JPH06272698A - Axial gap control method for centrifugal compressor - Google Patents
Axial gap control method for centrifugal compressorInfo
- Publication number
- JPH06272698A JPH06272698A JP5058418A JP5841893A JPH06272698A JP H06272698 A JPH06272698 A JP H06272698A JP 5058418 A JP5058418 A JP 5058418A JP 5841893 A JP5841893 A JP 5841893A JP H06272698 A JPH06272698 A JP H06272698A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- axial clearance
- impeller
- ring
- centrifugal compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 32
- 238000006073 displacement reaction Methods 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 39
- 230000008569 process Effects 0.000 claims description 18
- 239000000112 cooling gas Substances 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 9
- 230000000694 effects Effects 0.000 description 13
- 238000001816 cooling Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000004043 responsiveness Effects 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/62—Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
- F04D29/622—Adjusting the clearances between rotary and stationary parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/62—Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
- F04D29/624—Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
(57)【要約】
【目的】ケーシング部シュラウドの可動部に対して、高
圧の圧縮機用翼車から大気部へのリークガスを完全に遮
断し、圧縮機性能の向上及び信頼性の向上を図ることに
ある。
【構成】圧縮機用翼車1を支持する回転軸2をラジアル
軸受3,スラスト軸受4により支承する遠心圧縮機にお
いて、回転軸2の熱変形により生じる圧縮機用翼車1の
端面と対向して付設されているケーシング5部との軸方
向隙間の変化を、圧縮機用翼車1背面に設置される変位
センサ10の出力と初期隙間の関係より検出し、この検
出信号をケーシング5内部に付設した電磁石6に出力
し、電磁石6に対向するよう設置された磁石8との吸引
力によりリング状シュラウド7を駆動する。
(57) [Abstract] [Purpose] Completely shut off the leak gas from the high-pressure compressor impeller to the atmosphere to the movable part of the casing shroud to improve the compressor performance and reliability. Especially. In a centrifugal compressor in which a rotary shaft 2 supporting a compressor impeller 1 is supported by a radial bearing 3 and a thrust bearing 4, the end face of the compressor impeller 1 facing the end face of the compressor impeller 1 caused by thermal deformation of the rotary shaft 2 is opposed. The change in the axial gap between the casing 5 and the casing 5 attached thereto is detected from the relationship between the output of the displacement sensor 10 installed on the rear surface of the compressor impeller 1 and the initial gap, and this detection signal is stored inside the casing 5. Output to the attached electromagnet 6, and the ring-shaped shroud 7 is driven by the attraction force with the magnet 8 installed so as to face the electromagnet 6.
Description
【0001】[0001]
【産業上の利用分野】本発明は空気分離装置などに用い
る遠心圧縮機の隙間制御に好適な遠心圧縮機の軸方向隙
間制御法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial clearance control method for a centrifugal compressor suitable for controlling the clearance of a centrifugal compressor used in an air separation device or the like.
【0002】[0002]
【従来の技術】翼車端面とケーシングに設けたシュラウ
ドとの隙間制御に関する従来技術としては、特公昭平2
−19319号公報記載のようにの羽根車を包囲する圧
縮機ケーシングの羽根車翼端と対向する部分をギヤ駆動
により動く可動ケーシングとし、これを周方向に等分割
して夫々調節操作装置により調節移動自在として、常に
高効率運転を維持可能とするものがある。2. Description of the Related Art As a conventional technique for controlling a clearance between an end face of an impeller and a shroud provided on a casing, Japanese Patent Publication Shohei 2
No. 19319 gazette, the portion of the compressor casing that surrounds the impeller facing the impeller blade tip is a movable casing that is driven by gear drive, and is divided into equal parts in the circumferential direction, and each is adjusted by an adjusting operation device. Some are mobile and can always maintain high-efficiency operation.
【0003】[0003]
【発明が解決しようとする課題】遠心圧縮機において、
翼車とケーシング部シュラウド間の隙間を最適にする理
由は、漏れ損失及び流体の摩擦損失を低減させ翼車効率
を向上させるためで、隙間が大きいと漏れ損失の影響が
強くなり、隙間が小さすぎると流体摩擦損失の影響が強
くなる。一方、最適隙間の維持向上が難しい理由として
は、ケーシング部のシュラウド面と翼車端面の加工精度
及び両者の組合せ精度もさることながら、回転中に生じ
る軸共振による変形又は運転操作中に対する温度変化に
対応した部材の熱変形によるためであるが、前者の回転
中に生じる軸共振に関しては、軸受にて支承する技術の
確立及び軸共振を回避した回転数にて運転することによ
り、現在では特に問題とならない。このため、上記従来
技術では後者の熱変形を考慮して、最適な隙間を維持で
きるような装置としている。DISCLOSURE OF THE INVENTION In a centrifugal compressor,
The reason for optimizing the clearance between the impeller and the casing shroud is to reduce the leakage loss and the friction loss of the fluid to improve the impeller efficiency. If too much, the effect of fluid friction loss becomes stronger. On the other hand, the reason why it is difficult to maintain and improve the optimum clearance is not only the processing accuracy of the shroud surface of the casing part and the end surface of the impeller and the combined accuracy of both, but also deformation due to shaft resonance occurring during rotation or temperature change during driving operation. This is due to the thermal deformation of the member that corresponds to the above.However, regarding the shaft resonance that occurs during rotation of the former, at the present time especially by establishing the technology of bearing support and operating at a rotation speed that avoids shaft resonance, It doesn't matter. For this reason, in the above-mentioned conventional technique, the latter is considered in consideration of the thermal deformation so that the device can maintain an optimum gap.
