[go: up one dir, main page]

JPH06272517A - Power generation device - Google Patents

Power generation device

Info

Publication number
JPH06272517A
JPH06272517A JP5085749A JP8574993A JPH06272517A JP H06272517 A JPH06272517 A JP H06272517A JP 5085749 A JP5085749 A JP 5085749A JP 8574993 A JP8574993 A JP 8574993A JP H06272517 A JPH06272517 A JP H06272517A
Authority
JP
Japan
Prior art keywords
cycle
turbine
low temperature
heat
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5085749A
Other languages
Japanese (ja)
Other versions
JP3520927B2 (en
Inventor
Shigeru Sakashita
茂 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP08574993A priority Critical patent/JP3520927B2/en
Publication of JPH06272517A publication Critical patent/JPH06272517A/en
Application granted granted Critical
Publication of JP3520927B2 publication Critical patent/JP3520927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To avoid temperature rise by way of reducing heat release to the air by providing a first refrigerating cycle with intermediate pressure gas bled from a middle step of a turbine as a heat source and a refrigerating/expansion cycle furnished with a refrigerating compressor used doubly as an expander, carrying out low temperature regeneration by the first refrigerating cycle at nighttime and expansion drive of the refrigerating compressor at daytime. CONSTITUTION:By driving a steam turbine 4 with thermal steam gasified by a fusion reactor 1, power is generated by a generator 4A. Low pressure gas is gasified in the fusion reactor 1 through a condenser 5, a flash tank 2 and circulation pump 3 and Rankine cycle is repeated. At nighttime, as power consumption is small, intermediate pressure gas is taken out of an extraction steam pipe 6 of the steam turbine 4 and introduced to an absorption refrigerating machine 7, and by generating heat of evaporation on the side of evaporator 75, it is condensed and returned to the flash tank 2. At daytime, a refrigerating cycle of a regeneration tank 25 is switched over to an expansion cycle, a refrigerant refrigerated by low temperature energy of the low temperature heat accumulation tank 25 is introduced to a refrigerant evaporator 21 and heat-exhanged with sea water from the condenser 5 and others. Consequently, it is possible to prevent a large amount of heat radiation and to prevent temperature rise of the air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は夜間電力と昼間電力の平
滑化を図るために蓄冷サイクルを組合せた発電装置に係
り、特に蓄冷サイクル側にも又発電サイクル側にも地球
環境の保護を充分配慮した発電装置を提供する事にあ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation apparatus in which a cold storage cycle is combined for smoothing nighttime power and daytime power, and in particular, the global environment is sufficiently protected on both the cold storage cycle side and the power generation cycle side. It is to provide a considerate generator.

【0002】[0002]

【従来の技術】本来、企業は現世代の人間及び社会の要
請に合致する商品若しくはサービスをタイムリーに且つ
適切なコストで供給するのが債務であるが、近年はそれ
のみならず、次世代の人間及び社会に対し、地球環境の
破壊や化石燃料等の大量消費等の負の遺産を残す事な
く、言い換えれば地球という共通の財産を如何に保全し
ながら現世代に対する社会的要請を満足し得る商品若し
くはサービスを提供する事が要求され、そしてこの様な
要請は公営企業たる電力会社に対しては特に極めて強く
要請される。この為従来より昼間、特に夏期における昼
間の冷房消費電力のピーク電力に合せて発電装置を建造
する事なく、夜間における余剰電力の有効に利用して、
消費電力が大幅に低減する深夜電力を利用して蓄冷若し
くは蓄熱を図り、昼間時に該熱エネルギーを発電サイク
ルの一部に組込む事により、ピーク電力の平滑化を図っ
ている。
2. Description of the Related Art Originally, it is a corporation's obligation to supply goods or services that meet the demands of people and society of the present generation in a timely manner and at an appropriate cost. Human beings and society without leaving a negative legacy such as the destruction of the global environment and the mass consumption of fossil fuels, in other words, how to preserve the common property of the earth while satisfying the social demands of the present generation. It is required to provide the goods or services to be obtained, and such a request is particularly strongly demanded from the electric power company which is a public enterprise. For this reason, in the daytime, it is possible to effectively use the surplus power at night without constructing a power generator in accordance with the peak power of cooling power consumption during the daytime, especially in the summer.
The peak power is smoothed by storing cold or heat by using the late-night power whose power consumption is significantly reduced and incorporating the heat energy into a part of the power generation cycle during the daytime.

