[go: up one dir, main page]

JPH06267560A - Solid high polymer type fuel cell - Google Patents

Solid high polymer type fuel cell

Info

Publication number
JPH06267560A
JPH06267560A JP5052704A JP5270493A JPH06267560A JP H06267560 A JPH06267560 A JP H06267560A JP 5052704 A JP5052704 A JP 5052704A JP 5270493 A JP5270493 A JP 5270493A JP H06267560 A JPH06267560 A JP H06267560A
Authority
JP
Japan
Prior art keywords
reaction gas
electrolyte
cooling water
water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5052704A
Other languages
Japanese (ja)
Inventor
Ryuji Horioka
竜治 堀岡
Toshihiro Tani
俊宏 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5052704A priority Critical patent/JPH06267560A/en
Publication of JPH06267560A publication Critical patent/JPH06267560A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent steam within reaction gas from being condensed, and thereby enhance generating efficiency by providing each steam partition plate while its one side surface is faced to each reaction gas feed flow path, providing each cooling water flow path for the other side surface, and thereby appropriately humidifying reaction gas. CONSTITUTION:Each steam partition plate 17 and 18 is provided while its one side surface is faced to each reaction gas feed flow path 15 and 16, and water cooling flow path 21 and 22 are provided for the other side surface, so that a part of each wall surface is thereby formed. Fuel gas and oxidant gas are led to electrolyte electrode joint bodies 10 through 12 through the respective flow paths 15 and 16 so as to be consumed in the course of generating reaction. Exothermic of each cell caused by generating reaction is removed outside by cooling water flowing in the flow paths 21 and 22. And since a part of cooling water is turned out to be steam so as to be led to the flow paths 15 and 16 out of the surfaces of the steam partition plates 17 and 18, so that reaction gas is thereby humidified. Furthermore, steam is dispersed in the insides of electrodes 11 and 12, and finally arrives at the electrolyte 10, steam within reaction gas is thereby prevented from being condensed, humidifying is thereby accurately carried out, and thereby generating efficiency is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池の冷却機能及
び反応ガスの加湿機能を備えた固体高分子型燃料電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell having a fuel cell cooling function and a reaction gas humidifying function.

【0002】[0002]

【従来の技術】図2は、従来の固体高分子型燃料電池の
構成を切断して示す斜視図である。すなわち、1は反応
ガス(燃料ガス)を導入する一方のガス仕切板、2は電
極、3は電解質、4は電極、5は反応ガス(酸化剤ガ
ス)を導入する他方のガス仕切板、6は冷却水供給流
路、7は燃料ガス流路、8は酸化剤ガス流路、9は冷却
水供給流路を示している。なお、電極2、電解質3、電
極4は一体的に接合されており、電解質電極接合体を形
成している。
2. Description of the Related Art FIG. 2 is a perspective view showing a cut-away structure of a conventional polymer electrolyte fuel cell. That is, 1 is a gas partition plate for introducing a reaction gas (fuel gas), 2 is an electrode, 3 is an electrolyte, 4 is an electrode, 5 is another gas partition plate for introducing a reaction gas (oxidant gas), 6 Is a cooling water supply flow path, 7 is a fuel gas flow path, 8 is an oxidant gas flow path, and 9 is a cooling water supply flow path. The electrode 2, the electrolyte 3 and the electrode 4 are integrally joined to each other to form an electrolyte electrode assembly.

【0003】このように構成された従来の固体高分子型
燃料電池は、電解質3と、燃料ガス流路7から電極2を
介して電解質3に供給される燃料ガスと、酸化剤ガス流
路8から電極4を介して電解質3に供給される酸化剤ガ
スとによって発電反応が行われ、電極2と電極4との間
に電位差を発生させる。この発電反応にともない電解質
電極接合体2〜4は発熱するので、固体高分子型燃料電
池の温度を一定に保つためには冷却が必要となる。この
ため、ガス仕切板1,5の内部に冷却水供給流路6,9
を設け、この冷却水供給流路6,9内に冷却水を循環通
流させることにより、発電時に発生する電池排熱を除去
し、固体高分子型燃料電池の温度を一定に保つようにし
ている。
In the conventional solid polymer electrolyte fuel cell thus constructed, the electrolyte 3, the fuel gas supplied from the fuel gas passage 7 to the electrolyte 3 through the electrode 2, and the oxidant gas passage 8 are provided. A power generation reaction is performed by the oxidant gas supplied to the electrolyte 3 from the electrode 4 through the electrode 4 to generate a potential difference between the electrode 2 and the electrode 4. Since the electrolyte electrode assemblies 2 to 4 generate heat in accordance with this power generation reaction, cooling is necessary to keep the temperature of the polymer electrolyte fuel cell constant. Therefore, the cooling water supply channels 6 and 9 are provided inside the gas partition plates 1 and 5.
The cooling water is circulated in the cooling water supply passages 6 and 9 to remove the exhaust heat of the battery generated during power generation and keep the temperature of the polymer electrolyte fuel cell constant. There is.

