device for measuring blood coagulation time

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227062A (en) * 1988-03-07 1989-09-11 Snow Brand Milk Prod Co Ltd Measurement of change in viscosity for blood or the like
JPH0560749A (en) * 1990-09-14 1993-03-12 Sankyo Co Ltd Device for measuring blood coagulation time

Similar Documents

Publication Publication Date Title
JP4423463B2 (en) Concentration measurement method
US4766083A (en) Method for the photometric determination of biological agglutination
Lippi et al. Interference of blood cell lysis on routine coagulation testing
US4720787A (en) Methods for coagulation monitoring
US6069011A (en) Method for determining the application of a sample fluid on an analyte strip using first and second derivatives
JP3645023B2 (en) Sample analysis method, calibration curve creation method, and analyzer using the same
JP2010522336A (en) Whole blood analysis
Ibrahim et al. Detection and quantification of circulating immature platelets: agreement between flow cytometric and automated detection
Boudjeltia et al. A new device for measurement of fibrin clot lysis: application to the euglobulin clot lysis time
US11747328B2 (en) Method for measuring the plasma concentration of an analyte directly on a whole blood sample
Blasutig et al. Analytical evaluation of the VITROS® 5600 Integrated System in a pediatric setting and determination of pediatric reference intervals
JP7619724B2 (en) Blood coagulation time measurement method
JPH06273422A (en) Method for determining quantity of coagulation factor of blood
El‐Sabawi et al. Capillary blood self‐collection for high‐throughput proteomics
JPS58172537A (en) Apparatus for measuring light scattering
CN115876995A (en) Immunofluorescence chromatography dynamics detection method and system
Stamp et al. Performance of fluorescence polarisation immunoassay reagents for carbamazepine, phenytoin, phenobarbitone, primidone, and valproic acid on a Cobas Fara II analyser
US20230213497A1 (en) Method for measuring blood coagulation time
Shaikh et al. Validation and comparison; a step towards the automation for measuring the erythrocyte sedimentation rate
Camasao et al. Coagulation Profile and Clot Stiffness Analysis from COVID-19-Positive Patients Using a Contactless Viscoelasticity Testing Technology
JP2732448B2 (en) Automatic rate analysis
JP4404994B2 (en) Immunoassay method
JPS58173455A (en) Measurement of light scattering
Uttam A Comparative Study of Inr Ratio Between Automatic (Acl Elite Pro) And Semiautomatic (Erba) Coagulometers
RU2091794C1 (en) Immuno-conductometric system and sensor complex

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19951212