【0003】そして更に近年においては、前記発電サイ
クルに火力発電等の化石燃料消費型の発電システムを用
いずに、軽水炉等の核分裂型の原子力発電、更には燃料
の無限利用が可能な核融合型の原子力発電が注力されて
いる。原子力発電も通常の火力発電と同様に加熱装置と
しての例えば核融合反応炉にてガス化した熱蒸気をター
ビンに流入させ圧力エネルギを運動のエネルギに転換さ
せる事により動力を発生させて発電機で電力を発生し、
一方タービンで働き終わった低圧ガスを復水器で海水と
熱交換させて復水させた後、フラッシュタンクに導き、
そしてフラッシュタンク内に貯溜した復水は再度循環ポ
ンプにより反応炉内で熱蒸気にガス化させ、前記発電サ
イクル(ランキンサイクル)を繰り返す。しかしながら
前記復水器で海水と熱交換させる事は、海水が熱水化
し、環境破壊につながる。
Further, in recent years, without using a fossil fuel consumption type power generation system such as a thermal power generation in the power generation cycle, a nuclear fission type nuclear power generation such as a light water reactor, and further a fusion type in which fuel can be used infinitely. Nuclear power is being focused on. Nuclear power generation is similar to ordinary thermal power generation, and is a generator that generates power by flowing hot steam that has been gasified in a fusion reactor as a heating device into a turbine and converting pressure energy into kinetic energy. Generate electricity,
On the other hand, the low-pressure gas that has finished working in the turbine exchanges heat with seawater in a condenser to condense it, and then leads it to a flash tank,
Then, the condensate stored in the flash tank is again gasified into hot steam in the reaction furnace by the circulation pump, and the power generation cycle (Rankin cycle) is repeated. However, exchanging heat with seawater in the condenser causes seawater to become hot water, resulting in environmental damage.

【0004】この為特公昭49ー45095号において
は、前記復水器に空冷コンデンサを用い、該コンデンサ
を利用して海水の代りに空気にて低圧ガスの冷却を行う
と共に、前記発電機に冷凍機を連結し、夜間電力時に前
記発電機を介して冷凍機を駆動させて蒸発器よりの冷熱
を蓄冷槽に蓄冷し、昼間時に前記タービンよりの低圧ガ
スを空冷コンデンサと共に蓄冷槽に導くように構成して
いる。これにより、空冷コンデンサの放熱量は蓄冷槽に
適度に配分されてその分空冷コンデンサの放熱量が減少
するので大気の温度上昇を避ける事が出来る。
Therefore, in Japanese Patent Publication No. 49-45095, an air-cooled condenser is used for the condenser, and the condenser is used to cool the low-pressure gas with air instead of seawater, and the generator is frozen. The machine is connected, the refrigerator is driven through the generator at night power to store the cold heat from the evaporator in the cold storage tank, and during the daytime, the low pressure gas from the turbine is guided to the cold storage tank together with the air cooling condenser. I am configuring. As a result, the heat radiation amount of the air-cooled condenser is appropriately distributed to the cold storage tank and the heat radiation amount of the air-cooled condenser is reduced accordingly, so that the temperature rise of the atmosphere can be avoided.

【0005】[0005]

【発明が解決しようとする課題】しかしながら原子力発
電の場合は火力発電の場合と異なり、反応炉内への燃料
供給の制御が困難であるために、昼夜間を問わず定常的
な量の前記熱水若しくは熱気が排出され、結果として夜
間運転中においても空冷コンデンサへの低圧ガスの導入
量は変らず、又夜間時は蓄冷中であるために蓄冷槽へ低
圧ガスを配分する事が出来ず、この為海水若しくは大気
への放熱量の減少を図る事が出来ず、その環境破壊に対
しては無防備である。
However, in the case of nuclear power generation, unlike in the case of thermal power generation, it is difficult to control the fuel supply into the reactor, so a constant amount of the heat is generated day and night. Water or hot air is discharged, and as a result, the amount of low-pressure gas introduced into the air-cooled condenser does not change even during nighttime operation, and since low-temperature gas is being stored at night, it is impossible to distribute low-pressure gas to the cold storage tank. Therefore, the amount of heat released to seawater or the atmosphere cannot be reduced, and there is no defense against environmental damage.

【0006】一方前記蓄冷槽側の冷凍サイクルにおいて
も近年大気のオゾン層破壊を防止するためにフロンの代
替エネルギとしてアンモニアや炭酸ガス冷媒を用いてい
る。しかしながらアンモニアや炭酸ガス冷媒を用いた場
合においても単にフロンの代替冷媒としての利用にとど
まり、アンモニアや炭酸ガスの有利性を何等生かしてい
ない。即ち前記アンモニア等を単にフロンの代替として
しか用いる技術であれば、基本的にアンモニアを用いた
ことの意味がなく、いわゆる技術の進歩の面から見ての
前進ではない。
On the other hand, in the refrigerating cycle on the side of the cold storage tank, ammonia or carbon dioxide gas refrigerant has recently been used as alternative energy for CFCs in order to prevent destruction of the ozone layer in the atmosphere. However, even when using an ammonia or carbon dioxide gas refrigerant, it is merely used as an alternative refrigerant of CFC, and the advantages of ammonia or carbon dioxide gas are not utilized at all. That is, if the technology uses ammonia as a substitute for CFCs, it basically has no meaning to use ammonia, and it is not a step forward in terms of so-called technological progress.