【0004】一方、電解質3のイオン導電性を高く保ち
発電効率を上げるためには、電解質3の含水率を高く保
つ必要がある。このため反応ガスを加湿し、その加湿水
蒸気により電解質に含水させている。この反応ガスの加
湿は別途燃料電池外部で行なわれている。
On the other hand, in order to keep the ionic conductivity of the electrolyte 3 high and raise the power generation efficiency, it is necessary to keep the water content of the electrolyte 3 high. For this reason, the reaction gas is humidified and the electrolyte is made to contain water by the humidified steam. The humidification of the reaction gas is separately performed outside the fuel cell.

【0005】[0005]

【発明が解決しようとする課題】上記したように、従来
の固体高分子型燃料電池では、ガス仕切板1,5の内部
に設けられた冷却水供給流路6,9に冷却水を循環通流
させることにより燃料電池の冷却を行なっている。一
方、反応ガスの加湿は燃料電池外部で別途に行なってい
る。このため、冷却水温度と反応ガスの加湿度との調節
は全く別系統で行なわれていた。したがって、調和のと
れた精度の良い制御を行なうことが困難で、反応ガス中
の水蒸気が凝縮して、電解質電極接合体が水没を起こす
虞があった。また、このような水蒸気の凝縮を防ぐため
に、燃料電池の温度制御の制御幅を小さく設定すると、
大きな冷却水循環用ポンプ動力が必要となり、冷却機構
も含めた発電システムの効率が低下するという問題があ
った。
As described above, in the conventional polymer electrolyte fuel cell, the cooling water is circulated through the cooling water supply passages 6 and 9 provided inside the gas partition plates 1 and 5, respectively. The fuel cell is cooled by flowing it. On the other hand, the humidification of the reaction gas is separately performed outside the fuel cell. For this reason, the control of the cooling water temperature and the humidity of the reaction gas have been performed by completely different systems. Therefore, it is difficult to perform harmonious and accurate control, and water vapor in the reaction gas may condense and the electrolyte electrode assembly may be submerged. Also, in order to prevent such condensation of water vapor, if the control width of the temperature control of the fuel cell is set small,
There is a problem that a large amount of pump power for circulating the cooling water is required and the efficiency of the power generation system including the cooling mechanism is reduced.

【0006】そこで本発明は、燃料電池の温度、圧力条
件下で調和のとれた燃料電池の冷却と反応ガスの加湿を
精度良く行なうことができ、反応ガス中の水蒸気の凝縮
を防ぐことができ、発電効率のよい固体高分子型燃料電
池を提供することを目的としている。
Therefore, according to the present invention, it is possible to accurately cool the fuel cell and humidify the reaction gas under the temperature and pressure conditions of the fuel cell, and to prevent the condensation of water vapor in the reaction gas. Another object of the present invention is to provide a polymer electrolyte fuel cell with good power generation efficiency.

【0007】[0007]