【0004】しかし、上記従来技術では可動ケーシング
の駆動機構部が大気圧部から高圧の圧縮機用翼車部に渡
り、かつ、周方向に複数個同様な駆動機構部が存在する
ため、リークガスを遮断させるためのシール技術が必要
となる。また、翼車とケーシング部シュラウド間の隙間
を常時最適な位置に維持するため、制御器の応答性及び
制御性の向上が重要であるが、上記従来技術は検出部が
多岐に渡り、かつ、複数の可動ケーシングを同時に制御
する必要があるため、応答性及び制御性に支障が生じる
恐れがあるばかりか、高価な制御装置となり得る問題が
あった。However, in the above-mentioned prior art, since the drive mechanism section of the movable casing extends from the atmospheric pressure section to the high-pressure compressor impeller section, and a plurality of similar drive mechanism sections exist in the circumferential direction, leak gas is prevented. Sealing technology for shutting off is required. Further, in order to maintain the gap between the impeller and the casing shroud at an optimum position at all times, it is important to improve the response and controllability of the controller. Since it is necessary to control a plurality of movable casings at the same time, there is a problem that responsiveness and controllability may be hindered and an expensive control device may be provided.
【0005】本発明の目的は、ケーシング部シュラウド
の可動部に対して、高圧の圧縮機用翼車から大気部への
リークガスを完全に遮断し、圧縮機性能の向上及び信頼
性の向上を図ることにある。また、検出部を最小限にし
て、制御器の応答性・制御性を向上させ、低コスト化も
図ることにある。An object of the present invention is to completely shut off a leak gas from a high-pressure compressor impeller to an atmospheric portion with respect to a movable part of a casing shroud, thereby improving compressor performance and reliability. Especially. Another object is to minimize the detector, improve the responsiveness and controllability of the controller, and reduce the cost.
【0006】[0006]
【課題を解決するための手段】上記目的は、圧縮機用翼
車を支持する回転軸を、油または気体軸受或いは電磁石
と上記回転軸を検出する変位センサよりなる磁気軸受等
により支承する遠心圧縮機において、上記回転軸の熱変
形により生じる圧縮機用翼車の端面と対向して付設され
ているケーシング部との軸方向隙間の変化を、圧縮機用
翼車背面に設置される一つ以上の変位センサ出力と初期
背面隙間の関係より検出し、この検出信号をケーシング
内部に付設した一つ以上の電磁石に出力し、この電磁石
に対向するよう設置された磁石との吸引力によりリング
状シュラウドを駆動することにより達成される。The object is to centrifugally compress a rotary shaft supporting an impeller for a compressor by an oil or gas bearing or a magnetic bearing composed of an electromagnet and a displacement sensor for detecting the rotary shaft. In the machine, the change in the axial clearance between the end surface of the compressor impeller and the casing part that is provided to face the end surface of the compressor impeller caused by the thermal deformation of the rotary shaft is changed by one or more installed on the rear surface of the compressor impeller. Detected from the relationship between the displacement sensor output and the initial back clearance, the detection signal is output to one or more electromagnets attached inside the casing, and the ring-shaped shroud is attracted by a magnet installed so as to face the electromagnets. Is achieved by driving.
【0007】回転軸の片側に膨張タービン用翼車を付設
したタービン・コンプレッサにおいては、膨張タービン
翼車に対しても上記と同様な隙間制御を行うものであ
る。また、シュラウド駆動用電磁石の冷却ガスは、圧縮
機で昇圧された後、冷却器で冷却されたプロセスガスま
たは温度調節可能な補助タンク内のガスを用いるもので
ある。In the turbine / compressor in which the expansion turbine impeller is attached to one side of the rotary shaft, the same clearance control as described above is performed for the expansion turbine impeller. As the cooling gas for the shroud driving electromagnet, the process gas that has been boosted by the compressor and then cooled by the cooler or the gas in the auxiliary tank whose temperature can be adjusted is used.
【0008】シュラウドの駆動手段としては、圧縮機用
翼車の端面と対向したケーシング部にリング状剛体とそ
の内外円周上にベローリングを取り付けたリング状シュ
ラウドを付設する一方、検出信号に対応したプロセスガ
スの一部を供給バルブ及びリークバルブにて制御し、ケ
ーシング部と上記べローリング及びリング状剛体よりな
る空洞部に導入するものである。As a driving means for the shroud, a ring-shaped rigid body and a ring-shaped shroud having bellow rings mounted on the inner and outer circumferences thereof are attached to a casing portion facing the end surface of the compressor impeller, while corresponding to a detection signal. A part of the process gas is controlled by a supply valve and a leak valve, and introduced into the casing and the cavity formed of the bellow ring and the ring-shaped rigid body.