【0007】本発明はかかる従来技術の欠点に鑑み、原
子力発電のように、昼夜間を問わず定常的な量の前記熱
水若しくは熱気が排出される装置においても、効果的に
海水若しくは大気への放熱量の減少を図り、円滑に夜間
エネルギの蓄冷と共に環境破壊を有効に阻止し得る発電
装置を提供する事を目的とする。本発明の他の目的は、
前記蓄冷用の冷凍サイクルにフロンの代替冷媒を用いる
と共に、該代替冷媒の利点を有効に生かし、フロンに比
較して数段優れた而も発電装置に好適な蓄冷サイクルを
組込んだ発電装置を提供する事を目的とする。
In view of the above-mentioned drawbacks of the prior art, the present invention effectively discharges hot water or hot air into a seawater or the atmosphere, even in a device such as nuclear power generation, in which a steady amount of hot water or hot air is discharged regardless of day and night. It is an object of the present invention to provide a power generation device that can reduce the amount of heat radiation and smoothly store night energy and effectively prevent environmental damage. Another object of the present invention is to
While using a refrigerant alternative to CFCs in the refrigeration cycle for cold storage, effectively utilizing the advantages of the alternative refrigerants, a power generation apparatus incorporating a cold storage cycle suitable for a power generation apparatus that is several steps superior to CFCs is provided. The purpose is to provide.

【0008】[0008]

【課題を解決する為の手段】本発明は前記したタービン
及び復水器を具えてなる発電装置において、前記タービ
ンの中段より抽気させた中圧ガスを熱源として吸収若し
くは吸着冷凍サイクルを構成する第1の冷凍サイクル
と、低温蓄冷槽と、誘導電動機が連結された膨張機兼用
の冷凍圧縮機と、低温蓄冷槽と、冷媒蒸発器とを具えた
アンモニア若しくは炭酸ガスを冷媒とする第2の冷凍/
膨脹サイクルとを具え、夜間運転時に前記第1の冷凍サ
イクルの蒸発器を凝縮器として利用して前記冷凍圧縮機
の圧縮運転により低温蓄冷槽に低温蓄冷を行い、一方昼
間運転時に前記低温蓄冷槽に低温蓄冷された低温エネル
ギにより冷却された冷媒を冷媒蒸発器に導き、前記ター
ビンより吐出された低圧ガス又は/及び復水器よりの熱
交換媒体と熱交換させた後、その蒸発冷媒により前記冷
凍圧縮機の膨脹回転を行い、該冷凍圧縮機に連結された
誘導電動機を発電機として回転させるように構成した事
を特徴とするものである。尚本発明は主として原子力発
電装置に好適に適用されるものであるが、これのみに限
らず、火力発電やごみ償却炉を加熱源とする発電装置等
にも適用可能である。
According to the present invention, in a power generator comprising a turbine and a condenser as described above, a medium pressure gas extracted from a middle stage of the turbine is used as a heat source to form an absorption or adsorption refrigeration cycle. Second refrigeration using ammonia or carbon dioxide as a refrigerant, which includes a refrigeration cycle of 1, a low temperature regenerator, an expansion motor combined refrigeration compressor to which an induction motor is connected, a low temperature regenerator, and a refrigerant evaporator. /
An expansion cycle is used, and during the nighttime operation, the evaporator of the first refrigeration cycle is used as a condenser to perform low temperature cold storage in the low temperature cold storage tank by the compression operation of the refrigeration compressor, while the low temperature cold storage tank is operated during daytime operation. The refrigerant cooled by the low temperature energy stored in the low temperature is guided to the refrigerant evaporator, and after exchanging heat with the low pressure gas discharged from the turbine or / and the heat exchange medium from the condenser, the evaporated refrigerant is used to The present invention is characterized in that the refrigeration compressor is expanded and rotated, and an induction motor connected to the refrigeration compressor is rotated as a generator. Although the present invention is preferably applied mainly to a nuclear power generation device, the present invention is not limited to this and is also applicable to a thermal power generation or a power generation device using a refuse amortization furnace as a heating source.