【課題を解決するための手段】上記課題を解決し目的を
達成するために、本発明は、電解質とこの電解質を挟む
ように配置された一対の電極とからなる電解質電極接合
体と、この電解質電極接合体の両側に配置されガス不透
過性部材で形成された一対のガス仕切板と、この一対の
ガス仕切板内にそれぞれ形成されかつ一部が前記電解質
電極接合体に接する如く設けられた反応ガス供給流路
と、この反応ガス供給流路の壁面の一部をなす如く一側
面を上記反応ガス供給流路に臨ませて設けられた水透過
性の気水仕切板と、この気水仕切板の他側面が壁面の一
部をなす如く設けられた冷却水供給流路とを備えてい
る。
In order to solve the above problems and to achieve the object, the present invention provides an electrolyte electrode assembly comprising an electrolyte and a pair of electrodes arranged so as to sandwich the electrolyte, and the electrolyte electrode assembly. A pair of gas partition plates arranged on both sides of the electrode assembly and formed of a gas impermeable member, and a pair of gas partition plates respectively formed in the pair of gas partition plates and provided so as to partially contact the electrolyte electrode assembly. A reaction gas supply channel, a water-permeable gas / water partition plate having one side facing the reaction gas supply channel so as to form a part of the wall surface of the reaction gas supply channel, and the gas / water partition. The other side surface of the partition plate is provided with a cooling water supply passage provided so as to form a part of the wall surface.

【0008】[0008]

【作用】上記手段を講じた結果、次のような作用が生じ
る。反応ガス供給流路は冷却水供給流路と水透過性の気
水仕切板を介して接しているので、冷却供給流路内の冷
却水により燃料電池は冷却されるとともに、冷却水の一
部はその温度、圧力雰囲気下で水透過性の気水仕切板を
透過し、反応ガス供給流路に入る。反応ガス供給流路表
面に到達した冷却水は蒸発し、反応ガス中に水蒸気とし
て拡散供給される。このため、反応ガスは適度に加湿さ
れ、反応ガス中の水蒸気が凝縮することはない。
As a result of taking the above-mentioned means, the following effects occur. Since the reaction gas supply flow path is in contact with the cooling water supply flow path through the water-permeable partition plate, the fuel cell is cooled by the cooling water in the cooling supply flow path and a part of the cooling water Permeates the water-permeable air / water partition plate under the temperature and pressure atmosphere and enters the reaction gas supply channel. The cooling water that has reached the surface of the reaction gas supply channel is evaporated and diffused and supplied as water vapor into the reaction gas. Therefore, the reaction gas is appropriately humidified, and the water vapor in the reaction gas is not condensed.

【0009】[0009]

【実施例】図1は本発明の一実施例に係る固体高分子型
燃料電池の構成を切断して示す斜視図である。図1に示
すように、平板状の電解質10とこの電解質10を挟む
ようにその両面に接合され一対の電極11,12とによ
って電解質電極接合体が形成されている。この電解質電
極接合体の両側面は、金属板あるいはカーボン板等から
なるガス不透過性導電体で形成されたガス仕切板13,
14で挟まれている。これらガス仕切板13,14には
溝状の反応ガス供給流路15,16が設けられている。
この反応ガス供給流路15,16は一方の開口端面が前
記電解質電極接合体に接する如く設けられている。ま
た、反応ガス供給流路15,16の他方の開口端面は水
透過性でかつガス不透過性の導電体(高水透過性高分子
材料等)の気水仕切板17,18によって閉塞されてい
る。すなわち気水仕切板17,18の一側面が反応ガス
供給流路15,16の壁面の一部をなす如く設けられて
いる。前記ガス仕切板13,14の両側面は冷却板1
9,20によって挟まれている。これらの冷却板19,
20のガス仕切板接合面には溝状の冷却水供給流路2
1,22が設けられており、各冷却水供給流路21,2
2の開口端面が前述した気水仕切板17,18の他側面
によって閉塞されている。すなわち気水仕切板17,1
8の他側面が冷却水供給流路21,22の壁面の一部を
なす如く設けられている。
EXAMPLE FIG. 1 is a perspective view showing a cut-away structure of a polymer electrolyte fuel cell according to an example of the present invention. As shown in FIG. 1, an electrolyte electrode assembly is formed by a flat plate-shaped electrolyte 10 and a pair of electrodes 11 and 12 that are bonded to both sides of the electrolyte 10 so as to sandwich the electrolyte 10. Both side surfaces of this electrolyte electrode assembly are divided by a gas partition plate 13 made of a gas impermeable conductor such as a metal plate or a carbon plate,
It is sandwiched between 14. These gas partition plates 13 and 14 are provided with groove-shaped reaction gas supply channels 15 and 16, respectively.
The reaction gas supply passages 15 and 16 are provided so that one end face of the opening is in contact with the electrolyte electrode assembly. The other end faces of the reaction gas supply channels 15 and 16 are closed by gas-water partition plates 17 and 18 made of a water-permeable and gas-impermeable conductor (high water-permeable polymer material, etc.). There is. That is, one side surface of the water / water partition plates 17 and 18 is provided so as to form a part of the wall surface of the reaction gas supply flow paths 15 and 16. Both sides of the gas partition plates 13 and 14 are cooling plates 1
It is sandwiched between 9 and 20. These cooling plates 19,
A groove-shaped cooling water supply passage 2 is provided on the joint surface of the gas partition plate 20.
1, 22 are provided, and each cooling water supply flow path 21, 2 is provided.
The open end face of 2 is closed by the other side faces of the water / water partition plates 17 and 18 described above. That is, the air-water partition plates 17, 1
The other side surface 8 is provided so as to form a part of the wall surface of the cooling water supply channels 21 and 22.