【0009】[0009]
【作用】遠心圧縮機は軸方向の移動をスラスト軸受で支
承し、円周方向の移動をラジアル軸受にて支承する。こ
のため、初期段階に設定された圧縮機用翼車の端面と対
向して付設されているケーシング部との軸方向隙間は一
定に保たれる。このような状況下において運転を継続し
ていくと、例えば軸受部においてスラスト部の風損によ
る発熱、或いは磁気軸受を用いたときの電磁石部の発熱
が生じる一方、高温タービンや低温タービンを連結した
タイプの圧縮機の周辺温度環境にて翼車を支持する回転
軸に熱応力が発生し、回転軸は熱変形を生じる。このた
め、最適位置に保たれた初期隙間は前記回転軸の熱変形
により変化し、特に、熱膨張が生じた場合には翼車端面
とケーシング部が接触し、翼車端面に損傷が生じる原因
となる。そこで、回転軸の熱膨張により生じる圧縮機用
翼車の端面と対向して付設されているケーシング部との
軸方向隙間の収縮変化を、圧縮機用翼車背面に設置され
る変位センサの出力と初期背面隙間の関係より検出し、
この検出信号を電圧に変換した後、ケーシング内部に付
設した電磁石に印加する。これにより上記電磁石と対向
するよう設置された面に設置した磁石との吸引力により
リング状シュラウドが回転軸の熱膨張により圧縮機用翼
車が浮上した分上昇し、最適な軸方向隙間が維持され
る。また、この際電磁石はケーシング内部にて非接触
で、上記磁石に力を伝達するため、圧縮機内を流通する
ガスは外部にリークすること無く所定の流通経路に移送
される。さらに、回転軸の熱変形による軸方向隙間変化
を圧縮機翼車背面のみにてセンシングするので応答性及
び制御性に優れ、安価な制御装置にて制御可能となる。The centrifugal compressor supports axial movement by means of thrust bearings and circumferential movement by means of radial bearings. Therefore, the axial clearance between the end surface of the compressor impeller set in the initial stage and the casing portion provided to face the end surface is kept constant. If the operation is continued under such a condition, for example, heat generation due to wind loss of the thrust portion in the bearing portion or heat generation of the electromagnet portion when using the magnetic bearing occurs, while a high temperature turbine or a low temperature turbine is connected. Thermal stress is generated in the rotating shaft supporting the impeller in the ambient temperature environment of the compressor of the type, and the rotating shaft is thermally deformed. Therefore, the initial clearance maintained at the optimum position changes due to the thermal deformation of the rotating shaft, and in particular, when thermal expansion occurs, the impeller end surface and the casing part come into contact with each other, causing damage to the impeller end surface. Becomes Therefore, the contraction change of the axial gap between the casing part attached to face the end face of the compressor impeller caused by the thermal expansion of the rotary shaft is output by the displacement sensor installed on the rear face of the compressor impeller. And the initial back clearance,
This detection signal is converted into a voltage and then applied to an electromagnet attached inside the casing. As a result, the ring-shaped shroud is lifted by the thermal expansion of the rotating shaft due to the suction force of the magnet installed on the surface installed so as to face the electromagnet, and the compressor shaft is lifted, maintaining the optimum axial clearance. To be done. Further, at this time, the electromagnet transmits the force to the magnet without making contact inside the casing, so that the gas flowing in the compressor is transferred to a predetermined flow path without leaking to the outside. Further, since the change in the axial clearance due to the thermal deformation of the rotating shaft is sensed only on the back surface of the compressor impeller, the response and controllability are excellent, and the control can be performed by an inexpensive control device.
【0010】空気分離装置などに用いられるタービン・
コンプレッサを対象とした場合、圧縮機翼車に回転軸を
介して対向する膨張タービン翼車にも同様な軸方向隙間
制御を行うものである。Turbines used in air separation devices, etc.
In the case of a compressor, the same axial clearance control is performed for the expansion turbine impeller facing the compressor impeller via the rotary shaft.
【0011】請求項4は前記請求項2にて、電磁石部に
発生する発熱を既存のガスラインを流れるプロセスガス
にて行うことで、不要な設備を必要とせず、電磁石の寿
命を向上させ、信頼性を維持する効果がある。また、同
時にケーシング部に発生する熱変形を抑えるための冷却
源としても使用できる効果がある。According to a fourth aspect of the present invention, the heat generated in the electromagnet portion is generated by the process gas flowing through the existing gas line, whereby unnecessary equipment is not required and the life of the electromagnet is improved. It has the effect of maintaining reliability. At the same time, there is an effect that it can be used as a cooling source for suppressing thermal deformation generated in the casing.
【0012】請求項5は請求項4の代替として使用で
き、かつ請求項4のプロセスガスラインが停止した場合
のバックアップとしても効果がある。[0012] Claim 5 can be used as an alternative to Claim 4, and is also effective as a backup when the process gas line of Claim 4 is stopped.
【0013】請求項6は請求項2と同様な効果を持つ別
の実施例で、その作用は圧縮機用翼車の端面と対向した
ケーシング部にリング状剛体と該リング状剛体の内外円
周上にベローリングを取り付けたリング状シュラウドを
付設する一方、前記検出信号に対応した前記プロセスガ
スの一部を供給バルブ及び排気バルブにて制御し、ケー
シング部と前記べローリング及びリング状剛体よりなる
空洞部に導入することで最適な軸方向隙間を維持する。According to a sixth aspect of the present invention, which has the same effect as that of the second aspect, the action is as follows: the ring-shaped rigid body and the inner and outer circumferences of the ring-shaped rigid body in the casing portion facing the end surface of the compressor impeller. A ring-shaped shroud with a bellows ring is attached to the upper part of the process gas, and a part of the process gas corresponding to the detection signal is controlled by a supply valve and an exhaust valve to form a casing part, the bellows ring and a ring-shaped rigid body. The optimum axial clearance is maintained by introducing it into the cavity.