【0009】[0009]

【作用】かかる技術手段によれば次の様な作用を有す
る。例えば原子力発電の場合は夜間運転時においても昼
間と同様な熱蒸気が加熱装置側より得られるが、この場
合においてもタービンの中段より中圧ガスが吸収若しく
は吸着冷凍機側に供給されるために、復水器側に導入さ
れる低圧ガスが大幅に減少し、結果として該復水器と熱
交換される海水若しくは大気への放熱量を大幅に減少す
る事が出来、環境破壊を有効に阻止し得る。
The above technical means has the following actions. For example, in the case of nuclear power generation, the same hot steam as in the daytime can be obtained from the heating device side even during nighttime operation, but in this case as well, the intermediate pressure gas is supplied from the middle stage of the turbine to the absorption or adsorption refrigerator side. , The low-pressure gas introduced to the condenser side is greatly reduced, and as a result, the amount of heat released to seawater or the atmosphere that exchanges heat with the condenser can be greatly reduced, effectively preventing environmental damage. You can

【0010】又蓄冷槽への蓄冷は吸収冷凍機とアンモニ
ア等の冷凍サイクルの二段階に分けて冷凍を行う構成を
取るために、冷凍圧縮機の軸動力を大きくする事なく円
滑に−50℃以下の低温エネルギの蓄冷が可能となる。
そしてこのような低温エネルギ蓄冷用の冷凍サイクルは
フロンよりアンモニア若しくは炭酸ガス冷媒が有利であ
り、フロンに比較して数段優れた冷凍効率を得る事が出
来る。又第1の冷凍サイクルを構成する吸収若しくは吸
着冷凍機もアンモニアを用いるものであり、結果として
フロンを用いずにそれ以上に有効な蓄冷サイクルを構成
できる。
Further, since the cold storage in the cold storage tank is divided into two stages of an absorption refrigerator and a refrigeration cycle of ammonia etc. to perform the refrigeration, the refrigeration compressor can be smoothly operated at −50 ° C. without increasing the axial power. The cold energy of the following low temperature energy can be stored.
In such a refrigeration cycle for storing low-temperature energy, ammonia or a carbon dioxide gas refrigerant is more advantageous than CFC, and it is possible to obtain a refrigeration efficiency that is much better than that of CFC. Further, the absorption or adsorption refrigerator that constitutes the first refrigeration cycle also uses ammonia, and as a result, a more effective cold storage cycle can be constituted without using CFCs.

【0011】又昼間時には前記低温蓄冷槽に低温蓄冷さ
れた低温エネルギにより冷却された冷媒を冷媒蒸発器に
導き、前記タービンより吐出された低圧ガスと熱交換さ
せる訳であるが、この際前記冷媒は−50℃以下の極低
温に冷却されている為に、復水器側の負荷を大幅に軽減
し得、更に前記冷媒蒸発器側で復水器よりの熱交換媒
体、具体的には海水と熱交換させる事により、海水自体
の温度低下を有効に図る事が出来、更に該海水若しくは
流体を復水器間で循環させる事により閉サイクルを形成
する事が出来この面からも環境破壊を有効に阻止し得
る。又前記冷媒蒸発器で熱交換後の蒸発冷媒は前記冷凍
圧縮機の膨脹回転を行い、該冷凍圧縮機に連結された誘
導電動機を介して発電機を行う事が出来るために、その
分発電量が増大し、その分タービン側の発電量を低減さ
せてもピーク電力の需要を有効に賄うことが出来、発電
所の建設コスト及び設備費の低減を有効に図る事が出来
る。
Further, during the daytime, the refrigerant cooled by the low temperature energy stored in the low temperature cold storage tank at low temperature is guided to the refrigerant evaporator to exchange heat with the low pressure gas discharged from the turbine. Is cooled to an extremely low temperature of -50 ° C or less, the load on the condenser side can be greatly reduced, and further, the heat exchange medium from the condenser on the refrigerant evaporator side, specifically seawater. It is possible to effectively reduce the temperature of the seawater itself by exchanging heat with the water, and it is also possible to form a closed cycle by circulating the seawater or fluid between the condensers. Can be effectively blocked. Further, the evaporated refrigerant after heat exchange in the refrigerant evaporator can perform expansion rotation of the refrigerating compressor and generate a power through an induction motor connected to the refrigerating compressor. Even if the amount of power generation on the turbine side is reduced by that amount, the demand for peak power can be effectively covered, and the construction cost and facility cost of the power plant can be effectively reduced.