【0010】このような構成であると、燃料ガスと酸化
剤ガスはそれぞれ、反応ガス供給流路15,16を通っ
て、電解質電極接合体10〜12に導かれ、発電反応に
より消費される。そして発電反応の際の電池排熱は冷却
水供給流路21,22中を流れる冷却水によって外部に
持ち去られる。また、冷却水の一部は気水仕切板17,
18の表面から水蒸気となって、反応ガス供給流路1
5,16中に供給されるため、反応ガスは加湿される。
さらに、その水蒸気は電極11,12の内部に拡散し、
電解質10に到達する。これにより、電解質は高い含水
率を保持し、高いイオン導電性を示す。
With such a structure, the fuel gas and the oxidant gas are guided to the electrolyte electrode assemblies 10 to 12 through the reaction gas supply channels 15 and 16, respectively, and are consumed by the power generation reaction. Then, the exhaust heat of the battery during the power generation reaction is carried away to the outside by the cooling water flowing in the cooling water supply channels 21 and 22. In addition, a part of the cooling water is the air-water partition plate 17,
The surface of 18 becomes water vapor, and the reaction gas supply channel 1
The reaction gas is humidified because it is supplied into the gas chambers 5 and 16.
Furthermore, the water vapor diffuses inside the electrodes 11 and 12,
Reach the electrolyte 10. As a result, the electrolyte retains a high water content and exhibits high ionic conductivity.

【0011】上記した本実施例においては、反応ガス供
給流路15と冷却水供給流路21及び反応ガス供給流路
16と冷却水供給流路22とは、水透過性でかつガス不
透過性の気水仕切板17,18を共通の壁面として構成
されている。したがって、冷却水供給流路21,22を
通流する冷却水により燃料電池は冷却されるとともに、
温度上昇した冷却水の一部はその温度、圧力雰囲気下で
冷却板19,20とガス仕切板13,14との間に介在
している気水仕切板17,18を透過し、反応ガス供給
流路15,16内に入り込む。反応ガス供給流路15,
16表面に到達した冷却水は蒸発し、反応ガス中に水蒸
気として拡散供給される。このため、反応ガスは適度に
加湿され、反応ガス中の水蒸気が凝縮することはない。
かくして燃料電池外部で別途反応ガスを加湿する必要が
なくなるとともに、電解質電極接合体を加湿水蒸気の凝
縮水により水没させることなく電解質の含水率を高く保
ち得、イオン導電性を高く保つことができる。さらに、
反応ガス中の湿度が局所的な燃料電池の温度、圧力によ
り制御されるため、燃料電池積層体を構成する場合、単
位燃料電池それぞれの温度及び圧力がすべて同じである
必要がなくなる。したがって、冷却水の循環流路にそっ
て単位燃料電池の温度が上昇しても構わないので、燃料
電池積層体に導入する冷却水の入口、出口温度差を大き
くとることができ、冷却水循環用ポンプ動力が小さくて
すみ、冷却機構も含めた発電システムの効率が上昇す
る。なお、本発明は上述した実施例に限定されるもので
はなく、本発明の要旨を逸脱しない範囲で種々変形実施
可能であるのは勿論である。
In the above-described embodiment, the reaction gas supply passage 15, the cooling water supply passage 21, the reaction gas supply passage 16 and the cooling water supply passage 22 are water permeable and gas impermeable. The water and water partition plates 17 and 18 are configured as a common wall surface. Therefore, the fuel cell is cooled by the cooling water flowing through the cooling water supply channels 21 and 22, and
A part of the temperature-increased cooling water permeates the water-water partition plates 17 and 18 interposed between the cooling plates 19 and 20 and the gas partition plates 13 and 14 under the temperature and pressure atmosphere to supply the reaction gas. It enters the flow paths 15 and 16. Reaction gas supply channel 15,
The cooling water that has reached the surface 16 is evaporated and diffused and supplied as water vapor into the reaction gas. Therefore, the reaction gas is appropriately humidified, and the water vapor in the reaction gas is not condensed.
Thus, there is no need to separately humidify the reaction gas outside the fuel cell, and the water content of the electrolyte can be kept high and the ionic conductivity can be kept high without submerging the electrolyte electrode assembly by the condensed water of the humidified steam. further,
Since the humidity in the reaction gas is locally controlled by the temperature and pressure of the fuel cell, it is not necessary for the unit fuel cells to have the same temperature and pressure when forming the fuel cell stack. Therefore, since the temperature of the unit fuel cell may rise along the cooling water circulation passage, the temperature difference between the inlet and outlet of the cooling water introduced into the fuel cell stack can be made large, and The pump power is small, and the efficiency of the power generation system including the cooling mechanism is increased. It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