【0014】[0014]
【実施例】以下本発明の一実施例を図1により説明す
る。1はディスク上に複数枚の羽根を具備した圧縮機用
翼車、2は該圧縮機用翼車1を支持回転させる回転軸、
3は回転軸2の周方向変位を支承するラジアル軸受、4
は回転軸2に付設されているスラスト部にて軸方向の変
位を支承するスラスト軸受、5は圧縮機用翼車1を包囲
するケーシング、6は該ケーシング5内にて圧縮機用翼
車1の軸方向に対向して設置された電磁石、7は該電磁
石6と圧縮機翼車1に対向し、かつ両者間に位置するリ
ング状のシュラウド、8は該シュラウド7の電磁石6に
対向する位置に付設され、電磁6石と吸引関係にある磁
石、9は電磁石6下端部のケーシング5とシュラウド7
を連結し、かつ周方向への駆動を防止する働きを持つ連
結棒、10は圧縮機用翼車1背面の変位量を測定する変
位センサ、11は電磁石6に所定の電圧を印加する電
源、12は圧縮機用翼車1の端部とシュラウド7の隙間
を最適にした時の翼車背面の初期隙間量と、変位センサ
10の出力を比較した際の変位量を電気信号に変換し、
電源11の入力とする電磁石用制御器である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. Reference numeral 1 denotes a compressor impeller having a plurality of blades on a disk, 2 denotes a rotary shaft for supporting and rotating the compressor impeller 1,
3 is a radial bearing that supports the displacement of the rotary shaft 2 in the circumferential direction, 4
Is a thrust bearing that supports axial displacement at a thrust portion attached to the rotary shaft 2, 5 is a casing that surrounds the compressor impeller 1, and 6 is a compressor impeller 1 in the casing 5. The electromagnets 7 are installed so as to face each other in the axial direction, 7 is a ring-shaped shroud that faces the electromagnet 6 and the compressor impeller 1, and 8 is a position that faces the electromagnet 6 of the shroud 7. A magnet attached to the magnet 6 and having an attraction relationship with the electromagnetic 6 stone, and 9 a casing 5 and a shroud 7 at the lower end of the electromagnet 6.
A connecting rod for connecting the above and preventing circumferential driving, 10 is a displacement sensor for measuring the amount of displacement of the back face of the compressor impeller 1, 11 is a power supply for applying a predetermined voltage to the electromagnet 6, Reference numeral 12 converts the displacement amount when comparing the output of the displacement sensor 10 with the initial clearance amount on the rear surface of the impeller when the clearance between the end of the compressor impeller 1 and the shroud 7 is optimized,
It is a controller for an electromagnet which is an input of the power supply 11.
【0015】次に本実施例の動作を説明する。圧縮機用
翼車1の翼車入口部(図面左方向)より流入する低圧の
ガスは翼車内を流入することで減速され、減速された成
分は圧力回復して翼車外周端より高圧ガスとして排出さ
れる。回転軸2はラジアル軸受3とスラスト軸受4によ
り支承されているため、上記シュラウド7と圧縮機用翼
車1端面の隙間を最適な間隔に保ち安定に回転する。こ
のような状況下において運転を継続していくと、軸受部
において、スラスト部の風損による発熱や、或いは磁気
軸受を用いたときの電磁石により発熱が生じる一方、圧
縮機に対向する端部に例えば高温タービンを連結したタ
イプの周辺温度環境にて、圧縮機用翼車1を支持する回
転軸2に熱応力が発生し、回転軸2は軸方向に熱膨張す
る。熱膨張した回転軸2はスラスト軸受4にて支承され
ているため、圧縮機用翼車1がある軸方向に移動し(図
では左側)翼車背面の隙間が拡がり、上記シュラウド7
と圧縮機用翼車1端面の隙間は狭まろうとする。この
際、電磁石用制御器12において、圧縮機用翼車1の端
部とシュラウド7の隙間を最適にした時の翼車背面の初
期隙間量と変位センサ10にて検出した翼車背面の隙間
拡がり量を比較し、その変化量を求め、電気信号に変換
する。その電気信号に見合った電源電圧を電磁石6に印
加することで、電磁石6に対向する磁石8に吸引力が働
き、シュラウド7は連結棒9にて周方向に支承されるた
め、軸方向電磁石6側に移動する。このため、熱膨張が
生じた場合も、圧縮機用翼車1の端部とシュラウド7の
隙間は最適の間隔に保たれることになる。Next, the operation of this embodiment will be described. The low-pressure gas flowing in from the impeller inlet portion (left side in the drawing) of the compressor impeller 1 is decelerated by flowing in the impeller, and the decelerated component recovers in pressure and becomes high-pressure gas from the outer peripheral end of the impeller. Is discharged. Since the rotary shaft 2 is supported by the radial bearing 3 and the thrust bearing 4, the rotary shaft 2 can be stably rotated while keeping the gap between the shroud 7 and the end face of the compressor impeller 1 at an optimum gap. When the operation is continued under such a condition, heat is generated in the bearing part due to windage loss of the thrust part or heat is generated by the electromagnet when the magnetic bearing is used, while the end part facing the compressor is generated. For example, in an ambient temperature environment of a type in which a high temperature turbine is connected, thermal stress is generated in the rotary shaft 2 supporting the compressor impeller 1, and the rotary shaft 2 thermally expands in the axial direction. The thermally expanded rotary shaft 2 is supported by the thrust bearing 4, so that the compressor impeller 1 moves in a certain axial direction (on the left side in the figure) to widen the gap on the rear face of the impeller, and the shroud 7
And the gap between the end surface of the impeller 1 for compressor and the end surface of the compressor impeller tries to narrow. At this time, in the electromagnet controller 12, the initial clearance amount on the rear surface of the impeller and the clearance on the rear surface of the impeller detected by the displacement sensor 10 when the clearance between the end of the compressor impeller 1 and the shroud 7 is optimized. The amount of spread is compared, the amount of change is obtained, and converted into an electrical signal. By applying a power supply voltage corresponding to the electric signal to the electromagnet 6, an attractive force acts on the magnet 8 facing the electromagnet 6, and the shroud 7 is supported by the connecting rod 9 in the circumferential direction. Move to the side. Therefore, even if thermal expansion occurs, the gap between the end of the compressor impeller 1 and the shroud 7 is kept at an optimum gap.
【0016】本実施例によれば、運転中回転軸に熱変形
が生じ、隙間が変化することによる翼車効率の低下を防
止することで、運転中の高効率化が維持できる。また、
この際電磁石はケーシング内部にて非接触で、上記磁石
に力を伝達するため、圧縮機内を流通するガスは外部に
リークすること無く所定の流通経路に移送され、圧縮機
性能及び信頼性が向上する効果もある。さらに、回転軸
の熱変形による軸方向隙間変化を圧縮機翼車背面のみに
てセンシングするので、応答性及び制御性に優れ、安価
な制御装置にて制御可能となる。本実施例では電磁石が
吸引するものについて説明したが、反発して軸方向隙間
を小さくする制御も可能であり、また吸引と反発を同時
に行うことも容易にできる。According to this embodiment, the efficiency of the rotary shaft can be improved during operation by preventing the impeller efficiency from deteriorating due to thermal deformation of the rotary shaft during operation and change of the clearance. Also,
At this time, since the electromagnet transmits the force to the magnet without contacting inside the casing, the gas flowing in the compressor is transferred to a predetermined flow path without leaking to the outside, improving the compressor performance and reliability. There is also an effect to do. Furthermore, since the change in the axial clearance due to the thermal deformation of the rotating shaft is sensed only on the back surface of the compressor impeller, it is possible to perform control with an inexpensive control device having excellent responsiveness and controllability. In the present embodiment, the one in which the electromagnet attracts has been described, but it is also possible to control the repulsion to reduce the axial gap, and it is also easy to simultaneously perform the attraction and the repulsion.
【0017】図2に本発明の他の実施例のタービン・コ
ンプレッサを示す。13は圧縮機用翼車1に対向し、回
転軸2に連結された膨張タービン用翼車である。尚、そ
の他の記号の説明は図1のものと同様なので省略する。
本図は例えば空気分離装置などに用いられるタービン・
コンプレッサを対象としたもので、膨張タービン用翼車
13にも図1と同様な軸方向隙間制御を行うものであ
り、効果も図1と同様であるが、本実施例ではタービン
の効率も向上する効果がある。FIG. 2 shows a turbine compressor according to another embodiment of the present invention. Reference numeral 13 denotes an expansion turbine impeller facing the compressor impeller 1 and connected to the rotary shaft 2. The description of other symbols is the same as that of FIG.
This figure shows, for example, a turbine used in an air separation device.
This is intended for a compressor, and the expansion turbine impeller 13 is also subjected to the same axial clearance control as in FIG. 1. The effect is also the same as in FIG. 1, but in this embodiment, the turbine efficiency is also improved. Has the effect of
【0018】図3に本発明のその他の実施例の圧縮機用
翼車周辺図を示す。14は圧縮機出口より排気されたプ
ロセスガスを次機器に移送する主ライン、15は該主ラ
イン14の高温ガスを冷却する冷却器、16は主ライン
14を流れる冷却用プロセスガスの一部をケーシング5
内の電磁石6に供給する給気ライン、17は給気ライン
16に流入するプロセスガスの流量を調節する調整バル
ブ、18は電磁石6の発熱量を回収したプロセスガスの
戻りラインである。本実施例は、図1と同様な動作下に
おいて、電磁石6部に発生する発熱を既存のガスライン
を流れるプロセスガスにて行うことで不要な設備を必要
とせず、電磁石6の寿命を向上させ信頼性を維持する効
果がある。また、同時にケーシング部に発生する熱変形
を抑えるための冷却源としても使用できる効果がある。FIG. 3 shows a peripheral view of a compressor impeller according to another embodiment of the present invention. 14 is a main line for transferring the process gas exhausted from the compressor outlet to the next equipment, 15 is a cooler for cooling the high temperature gas in the main line 14, and 16 is a part of the cooling process gas flowing through the main line 14. Casing 5
An air supply line for supplying to the electromagnet 6 therein, a reference numeral 17 for adjusting the flow rate of the process gas flowing into the air supply line 16, and a reference numeral 18 for a process gas return line for recovering the calorific value of the electromagnet 6. In the present embodiment, under the same operation as in FIG. 1, the heat generated in the electromagnet 6 is generated by the process gas flowing through the existing gas line, so that unnecessary equipment is not required and the life of the electromagnet 6 is improved. It has the effect of maintaining reliability. At the same time, there is an effect that it can be used as a cooling source for suppressing thermal deformation generated in the casing.
【0019】図4に本発明のさらに他の実施例の圧縮機
用翼車周辺図を示す。19はケーシング5内の電磁石6
を冷却するための、温度調節可能な補助タンクである。
本実施例は図3の実施例の代替として使用する一方、図
3のラインと並列に設置し、図3のプロセスガスの主ラ
イン14が停止した場合のバックアップとしても効果が
ある。FIG. 4 shows a peripheral view of a compressor impeller according to still another embodiment of the present invention. 19 is an electromagnet 6 in the casing 5.
It is an auxiliary tank with a temperature control for cooling.
While this embodiment is used as an alternative to the embodiment of FIG. 3, it is installed in parallel with the line of FIG. 3 and is also effective as a backup when the main line 14 of the process gas of FIG. 3 is stopped.
【0020】図5に本発明のその他の実施例の圧縮機用
翼車周辺図を示す。20は圧縮機用翼車1の端面と対向
したケーシング部にリング状剛体とその内外円周上にベ
ローリングを取り付けたリング状ベロー、21はケーシ
ング部と上記べローリング及びリング状剛体よりなる空
洞部の圧力を常時監視する電送式圧力計、22は該電送
式圧力計21の状況を加味して制御信号を出力するべロ
ー用制御器、23はべロー用制御器22の制御信号に対
応したガス圧を、上記プロセスガスの一部よりケーシン
グ部と上記べローリング及びリング状剛体よりなる空洞
部に補充するための供給バルブ、24はべロー用制御器
22の制御信号に対応したガス圧となるよう、上記空洞
部よりガスを排出するための排気バルブである。本実施
例の動作及び効果は図1の実施例と基本的に同じである
が、空洞部の圧力を変化させることで、より容易な構造
で軸方向隙間を制御できる効果がある。FIG. 5 shows a peripheral view of a compressor impeller according to another embodiment of the present invention. Reference numeral 20 is a ring-shaped bellows having a ring-shaped rigid body and a bellows ring attached on its inner and outer circumferences in a casing portion facing the end face of the compressor impeller 1, and 21 is a cavity formed by the casing portion and the bellows ring and the ring-shaped rigid body. An electronic pressure gauge for constantly monitoring the pressure of a section, 22 is a bellows controller that outputs a control signal in consideration of the situation of the electronic pressure gauge 21, and 23 is a control signal of the bellows controller 22. A supply valve for replenishing the generated gas pressure to the casing portion and the hollow portion formed by the bellow ring and the ring-shaped rigid body from a part of the process gas, and 24 is a gas pressure corresponding to a control signal of the bellow controller 22. Is an exhaust valve for discharging gas from the cavity. The operation and effect of this embodiment are basically the same as those of the embodiment of FIG. 1, but there is an effect that the axial clearance can be controlled with a simpler structure by changing the pressure of the cavity.
【0021】図6に本発明のその他の実施例の圧縮機用
翼車周辺図を示す。25はケーシング部と上記べローリ
ング及びリング状剛体よりなる空洞部のガスを外部に排
気するための排気ラインである。本実施例は図5の実施
例の代替として使用する一方、図5のラインと並列に設
置し図5のプロセスガスラインが停止した場合のバック
アップとしても効果がある。FIG. 6 shows a peripheral view of a compressor impeller according to another embodiment of the present invention. Reference numeral 25 is an exhaust line for exhausting the gas in the hollow portion composed of the casing portion and the bellow ring and the ring-shaped rigid body to the outside. While this embodiment is used as an alternative to the embodiment of FIG. 5, it is also effective as a backup when it is installed in parallel with the line of FIG. 5 and the process gas line of FIG. 5 stops.
【0022】[0022]
【発明の効果】本発明によれば、軸受部の発熱や運転環
境により、回転軸に熱変形が生じた場合も圧縮機用翼車
の端部とシュラウドの隙間が最適位置に存在することに
なるため、翼車効率の低下を防止し、運転中の高効率化
を維持できる。また、ケーシング部シュラウドの可動部
に対して、高圧の圧縮機翼車部分から大気部へのリーク
ガスを完全に遮断する構造としたため、圧縮機内を流通
するガスは外部にリークすること無く所定の流通経路に
移送され、信頼性が向上する効果もある。さらに、回転
軸の熱変形による軸方向隙間変化を圧縮機翼車背面のみ
にてセンシングするので、応答性及び制御性に優れ、安
価な制御装置にて制御可能となる。According to the present invention, the gap between the end of the impeller for the compressor and the shroud exists at the optimum position even when the rotary shaft is thermally deformed due to the heat generation of the bearing and the operating environment. Therefore, it is possible to prevent the efficiency of the impeller from lowering and maintain high efficiency during operation. In addition, the structure that completely shuts off the leak gas from the high pressure compressor impeller part to the atmospheric part with respect to the movable part of the casing shroud allows the gas flowing in the compressor to flow through the specified part without leaking to the outside. There is also an effect that it is transferred to the route and reliability is improved. Furthermore, since the change in the axial clearance due to the thermal deformation of the rotating shaft is sensed only on the back surface of the compressor impeller, it is possible to perform control with an inexpensive control device having excellent responsiveness and controllability.
【0023】さらに、電磁石部に発生する発熱を既存の
ガスラインを流れるプロセスガスにて行うことで不要な
設備を必要とせず、電磁石の寿命を向上させ、信頼性を
維持する効果がある。また、同時にケーシング部に発生
する熱変形を抑えるための冷却源としても使用できる効
果がある。さらに、プロセスガスラインが停止した場合
のバックアップとして効果がある。Further, since heat generated in the electromagnet is generated by the process gas flowing through the existing gas line, unnecessary facilities are not required, the life of the electromagnet is improved, and reliability is maintained. At the same time, there is an effect that it can be used as a cooling source for suppressing thermal deformation generated in the casing. Further, it is effective as a backup when the process gas line is stopped.
【図1】本発明の一実施を示す圧縮機用翼車周辺の断面
図である。FIG. 1 is a cross-sectional view around a compressor impeller showing an embodiment of the present invention.
【図2】本発明の他の実施例のタービン・コンプレッサ
の断面図である。FIG. 2 is a sectional view of a turbine compressor according to another embodiment of the present invention.
【図3】本発明のその他の実施例の圧縮機用翼車周辺の
断面図である。FIG. 3 is a cross-sectional view around a compressor impeller according to another embodiment of the present invention.
【図4】本発明のさらに他の実施例の圧縮機用翼車周辺
の断面図である。FIG. 4 is a cross-sectional view around a compressor impeller according to still another embodiment of the present invention.
【図5】本発明のその他の実施例の圧縮機用翼車周辺の
断面図である。FIG. 5 is a cross-sectional view around a compressor impeller according to another embodiment of the present invention.
【図6】本発明のその他の実施例の圧縮機用翼車周辺の
断面図である。FIG. 6 is a cross-sectional view around a compressor impeller according to another embodiment of the present invention.
1…圧縮機用翼車、2…回転軸、3…ラジアル軸受、4
…スラスト軸受、5…ケーシング、6…電磁石、7…リ
ング状のシュラウド、8…磁石、9…連結棒、10…変
位センサ、11…電源、12…電磁石用制御器、13…
膨張タービン用翼車、14…主ライン、15…冷却器、
16…給気ライン、17…調整バルブ、18…戻りライ
ン、19…補助タンク、20…リング状ベロー、21…
電送式圧力計、22…ベロー用制御器、23…供給バル
ブ、24…排気バルブ、25…排気ライン。DESCRIPTION OF SYMBOLS 1 ... Impeller for compressor, 2 ... Rotating shaft, 3 ... Radial bearing, 4
... thrust bearing, 5 ... casing, 6 ... electromagnet, 7 ... ring-shaped shroud, 8 ... magnet, 9 ... connecting rod, 10 ... displacement sensor, 11 ... power supply, 12 ... electromagnet controller, 13 ...
Expansion turbine impeller, 14 ... Main line, 15 ... Cooler,
16 ... Air supply line, 17 ... Regulator valve, 18 ... Return line, 19 ... Auxiliary tank, 20 ... Ring-shaped bellows, 21 ...
Electronic pressure gauge, 22 ... Bellows controller, 23 ... Supply valve, 24 ... Exhaust valve, 25 ... Exhaust line.
Claims (7)
は気体軸受或いは電磁石と上記回転軸を検出する変位セ
ンサよりなる磁気軸受等により支承する遠心圧縮機にお
いて、上記回転軸の熱変形により生じる圧縮機用翼車の
端面と対向して付設されているケーシング部との軸方向
隙間の変化を、圧縮機用翼車背面に設置される少なくと
も一つ以上の変位センサ出力と初期背面隙間の関係より
検出し、この検出信号を圧縮機内部と連通していない駆
動源に出力することで圧縮機用翼車端面と対向して付設
されたケーシングの一部であるリング状シュラウドを駆
動することを特徴とする遠心圧縮機の軸方向隙間制御
法。1. A centrifugal compressor in which a rotary shaft supporting a compressor impeller is supported by an oil or gas bearing or a magnetic bearing composed of an electromagnet and a displacement sensor for detecting the rotary shaft. At least one or more displacement sensor outputs installed on the rear surface of the compressor impeller and the initial rear surface are used to detect changes in the axial clearance between the casing portion attached to face the end surface of the compressor impeller caused by the deformation. The ring-shaped shroud, which is a part of the casing attached to face the end face of the compressor impeller, is driven by detecting from the relationship of the gap and outputting this detection signal to the drive source that is not communicating with the inside of the compressor. A method for controlling the axial clearance of a centrifugal compressor characterized by:
において、前記検出信号を前記ケーシング内部に付設し
た少なくとも一つ以上の電磁石に出力し、前記電磁石に
対向するよう設置された磁石との吸引力(或いは反発
力)によりリング状シュラウドを駆動することを特徴と
する遠心圧縮機の軸方向隙間制御法。2. The method for controlling the axial clearance of a centrifugal compressor according to claim 1, wherein the detection signal is output to at least one electromagnet provided inside the casing, and the magnet is installed so as to face the electromagnet. An axial clearance control method for a centrifugal compressor, characterized in that the ring-shaped shroud is driven by a suction force (or a repulsive force) with.
に、前記回転軸膨張タービン翼車に対して隙間制御を行
うことを特徴とするタービン・コンプレッサの軸方向隙
間制御法。3. An axial clearance control method for a turbine / compressor according to the axial clearance control method for a centrifugal compressor of claim 1, wherein clearance control is performed for the rotary shaft expansion turbine impeller.
において、圧縮機で昇圧された後、冷却機で冷却された
プロセスガスの一部を前記シュラウド駆動用電磁石の冷
却ガスとして導いたことを特徴とする遠心圧縮機の軸方
向隙間制御法。4. The axial clearance control method for a centrifugal compressor according to claim 1, wherein a part of the process gas cooled by a cooler after being pressurized by the compressor is introduced as a cooling gas for said shroud driving electromagnet. A method for controlling the axial clearance of a centrifugal compressor, which is characterized in that
において、温度調節可能な補助タンク内のガスを前記シ
ュラウド駆動用電磁石の冷却ガスとして導いたことを特
徴とする遠心圧縮機の軸方向隙間制御法。5. The method for controlling the axial clearance of a centrifugal compressor according to claim 4, wherein the gas in the auxiliary tank whose temperature is adjustable is introduced as the cooling gas for the electromagnet for driving the shroud. Axial clearance control method.
において、圧縮機用翼車の端面と対向したケーシング部
にリング状剛体と該リング状剛体の内外円周上にベロー
リングを取り付けたリング状シュラウドを付設する一
方、前記検出信号に対応した前記プロセスガスの一部を
供給バルブ及び排気バルブにて制御し、ケーシング部と
前記べローリング及びリング状剛体よりなる空洞部に導
入することを特徴とする遠心圧縮機の軸方向隙間制御
法。6. The method for controlling the axial clearance of a centrifugal compressor according to claim 1, wherein a ring-shaped rigid body and a bellows ring are formed on the inner and outer circumferences of the ring-shaped rigid body in the casing portion facing the end surface of the compressor impeller. While the attached ring-shaped shroud is attached, a part of the process gas corresponding to the detection signal is controlled by a supply valve and an exhaust valve, and is introduced into a cavity portion composed of a casing portion, the bellow ring and a ring-shaped rigid body. An axial clearance control method for a centrifugal compressor, which is characterized in that
において、温度調節可能な補助タンク内のガスを前記空
洞部に導入することを特徴とする遠心圧縮機の軸方向隙
間制御法。7. The axial clearance control method for a centrifugal compressor according to claim 6, wherein gas in an auxiliary tank whose temperature is adjustable is introduced into the cavity. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5058418A JPH06272698A (en) | 1993-03-18 | 1993-03-18 | Axial gap control method for centrifugal compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5058418A JPH06272698A (en) | 1993-03-18 | 1993-03-18 | Axial gap control method for centrifugal compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06272698A true JPH06272698A (en) | 1994-09-27 |
Family
ID=13083840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5058418A Pending JPH06272698A (en) | 1993-03-18 | 1993-03-18 | Axial gap control method for centrifugal compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06272698A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7871241B2 (en) | 2008-01-15 | 2011-01-18 | Weir Slurry Group, Inc. | Self-monitoring system for evaluating and controlling adjustment requirements of leakage restricting devices in rotodynamic pumps |
DE102012217381A1 (en) * | 2012-09-26 | 2014-03-27 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Radial compressor for an exhaust gas turbocharger |
DE102015202375A1 (en) * | 2015-02-11 | 2016-08-11 | Robert Bosch Gmbh | Radial compressor, exhaust gas turbocharger and corresponding method for operating a centrifugal compressor |
CN107435621A (en) * | 2017-08-17 | 2017-12-05 | 珠海格力节能环保制冷技术研究中心有限公司 | Magnetic suspension compressor and its clearance adjustment method |
CN109029211A (en) * | 2018-07-26 | 2018-12-18 | 柳州上汽汽车变速器有限公司 | The measuring instrument and measurement method of speed changer shaft axial gap |
US11149748B2 (en) | 2017-12-08 | 2021-10-19 | Koninklijke Philips N.V. | System and method for varying pressure from a pressure generator |
US11460041B2 (en) * | 2019-06-24 | 2022-10-04 | Lg Electronics Inc. | Turbo compressor |
-
1993
- 1993-03-18 JP JP5058418A patent/JPH06272698A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7871241B2 (en) | 2008-01-15 | 2011-01-18 | Weir Slurry Group, Inc. | Self-monitoring system for evaluating and controlling adjustment requirements of leakage restricting devices in rotodynamic pumps |
CN101970885A (en) * | 2008-01-15 | 2011-02-09 | 威尔斯拉里集团公司 | Self-monitoring system for evaluating and controlling adjustment requirements of leakage restricting devices in rotodynamic pumps |
DE102012217381A1 (en) * | 2012-09-26 | 2014-03-27 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Radial compressor for an exhaust gas turbocharger |
US9695838B2 (en) | 2012-09-26 | 2017-07-04 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Radial compressor for an exhaust gas turbocharger |
DE102015202375A1 (en) * | 2015-02-11 | 2016-08-11 | Robert Bosch Gmbh | Radial compressor, exhaust gas turbocharger and corresponding method for operating a centrifugal compressor |
CN107435621A (en) * | 2017-08-17 | 2017-12-05 | 珠海格力节能环保制冷技术研究中心有限公司 | Magnetic suspension compressor and its clearance adjustment method |
US11149748B2 (en) | 2017-12-08 | 2021-10-19 | Koninklijke Philips N.V. | System and method for varying pressure from a pressure generator |
EP3720528B1 (en) * | 2017-12-08 | 2022-05-11 | Koninklijke Philips N.V. | Pressure generation system |
CN109029211A (en) * | 2018-07-26 | 2018-12-18 | 柳州上汽汽车变速器有限公司 | The measuring instrument and measurement method of speed changer shaft axial gap |
CN109029211B (en) * | 2018-07-26 | 2020-06-12 | 柳州上汽汽车变速器有限公司 | Measuring instrument and measuring method for axial clearance of rotating shaft of transmission |
US11460041B2 (en) * | 2019-06-24 | 2022-10-04 | Lg Electronics Inc. | Turbo compressor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7964982B2 (en) | Axial in-line turbomachine | |
EP2236771B1 (en) | Method and apparatus for clearance control | |
US5791868A (en) | Thrust load compensating system for a compliant foil hydrodynamic fluid film thrust bearing | |
JP4107829B2 (en) | Turbomachine | |
EP0834020A1 (en) | Shaft bearing system | |
JP2002529646A (en) | Fluid machine, its main bearing and method of operating fluid machine | |
JPH05263662A (en) | Tip clearance control apparatus for turbo machine and blade | |
EP0458547A2 (en) | Shaft seals | |
CA2333991A1 (en) | A system for delivering pressurized lubricant fluids to an interior of a rotating hollow shaft | |
US7654791B2 (en) | Apparatus and method for controlling a blade tip clearance for a compressor | |
US20030077187A1 (en) | Molecular pump for forming a vacuum | |
JPH06272698A (en) | Axial gap control method for centrifugal compressor | |
JPH1150809A (en) | Elongation adjuster for rotating body | |
JP2008215107A (en) | Compressor | |
JP5792387B2 (en) | Operation method of rotating machine | |
JP2011064325A (en) | System, method and device for providing magnetic seal | |
US10968919B2 (en) | Two-stage centrifugal compressor | |
JP4156930B2 (en) | Rotor gap control module | |
JPH07113471A (en) | Sealing device | |
JP2007127006A (en) | A two-shaft gas turbine, a two-shaft gas turbine operation method, a two-shaft gas turbine control method, and a two-shaft gas turbine bearing cooling method. | |
JP2007056710A (en) | Turbine unit for air cycle refrigeration and cooling | |
JP2007162492A (en) | Compression expansion turbine system | |
JP3446917B2 (en) | Turbo molecular pump | |
JP2008039129A (en) | Turbine unit for air cycle refrigerator | |
JPH0650334A (en) | Thrust magnetic bearing of turbomachinery |