【0012】[0012]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図1
は本発明の実施例に係る発電装置の基本構成図で、1は
核融合反応炉で、公知の様に超伝導コイル11、真空容
器12、ブランケット13により核融合反応室14を形
成すると共に、該反応室14と連通する燃料注入部1
5、トリチウム回収部16を具える。2はフラッシュタ
ンク、3は循環ポンプ、4はその出力軸に発電機4Aが
連結された蒸気タービン、5は復水器で、これらにより
ランキンサイクルを構成する。即ち、前記したように核
融合反応炉1にてガス化した熱蒸気を蒸気タービン4に
流入させ発電機4Aを駆動回転させて電力を発生させる
とともに、一方タービン4で働き終わった低圧ガスを復
水器5で復水させた後、フラッシュタンク2に導き、そ
してフラッシュタンク2内に貯溜した復水は再度循環ポ
ンプ3により反応炉1内で熱蒸気にガス化させ、ランキ
ンサイクルを繰り返す
Embodiments of the present invention will now be illustratively described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative positions and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely examples, unless otherwise specified. Not too much. Figure 1
1 is a basic configuration diagram of a power generation device according to an embodiment of the present invention. Reference numeral 1 is a nuclear fusion reactor, which forms a nuclear fusion reaction chamber 14 with a superconducting coil 11, a vacuum container 12, and a blanket 13 as is well known. Fuel injection part 1 communicating with the reaction chamber 14
5, a tritium recovery unit 16 is provided. 2 is a flash tank, 3 is a circulation pump, 4 is a steam turbine whose output shaft is connected to a generator 4A, and 5 is a condenser, which form a Rankine cycle. That is, as described above, the hot steam gasified in the fusion reactor 1 flows into the steam turbine 4 to drive and rotate the generator 4A to generate electric power, while the low pressure gas that has finished working in the turbine 4 is recovered. After the water is condensed in the water tank 5, it is led to the flash tank 2, and the condensed water stored in the flash tank 2 is again gasified into hot steam in the reaction furnace 1 by the circulation pump 3, and the Rankine cycle is repeated.

【0013】そして前記復水器5内の熱交換器5aは後
記する冷媒蒸発器21の負荷熱交換器21aと配管22
及びポンプ23を介して連結されている。又前記タービ
ン4は、その中段に抽気管6を接続し、該タービン4よ
り抽気させた中圧ガスをアンモニア吸収冷凍機7の発生
器71側に導入可能に構成している。吸収冷凍機7は公
知の様に、発生器71、熱交換器72、吸収器73、凝
縮器74、及び蒸発器75からなり、前記タービン4の
中段より抽気させた150℃前後の保有熱を有する中圧
ガスを吸収冷凍機7の発生器71に導き、その蒸発器7
5側で略5〜7℃前後の蒸発熱を取り出し可能に構成し
ている。尚凝縮器74側の凝縮熱は必要に応じ、夜間の
地域暖房、温水プール、養魚場等に利用される。
The heat exchanger 5a in the condenser 5 includes a load heat exchanger 21a of a refrigerant evaporator 21 and a pipe 22 which will be described later.
And a pump 23. Further, the turbine 4 is configured such that an extraction pipe 6 is connected to the middle stage of the turbine 4 so that the medium pressure gas extracted from the turbine 4 can be introduced to the generator 71 side of the ammonia absorption refrigerator 7. As is well known, the absorption refrigerator 7 includes a generator 71, a heat exchanger 72, an absorber 73, a condenser 74, and an evaporator 75, and retains the heat of about 150 ° C. extracted from the middle stage of the turbine 4 at about 150 ° C. The medium pressure gas that it has is led to the generator 71 of the absorption refrigerator 7, and its evaporator 7
It is configured so that the heat of vaporization at about 5 to 7 ° C. can be taken out on the No. 5 side. The condensation heat on the condenser 74 side is used for nighttime district heating, a hot water pool, a fish farm, etc., if necessary.

【0014】一方前記蒸発器75側は受液器24を介し
て−55℃の低温蓄冷を行う低温蓄冷槽25と、誘導電
動機26が連結された膨張機兼用の冷凍圧縮機27とに
よりアンモニア若しくは炭酸ガスを冷媒とする冷凍サイ
クルを構成する、又前記冷凍圧縮機27と低温蓄冷槽2
5とは冷媒蒸発器21との間で膨脹サイクルを形成す
る。
On the other hand, on the side of the evaporator 75, a low temperature cold storage tank 25 for cold cold storage at -55 ° C. via a liquid receiver 24 and a refrigeration compressor 27 also serving as an expander, to which an induction motor 26 is connected, are used for ammonia or A refrigeration cycle using carbon dioxide as a refrigerant, and the refrigeration compressor 27 and the low temperature regenerator 2
5 forms an expansion cycle with the refrigerant evaporator 21.