【0012】[0012]

【発明の効果】本発明によれば、ガス仕切板に設けた反
応ガス供給流路と冷却板に設けた冷却水供給流路とが水
透過性の気水仕切板によって仕切られているため、冷却
水供給流路中を循環通流する冷却水により、燃料電池の
冷却が行なわれると共に、冷却水の一部が気水仕切板を
透過し、反応ガス中に蒸気として拡散供給され反応ガス
の加湿が行なわれる。かくして燃料電池の温度、圧力条
件下で調和のとれた燃料電池の冷却と反応ガスの加湿を
精度良く行なうことができ、反応ガス中の水蒸気の凝縮
を防ぐことができ、発電効率のよい固体高分子型燃料電
池を提供できる。
According to the present invention, the reaction gas supply passage provided in the gas partition plate and the cooling water supply passage provided in the cooling plate are partitioned by the water-permeable air / water partition plate. The cooling water circulating in the cooling water supply passage cools the fuel cell, and at the same time, a part of the cooling water permeates the water-water partition plate and is diffused and supplied into the reaction gas as vapor. Humidification is performed. Thus, the fuel cell can be cooled accurately and the reaction gas can be humidified in good condition under the temperature and pressure conditions of the fuel cell, the condensation of water vapor in the reaction gas can be prevented, and the solid high power generation with high power generation efficiency can be achieved. A molecular fuel cell can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る固体高分子型燃料電池
の構成を切断して示す斜視図。
FIG. 1 is a perspective view showing a cut-away structure of a polymer electrolyte fuel cell according to an embodiment of the present invention.

【図2】従来の燃料電池の構成を切断して示す斜視図。FIG. 2 is a perspective view showing a configuration of a conventional fuel cell by cutting it.

【符号の説明】[Explanation of symbols]

10…電解質 11,12…電
極 13,14…ガス仕切板 15,16…反
応ガス供給流路 17,18…気水仕切板 19,20…冷
却板 21,22…冷却水供給流路
10 ... Electrolyte 11, 12 ... Electrode 13, 14 ... Gas partition plate 15, 16 ... Reaction gas supply flow path 17, 18 ... Gas / water partition plate 19, 20 ... Cooling plate 21, 22 ... Cooling water supply flow path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電解質とこの電解質を挟むように配置され
た一対の電極とからなる電解質電極接合体と、 この電解質電極接合体の両側に配置されガス不透過性部
材で形成された一対のガス仕切板と、 この一対のガス仕切板内にそれぞれ形成されかつ一部が
前記電解質電極接合体に接する如く設けられた反応ガス
供給流路と、 この反応ガス供給流路の壁面の一部をなす如く一側面を
上記反応ガス供給流路に臨ませて設けられた水透過性の
気水仕切板と、 この気水仕切板の他側面が壁面の一部をなす如く設けら
れた冷却水供給流路と、 を備えてなることを特徴とする固体高分子型燃料電池。
1. An electrolyte electrode assembly comprising an electrolyte and a pair of electrodes arranged so as to sandwich the electrolyte, and a pair of gases formed on both sides of the electrolyte electrode assembly and formed of gas impermeable members. A partition plate, a reaction gas supply channel formed in each of the pair of gas partition plates and provided so as to partially contact the electrolyte electrode assembly, and a part of a wall surface of the reaction gas supply channel. As described above, the water-permeable air / water partition plate is provided with one side facing the reaction gas supply flow path, and the cooling water supply flow is provided so that the other side surface of the air / water partition plate forms part of the wall surface. A polymer electrolyte fuel cell, characterized by comprising: a channel.
JP5052704A 1993-03-12 1993-03-12 Solid high polymer type fuel cell Withdrawn JPH06267560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5052704A JPH06267560A (en) 1993-03-12 1993-03-12 Solid high polymer type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5052704A JPH06267560A (en) 1993-03-12 1993-03-12 Solid high polymer type fuel cell

Publications (1)

Publication Number Publication Date
JPH06267560A true JPH06267560A (en) 1994-09-22

Family

ID=12922286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5052704A Withdrawn JPH06267560A (en) 1993-03-12 1993-03-12 Solid high polymer type fuel cell

Country Status (1)

Country Link
JP (1) JPH06267560A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033331A1 (en) * 1996-03-06 1997-09-12 Siemens Aktiengesellschaft Fuel cell with internal moistening
WO1999005740A1 (en) * 1997-07-23 1999-02-04 Plug Power Inc. Fuel cell membrane hydration and fluid metering
JP2003059513A (en) * 2002-02-12 2003-02-28 Equos Research Co Ltd Fuel cell separator
WO2004079843A1 (en) * 2003-03-05 2004-09-16 Aisin Seiki Kabushiki Kaisha Fuel cell and oxidant distribution plate for fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033331A1 (en) * 1996-03-06 1997-09-12 Siemens Aktiengesellschaft Fuel cell with internal moistening
WO1999005740A1 (en) * 1997-07-23 1999-02-04 Plug Power Inc. Fuel cell membrane hydration and fluid metering
US5998054A (en) * 1997-07-23 1999-12-07 Plug Power, L.L.C. Fuel cell membrane hydration and fluid metering
US6528198B1 (en) 1997-07-23 2003-03-04 Plug Power, Inc. Fuel cell membrane hydration and fluid metering
JP2003059513A (en) * 2002-02-12 2003-02-28 Equos Research Co Ltd Fuel cell separator
WO2004079843A1 (en) * 2003-03-05 2004-09-16 Aisin Seiki Kabushiki Kaisha Fuel cell and oxidant distribution plate for fuel cell
CN100428550C (en) * 2003-03-05 2008-10-22 丰田自动车株式会社 Fuel cell, oxidant flow field plate for fuel cell
US7820334B2 (en) 2003-03-05 2010-10-26 Aisin Seiki Kabushiki Kaisha Fuel cell and oxidant distribution plate for fuel cell

Similar Documents

Publication Publication Date Title
US6180273B1 (en) Fuel cell with cooling medium circulation arrangement and method
US5879826A (en) Proton exchange membrane fuel cell
US6783878B2 (en) Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
EP0831543B1 (en) Gas humidifying device for use with a fuel cell
US6106964A (en) Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
JP2000090954A (en) Fuel cell stack
CA2389197C (en) Fuel cell and method of operating same
JPH06338338A (en) Humidification of high polymer ion exchange film of fuel cell
JPH06325780A (en) Fuel cell system
JP3249282B2 (en) Solid polymer electrolyte fuel cell
JPH09283162A (en) Solid high molecular fuel cell
JP3147518B2 (en) Cell structure of solid polymer electrolyte fuel cell
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
JP3276175B2 (en) Solid polymer electrolyte fuel cell
US7090941B2 (en) Fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP3609742B2 (en) Polymer electrolyte fuel cell
JPH05144451A (en) Reactant gas / cooling medium flow structure for solid polymer electrolyte fuel cells
JPH06267560A (en) Solid high polymer type fuel cell
JPH10106593A (en) Solid high molecular fuel cell, operating method thereof, and solid high molecular fuel cell system
JPH06260190A (en) Fuel cell of solid polymetype
JPH08306375A (en) Solid polymer type fuel sell
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device
JPH11111311A (en) Solid polymer type fuel cell
JPH06338332A (en) Gas separator for solid high molecular electrolytic fuel cell
JP2003249243A (en) Fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530