【0015】夜間運転時は昼間と同様に反応炉1よりフ
ラッシュタンク2を介して得られた熱蒸気を蒸気タービ
ン4に流入させ、発電機4Aを回転させ所望の発電を行
う。この際夜間の消費電力は昼間より相当小さくなって
いる為に、余剰熱エネルギをタービン4の中段の抽気管
6より中圧ガスとして取り出して吸収冷凍機7の発生器
71側に導き、蒸発器75側に略5〜7℃前後の蒸発熱
を生成する。そして前記発生器71での熱交換により中
圧ガスは復水され、フラッシュタンク2側に戻入され
る。
During nighttime operation, as in the daytime, the hot steam obtained from the reaction furnace 1 via the flash tank 2 is flowed into the steam turbine 4, and the generator 4A is rotated to generate the desired power. At this time, since the power consumption at night is considerably smaller than that at daytime, surplus heat energy is taken out from the extraction tube 6 in the middle stage of the turbine 4 as medium-pressure gas and guided to the generator 71 side of the absorption refrigerator 7 and the evaporator. Heat of evaporation of about 5 to 7 ° C. is generated on the 75 side. Then, the medium pressure gas is condensed by heat exchange in the generator 71 and returned to the flash tank 2 side.

【0016】一方前記誘導電動機26は発電機4A側よ
り若しくは夜間の深夜電力を利用して駆動回転させる。
この結果前記吸収冷凍機7側の蒸発器75が凝縮器とし
て機能し、前記略5〜7℃前後の蒸発熱と熱交換された
アンモニア若しくは炭酸ガス冷媒が凝縮して受液器24
に貯溜される。そして受液器24に貯溜された液化アン
モニアは、低温蓄冷槽25で蒸発/熱交換して−55℃
前後の低温蓄冷を行い、その後冷凍圧縮機27で再度圧
縮されて前記吸収冷凍機7側の蒸発器75側に導かれ、
以下前記冷凍サイクルを繰り返しながら低温蓄冷を継続
する。
On the other hand, the induction motor 26 is driven and rotated from the generator 4A side or by using the nighttime electric power at night.
As a result, the evaporator 75 on the side of the absorption refrigerator 7 functions as a condenser, and the ammonia or carbon dioxide refrigerant that has exchanged heat with the heat of evaporation at about 5 to 7 ° C. condenses and the receiver 24
Is stored in. Then, the liquefied ammonia stored in the liquid receiver 24 is evaporated / heat-exchanged in the low temperature cold storage tank 25 and is -55 ° C.
Low temperature cold storage before and after is performed, and then compressed again by the refrigeration compressor 27 and guided to the evaporator 75 side of the absorption refrigerator 7 side,
Hereinafter, the low temperature cold storage is continued while repeating the refrigeration cycle.

【0017】一方昼間運転時には、反応炉1よりフラッ
シュタンク2を介して得られた熱蒸気を蒸気タービン4
に流入させ、発電機4Aを回転させ所望の発電を行う点
については前記と同様である。この場合前記タービン4
は100%負荷であるために、該タービン4より吐出さ
れた低圧ガスが復水器5と熱交換するとその熱交換媒体
に例えば海水を用いた場合には熱水となり、環境破壊に
つながる。そこで昼間時においては前記蓄冷槽の冷凍サ
イクルを膨脹サイクルに切換え、前記低温蓄冷槽25に
低温蓄冷された低温エネルギにより冷却されたアンモニ
ア等の冷媒を冷媒蒸発器21に導き、前記冷媒蒸発器2
1側で復水器5よりの熱交換媒体、具体的には海水若し
くは真水と熱交換させる事により、熱水化した水自体の
温度低下を図り、以下該水を復水器5間で循環させる事
により閉サイクルを形成する事が出来、この面からも環
境破壊を有効に阻止し得る。
On the other hand, during the daytime operation, the hot steam obtained from the reactor 1 via the flash tank 2 is transferred to the steam turbine 4
Is the same as the above in that the generator 4A is rotated to generate desired power. In this case, the turbine 4
Since 100% of the load is 100% load, when the low-pressure gas discharged from the turbine 4 exchanges heat with the condenser 5, for example, when seawater is used as the heat exchange medium, it becomes hot water, which leads to environmental damage. Therefore, in the daytime, the refrigerating cycle of the cold storage tank is switched to the expansion cycle, and the refrigerant such as ammonia cooled by the low temperature energy stored in the low temperature cold storage tank 25 at low temperature is introduced to the refrigerant evaporator 21 to make the refrigerant evaporator 2
The temperature of the hydrothermalized water itself is lowered by exchanging heat with the heat exchange medium from the condenser 5, specifically, seawater or fresh water on the 1st side, and then the water is circulated between the condensers 5. By doing so, a closed cycle can be formed, and from this aspect also environmental destruction can be effectively prevented.

【0018】又前記冷媒蒸発器21で熱交換後の蒸発冷
媒は前記冷凍圧縮機27の膨脹回転を行い、該冷凍圧縮
機27に連結された誘導電動機26を介して発電機を行
う事により、その分発電量が増大し、その分タービン4
側の発電量を低減させてもピーク電力の需要を有効に賄
うことが出来る。
The evaporated refrigerant after heat exchange in the refrigerant evaporator 21 causes the refrigerating compressor 27 to expand and rotate, and to generate a power through an induction motor 26 connected to the refrigerating compressor 27. The amount of power generation increases accordingly, and the turbine 4
Even if the power generation amount on the side is reduced, the demand for peak power can be effectively covered.

【0019】[0019]

【効果】以上記載のごとく本発明によれば、原子力発電
のように、昼夜間を問わず定常的な量の前記熱水若しく
は熱気が排出される装置においても、効果的に復水器5
よりの熱媒体の放熱量の減少若しくは閉サイクルを形成
でき、これにより円滑に夜間エネルギの蓄冷と共に環境
破壊を有効に阻止し得る。又、本発明によれば、前記蓄
冷用の冷凍サイクルにフロンの代替冷媒を用いると共
に、該代替冷媒の利点を有効に生かし、フロンに比較し
て数段優れた而も発電装置に好適な蓄冷サイクルを組込
んだ発電装置を提供する事が出来る。等の種々の著効を
有す。
[Effect] As described above, according to the present invention, the condenser 5 can be effectively used even in a device, such as nuclear power generation, in which a constant amount of hot water or hot air is discharged regardless of day or night.
The heat radiation amount of the heat medium can be further reduced or a closed cycle can be formed, whereby the night energy can be stored smoothly and the environmental destruction can be effectively prevented. Further, according to the present invention, while using a refrigerant alternative to CFCs in the refrigeration cycle for cold energy storage, and effectively utilizing the advantages of the alternative refrigerants, a cold energy storage apparatus suitable for a power generation device that is several steps superior to CFCs. It is possible to provide a power generation device incorporating a cycle. It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る蓄冷サイクルを組込んだ
発電装置の基本構成図である。
FIG. 1 is a basic configuration diagram of a power generation device incorporating a cold storage cycle according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 原子炉その他の加熱装置 4 蒸気タービン 4A 発電機 5 復水器 6 抽気管 7 吸収冷凍機 25 低温蓄冷槽 26 誘導電動機 27 冷凍圧縮機 21 冷媒蒸発器 1 Reactor and Other Heating Device 4 Steam Turbine 4A Generator 5 Condenser 6 Extractor Pipe 7 Absorption Refrigerator 25 Low Temperature Reservoir 26 Induction Motor 27 Refrigerating Compressor 21 Refrigerant Evaporator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子炉その他の加熱装置内でガス化した
熱蒸気をタービンに流入させて、該タービンに連結した
発電機を駆動回転させると共に、前記タービンより吐出
された低圧ガスを復水させる復水器を具えた発電装置に
おいて、 前記タービンの中段より抽気させた中圧ガスを熱源とし
て吸収若しくは吸着冷凍サイクルを構成する第1の冷凍
サイクルと、 誘導電動機が連結された膨張機兼用の冷凍圧縮機と、低
温蓄冷槽と、冷媒蒸発器とを具えたアンモニア若しくは
炭酸ガスを冷媒とする第2の冷凍/膨脹サイクルとを具
え、 夜間運転時に前記第1の冷凍サイクルの蒸発器を凝縮器
として利用して前記冷凍圧縮機の圧縮運転により低温蓄
冷槽に低温蓄冷を行い、 一方昼間運転時に前記低温蓄冷槽に低温蓄冷された低温
エネルギにより冷却された冷媒を冷媒蒸発器に導き、前
記タービンより吐出された低圧ガス又は/及び復水器よ
りの熱交換媒体と熱交換させた後、その蒸発冷媒により
前記冷凍圧縮機の膨脹回転を行い、該冷凍圧縮機に連結
された誘導電動機を発電機として回転させるように構成
した事を特徴とする発電装置
1. A hot steam gasified in a heating device such as a nuclear reactor is introduced into a turbine to drive and rotate a generator connected to the turbine, and the low pressure gas discharged from the turbine is condensed. In a power generator equipped with a condenser, a first refrigeration cycle that forms an absorption or adsorption refrigeration cycle using the intermediate pressure gas extracted from the middle stage of the turbine as a heat source, and a refrigeration that doubles as an expander to which an induction motor is connected. A second refrigeration / expansion cycle using ammonia or carbon dioxide as a refrigerant, comprising a compressor, a low temperature regenerator, and a refrigerant evaporator; and a condenser for the evaporator of the first refrigeration cycle during nighttime operation. As a result, the low temperature cold storage tank is used for low temperature cold storage by the compression operation of the refrigeration compressor, while the cold energy is stored in the low temperature cold storage tank during daytime operation. To the refrigerant evaporator, the low pressure gas discharged from the turbine or / and after heat exchange with the heat exchange medium from the condenser, expansion and rotation of the refrigeration compressor by the evaporated refrigerant, A power generation device characterized in that an induction motor connected to the refrigeration compressor is configured to rotate as a generator.
JP08574993A 1993-03-19 1993-03-19 Power generator Expired - Fee Related JP3520927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08574993A JP3520927B2 (en) 1993-03-19 1993-03-19 Power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08574993A JP3520927B2 (en) 1993-03-19 1993-03-19 Power generator

Publications (2)

Publication Number Publication Date
JPH06272517A true JPH06272517A (en) 1994-09-27
JP3520927B2 JP3520927B2 (en) 2004-04-19

Family

ID=13867507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08574993A Expired - Fee Related JP3520927B2 (en) 1993-03-19 1993-03-19 Power generator

Country Status (1)

Country Link
JP (1) JP3520927B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354504C (en) * 2005-12-28 2007-12-12 上海电力学院 Multi-grade using backheating drain residual heat generator of thermal power generator set
JP2010038160A (en) * 2008-07-31 2010-02-18 General Electric Co <Ge> System and method for use in combined or rankine cycle power plant
CN112967827A (en) * 2021-02-03 2021-06-15 中国能源建设集团广东省电力设计研究院有限公司 Fused salt energy storage coupling power generation system and method for fusion reactor
CN112967826A (en) * 2021-02-03 2021-06-15 中国能源建设集团广东省电力设计研究院有限公司 Oil energy storage decoupling power generation system and method for fusion reactor
CN113012837A (en) * 2021-02-03 2021-06-22 中国能源建设集团广东省电力设计研究院有限公司 Fused salt energy storage decoupling power generation system and method for fusion reactor
CN113053544A (en) * 2021-02-03 2021-06-29 中国能源建设集团广东省电力设计研究院有限公司 Oil energy storage coupling power generation system and method for fusion reactor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354504C (en) * 2005-12-28 2007-12-12 上海电力学院 Multi-grade using backheating drain residual heat generator of thermal power generator set
JP2010038160A (en) * 2008-07-31 2010-02-18 General Electric Co <Ge> System and method for use in combined or rankine cycle power plant
CN112967827A (en) * 2021-02-03 2021-06-15 中国能源建设集团广东省电力设计研究院有限公司 Fused salt energy storage coupling power generation system and method for fusion reactor
CN112967826A (en) * 2021-02-03 2021-06-15 中国能源建设集团广东省电力设计研究院有限公司 Oil energy storage decoupling power generation system and method for fusion reactor
CN113012837A (en) * 2021-02-03 2021-06-22 中国能源建设集团广东省电力设计研究院有限公司 Fused salt energy storage decoupling power generation system and method for fusion reactor
CN113053544A (en) * 2021-02-03 2021-06-29 中国能源建设集团广东省电力设计研究院有限公司 Oil energy storage coupling power generation system and method for fusion reactor
CN112967827B (en) * 2021-02-03 2022-07-15 中国能源建设集团广东省电力设计研究院有限公司 Fused salt energy storage coupling power generation system and method for fusion reactor

Also Published As

Publication number Publication date
JP3520927B2 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
US5685152A (en) Apparatus and method for converting thermal energy to mechanical energy
US5632148A (en) Power augmentation of a gas turbine by inlet air chilling
CN112880451A (en) CO based on supplemental external energy2Gas-liquid phase change energy storage device and method
EP3926257A1 (en) Transducing method and system
KR20090035735A (en) Method and apparatus for using low temperature heat for electricity generation
US20090241546A1 (en) Increasing power of steam plant with refrigerant cooled condenser at peak loads by using cooling thermal storage
JPH0252962A (en) Cold generation method
CN109736963A (en) System and method for utilizing waste heat of marine engine
CN114034133A (en) A heat pump power storage system for recovering waste heat from liquid-cooled data centers
US6519946B2 (en) Cogeneration system using waste-heat gas generated in micro gas turbine
JPH04127850A (en) Liquid air storage power generating system
CN116641769A (en) Energy storage utilization system based on carbon dioxide working medium
JP5312644B1 (en) Air conditioning power generation system
KR102538228B1 (en) Energy saving system of encune by using waste heat and ocean construction comprising the same
JP3520927B2 (en) Power generator
CN202501677U (en) Vapor Compression Refrigeration Device Driven by Organic Rankine Cycle
JPH0688538A (en) Gas turbine plant
JPH11343865A (en) Cryogenic turbine power generation system
JP2005171861A (en) Rankine cycle power generation system
JPH0797933A (en) Intake air cooling device of gas turbine
CN116624242A (en) Heat pump molten salt-carbon composite energy storage power supply method and device
JP2000146359A (en) Cogeneration system
JP2002174493A (en) Cogeneration system
JP2000097047A (en) Heat and electricity combination supply system and heat- accumulation quantity controlling method of heat- accumulator applied thereto
JP2004036573A (en) Electric power/cold heat feeding combined system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040128

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees