[go: up one dir, main page]

JPH0626661B2 - Granular lithium adsorbent and lithium recovery method using the same - Google Patents

Granular lithium adsorbent and lithium recovery method using the same

Info

Publication number
JPH0626661B2
JPH0626661B2 JP1141545A JP14154589A JPH0626661B2 JP H0626661 B2 JPH0626661 B2 JP H0626661B2 JP 1141545 A JP1141545 A JP 1141545A JP 14154589 A JP14154589 A JP 14154589A JP H0626661 B2 JPH0626661 B2 JP H0626661B2
Authority
JP
Japan
Prior art keywords
lithium
granular
adsorbent
solution
dilute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1141545A
Other languages
Japanese (ja)
Other versions
JPH038439A (en
Inventor
良孝 宮井
健太 大井
俊作 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1141545A priority Critical patent/JPH0626661B2/en
Publication of JPH038439A publication Critical patent/JPH038439A/en
Publication of JPH0626661B2 publication Critical patent/JPH0626661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、新規な粒状リチウム吸着剤、及びそれを用い
たリチウム回収方法に関するものである。さらに詳しく
いえば、本発明は、リチウムに対する選択吸着性に優
れ、かつ吸着容量及び吸着速度が大きく、水溶液中で安
定であって、毒性が少ない上、取扱いの容易な粒状リチ
ウム吸着剤、及びこのものを用いて、希薄溶液中のリチ
ウムを効率よく回収する方法に関するものである。
TECHNICAL FIELD The present invention relates to a novel particulate lithium adsorbent and a method for recovering lithium using the same. More specifically, the present invention provides a granular lithium adsorbent which is excellent in selective adsorption to lithium, has a large adsorption capacity and adsorption rate, is stable in an aqueous solution, has little toxicity, and is easy to handle, and The present invention relates to a method for efficiently recovering lithium in a dilute solution by using the same.

従来の技術 近年、リチウム金属やその化合物は、多くの分野におい
て種々の用途、例えばセラミックス、電池、冷媒吸収
剤、医薬品などに用いられており、さらに、将来大容量
電池、アルミニウム合金材料、核融合燃料などとしての
利用が期待されていることから、リチウムの需要の著し
い増大が見込まれている〔「日本鉱業会誌」、第79
巻、第221ページ〕。
2. Description of the Related Art In recent years, lithium metal and its compounds have been used in various fields in various applications, such as ceramics, batteries, refrigerant absorbents, pharmaceuticals, etc., and in the future, large capacity batteries, aluminum alloy materials, nuclear fusion The demand for lithium is expected to increase remarkably because it is expected to be used as fuel, etc. [Journal of the Japan Mining Industry Association, No. 79].
Volume, page 221].

前記リチウム金属やその化合物は、現在主としてスポジ
ューメン、アンブリゴナイト、ペタライト、レピドライ
トなどのリチウム含有鉱石及びリチウム濃度の高い塩湖
や地下かん水などを原料として製造されている。
The lithium metal and the compound thereof are currently produced mainly from lithium-containing ores such as spodumene, ambrigonite, petalite, and lepidrite, and salt lakes and underground brackish water having a high lithium concentration.

しかるに、わが国においては、前記のようなリチウム鉱
石資源がなく、リチウム金属やその化合物は全量輸入に
依存しているのが現状である。一方、わが国の地熱水や
温泉水にはかなりのリチウムを含有するものがあり、ま
た、周囲をとりまく海水中にも微量のリチウムが含まれ
ている。したがって、これらのリチウムを含む希薄溶液
から該リチウムを効率よく回収する技術を確立すること
が強く要望されている。
However, in Japan, there is no such lithium ore resource as described above, and the total amount of lithium metal and its compounds depends on import. On the other hand, some of Japan's geothermal water and hot spring water contain a considerable amount of lithium, and the surrounding seawater also contains a small amount of lithium. Therefore, it is strongly desired to establish a technique for efficiently recovering the lithium from the dilute solution containing the lithium.

従来、海水やかん水などのリチウムを含む溶液から、該
リチウムを回収するために、各種の吸着剤が開発されて
いる。例えば無定形水酸化アルミニウム(特開昭55−10
541号公報)、含水酸化スズ(特開昭57−61623号公報)、
アンチモン酸スズ(特開昭58−167424号公報)、リン酸ビ
スマス(特開昭59−195525号公報)、チタン酸加熱処理
物(特開昭61−72623号公報)、マンガン酸化物(特開昭
61−171535号公報、同61−228334号公報)などが知られ
ている。
Conventionally, various adsorbents have been developed in order to recover the lithium from a solution containing lithium such as seawater or brackish water. For example, amorphous aluminum hydroxide (Japanese Patent Laid-Open No. 55-10
541), tin oxide hydroxide (JP-A-57-61623),
Tin antimonate (JP-A-58-167424), bismuth phosphate (JP-A-59-195525), heat-treated titanic acid (JP-A-61-72623), manganese oxide (JP-A-61-72623) Akira
61-171535 and 61-228334) are known.

これらの吸着剤の中でも、特にマンガン酸化物系吸着剤
は高いリチウム選択性を示し、その吸着量は低品位鉱石
のリチウム含量に匹敵するほどに高められており、実用
化に最も近い吸着剤として期待されている。この吸着剤
は、多孔性マンガン含水酸化物にリチウムイオン又はマ
グネシウムイオンをあらかじめ導入して固定化したの
ち、酸処理などにより該リチウムイオン又はマグネシウ
ムイオンを溶出することによって製造される。したがっ
て、吸着剤中にリチウムに適した極微細孔が形成される
ことを特徴とする。
Among these adsorbents, manganese oxide-based adsorbents exhibit high lithium selectivity, and their adsorbed amount has been increased to a level comparable to the lithium content of low-grade ores. Is expected. This adsorbent is produced by introducing lithium ions or magnesium ions into porous manganese hydroxide in advance to immobilize them, and then eluting the lithium ions or magnesium ions by acid treatment or the like. Therefore, it is characterized in that ultrafine pores suitable for lithium are formed in the adsorbent.

しかしながら、該吸着剤は通常粉末であるため、多量の
海水やかん水などと接触させて吸着処理を行う場合、溶
液からの分離回収が極めて困難であるという欠点を有
し、このことはリチウム回収プロセスの実用化にとって
大きな阻害要因となっている。
However, since the adsorbent is usually a powder, it has a drawback that separation and recovery from a solution is extremely difficult when adsorbing treatment by contacting with a large amount of seawater or brackish water, which is a lithium recovery process. Is a major impediment to the commercialization of.

発明が解決しようとする課題 本発明は、このような従来のリチウム吸着剤が有する欠
点を克服し、リチウムに対する選択吸着性に優れ、かつ
吸着速度や吸着容量が大きい上、希薄リチウム溶液から
の分離回収が容易で、しかも毒性が少なく希薄溶液中で
安定であるなどの特徴をもつ、リチウムを含む海水、地
熱水、地下かん水などの希薄溶液から該リチウムを回収
するための実用的な粒状リチウム吸着剤、及びこのもの
を用いて希薄溶液からリチウムを効率よく回収する方法
を提供することを目的としてなされたものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention overcomes the drawbacks of such conventional lithium adsorbents, has excellent selective adsorption properties for lithium, and has a large adsorption rate and adsorption capacity, and separation from a dilute lithium solution. Practical granular lithium for recovering lithium from dilute solutions such as lithium-containing seawater, geothermal water, and ground brackish water, which are characterized by easy recovery, low toxicity, and stability in dilute solutions. The object of the present invention is to provide an adsorbent and a method for efficiently recovering lithium from a dilute solution using the adsorbent.

課題を解決するための手段 本発明者らは、前記目的を達成するために鋭意研究を重
ねた結果、リチウム含有マンガン酸化物を有機高分子物
質をバインダーとして粒状体に成形したのち、水溶液中
で該リチウムを溶出させることにより、前記の好ましい
性質を有する粒状リチウム吸着剤が得られること、及び
このものをカラムに充てんし、これにリチウムを含む希
薄溶液を流してリチウム吸着させたのち、リチウム脱着
能を有する水溶液を用いて吸着剤に吸着されたリチウム
を溶離させることにより、希薄溶液からリチウムを効率
よく回収しうることを見出し、この知見に基づいて本発
明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to achieve the above-mentioned object, and after molding a lithium-containing manganese oxide into a granular body using an organic polymer substance as a binder, in an aqueous solution. By eluting the lithium, a granular lithium adsorbent having the above-mentioned preferable properties can be obtained, and this is packed in a column, and a dilute solution containing lithium is caused to flow into the column to adsorb lithium, and then lithium desorption is performed. It was found that lithium can be efficiently recovered from a dilute solution by eluting the lithium adsorbed on the adsorbent using an aqueous solution having the ability, and the present invention has been completed based on this finding.

すなわち、本発明は、有機高分子物質を用いて造粒して
成るリチウム含有マンガン酸化物の粒状体をリチウム溶
出能を有する水溶液で処理し、該リチウムを溶出させた
ことを特徴とする粒状リチウム吸着剤、及びこの粒状リ
チウム吸着剤をカラムに充てんしたのち、該カラムにリ
チウムを含む希薄溶液を流してリチウムを吸着させ、次
いで希酸溶液又は酸性を示す酸化性化合物を含有する水
溶液を用いて、前記吸着剤に吸着されたリチウムを溶離
させることを特徴とする希薄溶液からのリチウム回収方
法を提供するものである。
That is, the present invention is characterized in that the lithium-containing manganese oxide particles formed by granulation using an organic polymer substance are treated with an aqueous solution having a lithium elution capacity to elute the lithium. After the adsorbent and the granular lithium adsorbent are packed in a column, a dilute solution containing lithium is flowed through the column to adsorb lithium, and then a dilute acid solution or an aqueous solution containing an oxidizing compound exhibiting acidity is used. The present invention provides a method for recovering lithium from a dilute solution, characterized in that the lithium adsorbed on the adsorbent is eluted.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明のリチウム吸着剤の原料として用いられるマンガ
ン酸化物については、リチウムを含有するものであれば
よく特に制限はないが、LiMn2O4 やLi2MnO3を含むもの
が好ましく用いられる。このようなリチウム含有マンガ
ン酸化物は、例えば多孔性のマンガン含水酸化物にリチ
ウムを吸着させたのち、500℃以上の温度で加熱処理す
る方法(特開昭61−171535号公報)、水酸化酸化マンガ
ンと炭酸リチウムとの混合物を200℃以上の温度におい
て加熱処理する方法(特開昭63−80844号公報)などによ
り製造することができる。このようにして得られたリチ
ウム含有マンガン酸化物の粒径は、通常0.01〜100μm
の範囲にあるが、本発明においては0.1〜10μmの粒
径を有するものが好ましく用いられる。
The manganese oxide used as a raw material of the lithium adsorbent of the present invention is not particularly limited as long as it contains lithium, but one containing LiMn 2 O 4 or Li 2 MnO 3 is preferably used. Such a lithium-containing manganese oxide is prepared by, for example, adsorbing lithium on a porous manganese-containing hydroxide and then heat-treating it at a temperature of 500 ° C. or higher (JP-A-61-171535). It can be produced by a method of heat-treating a mixture of manganese and lithium carbonate at a temperature of 200 ° C. or higher (JP-A-63-80844). The particle size of the lithium-containing manganese oxide thus obtained is usually 0.01 to 100 μm.
However, in the present invention, those having a particle size of 0.1 to 10 μm are preferably used.

本発明の吸着剤において用いられる有機高分子物質につ
いては、バインダーとしての機能を有するものであれば
よく、特に制限はないが、例えばポリ塩化ビニル、アク
リロニトリル共重合体、ポリスルホン、ポリアミド、ポ
リイミド、ポリエステル、アセチルセルロースなどが挙
げられる。
The organic polymer substance used in the adsorbent of the present invention may be any one having a function as a binder, and is not particularly limited, and examples thereof include polyvinyl chloride, acrylonitrile copolymer, polysulfone, polyamide, polyimide, polyester. , Acetyl cellulose and the like.

本発明の粒状吸着剤を製造するためには、まず原料のリ
チウム含有マンガン酸化物を前記有機高分子物質を用い
て造粒し、粒状体を調製するが、この粒状体は、適当な
有機溶媒に該高分子物質を溶解した溶液中に、リチウム
含有マンガン酸化物を添加して十分に混練し、この混練
物を該有機溶媒に対して親和性を有し、かつ該高分子物
質に対する非溶媒中に細管を通して滴下することにより
調製することができる。この粒状体の粒径は、該細管の
径や滴下速度により調節することができる。前記非溶媒
としては、例えば水、アセトン、アルコールなどが挙げ
られるが、取扱いやすさの点から水が好ましい。また、
高分子物質を溶解するのに用いられる有機溶媒は、前記
非溶媒の種類に応じて適宜選ばれ、例えば水を非溶媒と
する場合には、該有機溶媒としては、ジメチルホルムア
ミド、ホルムアミド、ジメチルスルホシド、ジオキサ
ン、テトラヒドロフラン、アセトンなどが好ましく用い
られる。
In order to produce the granular adsorbent of the present invention, first, a lithium-containing manganese oxide as a raw material is granulated by using the organic polymer substance to prepare a granular body, which is prepared by using an appropriate organic solvent. Into a solution in which the polymer substance is dissolved, a lithium-containing manganese oxide is added and sufficiently kneaded, and the kneaded product has an affinity for the organic solvent and is a non-solvent for the polymer substance. It can be prepared by dropping through a thin tube. The particle size of the granular material can be adjusted by the diameter of the thin tube and the dropping rate. Examples of the non-solvent include water, acetone, alcohol and the like, and water is preferable from the viewpoint of easy handling. Also,
The organic solvent used to dissolve the polymer substance is appropriately selected according to the type of the non-solvent. For example, when water is used as the non-solvent, the organic solvent may be dimethylformamide, formamide or dimethylsulfone. Sid, dioxane, tetrahydrofuran, acetone and the like are preferably used.

前記高分子物質の使用量は、リチウム含有マンガン酸化
物に対して、通常5〜60重量%の範囲で選ばれる。こ
の量が5重量%未満では粒状体中に高分子物質が均一に
分散されず、該粒状体の破砕や粉末化が起りやすいし、
60重量%を超えるとマンガン酸化物中のリチウムの溶
出が困難となり吸着性能が低下する傾向が生じる。
The amount of the polymer substance used is usually selected in the range of 5 to 60% by weight based on the lithium-containing manganese oxide. If this amount is less than 5% by weight, the polymer substance is not uniformly dispersed in the granules, and the granules are likely to be crushed or powdered.
If it exceeds 60% by weight, it is difficult to elute lithium in the manganese oxide and the adsorption performance tends to be deteriorated.

このようにして得られた粒状体は十分に水洗したのち、
リチウム溶出能を有する水溶液中に浸せきして処理し、
その中に含まれているリチウムを溶出させる。該リチウ
ム溶出能を有する水溶液としては、酸又は酸性を示す酸
化性物質を含有するpH4以下の水溶液が好ましく用いら
れる。前記酸としては塩酸、硫酸、硝酸、リン酸などの
無機酸が好ましく挙げられるが、特に塩酸が好適であ
る。これらの酸を含有する水溶液の濃度については特に
制限はないが、通常0.05〜0.5M濃度のものが用いられ
る。処理温度は室温で十分であり、また処理時間は酸濃
度にもよるが、通常数時間以上である。
The granular material thus obtained is thoroughly washed with water,
Immerse in an aqueous solution that has the ability to elute lithium and treat it.
The lithium contained in it is eluted. As the aqueous solution having the lithium elution ability, an aqueous solution containing an acid or an oxidizing substance exhibiting acidity and having a pH of 4 or less is preferably used. Examples of the acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, and hydrochloric acid is particularly preferable. The concentration of the aqueous solution containing these acids is not particularly limited, but a concentration of 0.05 to 0.5 M is usually used. The treatment temperature is usually room temperature, and the treatment time is usually several hours or longer, although it depends on the acid concentration.

一方、酸性を示す酸化性物質については、水溶液中で弱
酸性を示す酸化剤であればよく、特に制限はない。この
ようなものとしては、例えばペルオクソ二硫酸塩や臭素
などが挙げられるが、経済性、取扱い性、溶解度などの
点からペルオクソ二硫酸アンモニウムが好適である。こ
の酸性を示す酸化性物質の濃度については特に制限はな
いが、通常0.1〜1M濃度のものが用いられる。処理温
度は通常40℃ないし沸点の範囲で選ばれる。この温度
が40℃未満ではリチウムの溶出に長時間を要し、実用
的でない。
On the other hand, the oxidizing substance exhibiting acidity is not particularly limited as long as it is an oxidizing agent exhibiting weak acidity in an aqueous solution. Examples of such substances include peroxodisulfate and bromine. Ammonium peroxodisulfate is preferable in terms of economy, handleability, solubility and the like. The concentration of the oxidizing substance exhibiting acidity is not particularly limited, but a concentration of 0.1 to 1 M is usually used. The treatment temperature is usually selected in the range of 40 ° C to the boiling point. If this temperature is lower than 40 ° C., it takes a long time to elute lithium, which is not practical.

このようにして、該粒状体をリチウム溶出能を有する水
溶液で処理することにより、マンガン酸化物中に含まれ
ているリチウムの約90%以上が溶出されて、粒状リチ
ウム吸着剤が得られる。
Thus, by treating the granular material with an aqueous solution having a lithium elution ability, about 90% or more of the lithium contained in the manganese oxide is eluted and a granular lithium adsorbent is obtained.

このようにして得られた本発明の粒状リチウム吸着剤を
用いて、希薄リチウム溶液からリチウムを回収するに
は、該粒状リチウム吸着剤をカラムに充てんし、これに
リチウムを含む希薄溶液を流してリチウムを吸着させ、
次いで希酸溶液又は酸性を示す酸化性物質を含む水溶液
を用いて、該吸着剤に吸着されたリチウムを溶離させれ
ばよい。また、本発明の粒状吸着剤はリチウムを含む希
薄溶液及びリチウム脱着用溶液に対する安定性が良好で
あるので、該粒状吸着剤を含有するカラムに、リチウム
を含む希薄溶液とリチウム脱着用溶液とを交互に流すこ
とにより、吸着-脱着の繰り返しが可能である。
Using the thus obtained granular lithium adsorbent of the present invention, in order to recover lithium from a dilute lithium solution, the granular lithium adsorbent is packed in a column, and a dilute solution containing lithium is poured into the column. Adsorb lithium,
Then, the lithium adsorbed on the adsorbent may be eluted using a dilute acid solution or an aqueous solution containing an oxidizing substance exhibiting acidity. Further, since the granular adsorbent of the present invention has good stability against a dilute solution containing lithium and a lithium desorption solution, a column containing the granular adsorbent is provided with a diluted solution containing lithium and a lithium desorption solution. By alternating flow, adsorption-desorption can be repeated.

発明の効果 本発明の粒状リチウム吸着剤は、リチウムに対する選択
吸着性に優れ、かつ吸着容量及び吸着速度が大きい上、
希薄リチウム溶液からの分離回収が容易で、しかも毒性
が少なく、希薄リチウム溶液やリチウム脱着用溶液中で
安定であるなどの特徴を有し、リチウムを含む海水、地
熱水、地下かん水などの希薄溶液からリチウムを回収す
るための実用的なリチウム吸着剤として好適に用いられ
る。
EFFECTS OF THE INVENTION The granular lithium adsorbent of the present invention has excellent selective adsorption properties for lithium, and has a large adsorption capacity and adsorption rate,
It is easy to separate and recover from dilute lithium solution, has less toxicity, and is stable in dilute lithium solution or lithium desorption solution. Dilute lithium-containing seawater, geothermal water, underground brine, etc. It is preferably used as a practical lithium adsorbent for recovering lithium from a solution.

また、本発明の粒状リチウム吸着剤は、前記したような
優れた特徴を有することから、該吸着剤をカラムに充填
し、これにリチウムを含む希薄溶液とリチウム脱着用溶
液とを交互に流し、吸着−脱着を繰り返すことにより、
希薄溶液からリチウムを極めて効率よく回収することが
できる。
Further, the granular lithium adsorbent of the present invention has the excellent characteristics as described above, so that the adsorbent is packed in a column, and a dilute solution containing lithium and a lithium desorption solution are allowed to flow alternately. By repeating adsorption-desorption,
Lithium can be recovered very efficiently from a dilute solution.

なお、リチウム含有マンガン酸化物をあらかじめ酸処理
して得た粉末状リチウム吸着剤を、バインダーとして高
分子物質を用いて、前記のようにして粒状化することは
可能であるが、粉末状リチウム吸着剤は有機溶媒に対し
て不安定であるので、粒状化の際活性点が破壊され、得
られた粒状体はほとんどリチウム吸着性を示さない。
The powdery lithium adsorbent obtained by previously treating the lithium-containing manganese oxide with an acid can be granulated as described above by using a polymer substance as a binder. Since the agent is unstable with respect to the organic solvent, the active sites are destroyed during granulation, and the obtained granule exhibits almost no lithium adsorption property.

実施例 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples.
The invention is in no way limited by these examples.

実施例1 水酸化酸化マンガン500gと炭酸リチウム103gを粉砕混合
したのち、400℃で5時間加熱処理して、リチウム含有
マンガン酸化物を調製した。このものはX線分析の結
果、LiMn2O4相が形成されていることが確認された。
Example 1 500 g of manganese hydroxide oxide and 103 g of lithium carbonate were pulverized and mixed, and then heat-treated at 400 ° C. for 5 hours to prepare a lithium-containing manganese oxide. As a result of X-ray analysis, it was confirmed that a LiMn 2 O 4 phase was formed.

次いで、ポリ塩化ビニル(重合度2000)4gをテトラヒ
ドロフラン40ml及びN,N-ジメチルホルムアミド40ml
に溶解したのち、この溶液に前記リチウム含有マンガン
酸化物10gを加え、十分に混練し、次いでこの懸濁液
を直径1.5mmの細管を通して水中に滴下して粒状体を作
製した。
Then, 4 g of polyvinyl chloride (polymerization degree 2000) is added to 40 ml of tetrahydrofuran and 40 ml of N, N-dimethylformamide.
Then, 10 g of the above-mentioned lithium-containing manganese oxide was added to this solution and kneaded sufficiently, and then this suspension was dropped into water through a narrow tube having a diameter of 1.5 mm to prepare granules.

次に、この粒状体5g を室温で0.25Mの塩酸溶液2中
に浸せきしてリチウムを溶出させた。第1図に粒状体の
リチウム溶出率の経時変化をグラフで示す。
Next, 5 g of this granular material was immersed in 0.25M hydrochloric acid solution 2 at room temperature to elute lithium. FIG. 1 is a graph showing the change over time in the lithium elution rate of the granular material.

この第1図から、処理時間4時間で粒状体中のリチウム
の大部分が溶出され、24時間以上で溶出率はほぼ一定
になることが分かる。
From FIG. 1, it can be seen that most of the lithium in the granular material was eluted after the treatment time of 4 hours, and the elution rate became almost constant after 24 hours.

塩酸処理時間が異なる5種類の粒状吸着剤を製造し、そ
れぞれ1gを直径3.5cmのカラムに充てんし、天然海水を
50ml/分の速度で7日間流して海水からのリチウム吸
着実験を行った。その際のリチウム吸着量を第1表に示
す。
Five kinds of granular adsorbents having different hydrochloric acid treatment times were produced, 1 g of each was packed in a column having a diameter of 3.5 cm, and natural seawater was allowed to flow at a rate of 50 ml / min for 7 days to carry out a lithium adsorption experiment from seawater. Table 1 shows the lithium adsorption amount at that time.

第1表から分かるように、リチウム吸着量は2.3〜2.5mg
/gを示し、良好な結果が得られた。
As can be seen from Table 1, the amount of lithium adsorbed is 2.3 to 2.5 mg.
/ G was shown and good results were obtained.

実施例2 実施例1と同様にしてリチウム含有マンガン酸化物の粒
状体を作製し、この5gを0.5Mペルオクソ二硫酸アンモ
ニウム水溶液300ml中に入れ70℃で処理した。第2図
に処理時間とリチウム溶出率との関係をグラフで示す。
この第2図から、酸性でかつ酸化性を示すペルオクソ二
硫酸アンモニウム〔(NH4)2S2O8〕の場合には、1時間で
溶出率が97%以上となり、極めて短時間の処理でよい
ことが分かった。
Example 2 A lithium-containing manganese oxide granular material was prepared in the same manner as in Example 1, and 5 g of this was placed in 300 ml of a 0.5 M ammonium peroxodisulfate aqueous solution and treated at 70 ° C. FIG. 2 is a graph showing the relationship between the treatment time and the lithium elution rate.
From FIG. 2, it can be seen that in the case of ammonium peroxodisulfate [(NH 4 ) 2 S 2 O 8 ] which is acidic and oxidative, the elution rate becomes 97% or more in 1 hour, and the treatment for an extremely short time is sufficient. I found out.

次に、処理時間の異なった4種類の粒状吸着剤0.5g を
調製後、ただちに直径3.5cmのカラムに充てんし、天然
海水50ml/分の流速で7日間流して吸着実験を行っ
た。また、同一の粒状吸着剤各0.5gを1か月間水中に保
存したのち、同一条件での吸着実験に供した。それらの
結果を第2表に示す。
Next, 0.5 g of four kinds of granular adsorbents having different treatment times were prepared and immediately charged in a column having a diameter of 3.5 cm, and the adsorbent experiment was conducted by flowing natural seawater at a flow rate of 50 ml / min for 7 days. In addition, 0.5 g of each of the same granular adsorbents was stored in water for one month, and then subjected to an adsorption experiment under the same conditions. The results are shown in Table 2.

第2表から分かるように、リチウム吸着量は2.1〜2.6mg
/gであり、ペルオクソ二硫酸アンモニウムによる処理
時間が0.5時間の場合に最も高い吸着量(2.4〜2.6mg/
g)が得られた。また、調製した吸着剤は安定であり、
経時変化による影響はみられなかった。このように、本
発明の粒状吸着剤は優れた性能を示した。
As can be seen from Table 2, the amount of lithium adsorbed is 2.1 to 2.6 mg.
/ G, and the highest adsorption amount (2.4-2.6 mg /) when the treatment time with ammonium peroxodisulfate was 0.5 hours.
g) was obtained. Also, the prepared adsorbent is stable,
There was no effect due to aging. Thus, the granular adsorbent of the present invention showed excellent performance.

実施例3 実施例1と同様にして調製したリチウム含有マンガン酸
化物10g に、ポリ塩化ビニル(重合度700)gをN,N-ジ
メチルホルムアミド50mlに溶解したものを加えて十分
に混練した。これを直径1.5mmの細管を通して水とアル
コールとの混合液中に滴下して粒状リチウムマンガン酸
化物を得た。
Example 3 To 10 g of a lithium-containing manganese oxide prepared in the same manner as in Example 1, a solution prepared by dissolving polyvinyl chloride (polymerization degree: 700) in 50 ml of N, N-dimethylformamide was added and sufficiently kneaded. This was dropped into a mixed solution of water and alcohol through a thin tube having a diameter of 1.5 mm to obtain granular lithium manganese oxide.

次いで、この粒状体5gを0.25M塩酸溶液2中に入
れ、かきまぜながら4日間処理してリチウムを溶出させ
た。第3図に、処理時間とリチウム溶出率との関係をグ
ラフで示す。この第3図から分かるように、塩酸処理時
間1日でリチウム溶出率90%以上が得られたが、それ
以上の時間では、溶出率の変化はほとんどみられなかっ
た。
Next, 5 g of this granular material was put into 0.25 M hydrochloric acid solution 2 and treated for 4 days while stirring to elute lithium. FIG. 3 is a graph showing the relationship between the treatment time and the lithium elution rate. As can be seen from FIG. 3, a lithium elution rate of 90% or more was obtained after a hydrochloric acid treatment time of 1 day, but there was almost no change in the elution rate at a time longer than that.

次に、処理時間の異なる4種類の粒状吸着剤0.5g を実
施例2と同様の条件で吸着実験を行った。その結果を第
3表に示す。
Next, an adsorption experiment was conducted under the same conditions as in Example 2 with 0.5 g of four types of granular adsorbents having different treatment times. The results are shown in Table 3.

リチウム吸着量は2.1〜3.0mg/g を示し、この値は実施
例1及び実施例2と同程度であり、添加ポリ塩化ビニル
の重合度はリチウム吸着性に影響しないことが分かっ
た。
The amount of lithium adsorbed was 2.1 to 3.0 mg / g, which was about the same as in Examples 1 and 2, and it was found that the degree of polymerization of the added polyvinyl chloride did not affect the lithium adsorbability.

実施例4 実施例3のNo.11と同じ条件で調製した粒状吸着剤を用
いて吸着−脱着の繰り返し試験を行った。吸着処理条件
は実施例3と同様な条件で行い、脱着処理は粒状吸着剤
を0.25M塩酸溶液50ml中に8時間浸せきして行った。
その結果を第4表に示す。
Example 4 A repeated adsorption-desorption test was conducted using the granular adsorbent prepared under the same conditions as No. 11 of Example 3. The adsorption treatment conditions were the same as in Example 3, and the desorption treatment was carried out by immersing the granular adsorbent in 50 ml of a 0.25M hydrochloric acid solution for 8 hours.
The results are shown in Table 4.

第4表から分かるように、3回の繰り返し使用において
吸着性能の低下はなく、また脱着率もほぼ一定であり、
良好な結果が得られた。さらに、この処理過程におい
て、粒状吸着剤の微細化はみられず、安定であった。
As can be seen from Table 4, the adsorption performance did not decrease after repeated use three times, and the desorption rate was almost constant.
Good results have been obtained. Further, during this treatment process, the granular adsorbent was not finely divided and was stable.

本発明の粒状吸着剤の使用により、カラム処理が可能と
なり、希薄リチウム溶液からのリチウムの回収を効率よ
く行いうることが分かった。
It has been found that the use of the granular adsorbent of the present invention enables column treatment and enables efficient recovery of lithium from a dilute lithium solution.

比較例 実施例1と同様にして調製したリチウム含有マンガン酸
化物粉体20gを0.25M塩酸溶液2中に入れ、かきま
ぜながら4日間処理してリチウムを溶出させ、粉末状リ
チウム吸着剤を得た。
Comparative Example 20 g of a lithium-containing manganese oxide powder prepared in the same manner as in Example 1 was put into a 0.25 M hydrochloric acid solution 2 and treated for 4 days while stirring to elute lithium to obtain a powdery lithium adsorbent.

次に、この粉末状吸着剤を用いて実施例1と同様な方法
で造粒して粒状体を作製し、この0.5gを直径3.5cmのカ
ラムに充てんしたのち、これに天然海水を50ml/分の
速度で7日間流して海水からのリチウム吸着実験を行っ
た。この結果、リチウム吸着量は0.1mg/g以下であり、
ほとんどリチウム吸着性を示さないことが分かった。
Next, using this powdery adsorbent, a granule was prepared by granulating in the same manner as in Example 1, 0.5 g of this was packed in a column having a diameter of 3.5 cm, and 50 ml of natural seawater was added thereto. A lithium adsorption experiment from seawater was carried out by flowing the mixture at a speed of 7 minutes for 7 days. As a result, the lithium adsorption amount was 0.1 mg / g or less,
It was found that it showed almost no lithium adsorption.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図及び第3図は、それぞれ本発明の粒状リ
チウム吸着剤の異なった製造例におけるリチウム含有マ
ンガン酸化物粒状体をリチウム溶出能を有する水溶液で
処理する際の処理時間とリチウム溶出率との関係を示す
グラフである。
FIG. 1, FIG. 2 and FIG. 3 show the treatment time and the lithium when treating the lithium-containing manganese oxide particulates in the different production examples of the particulate lithium adsorbent of the present invention with the aqueous solution having the lithium elution ability. It is a graph which shows the relationship with an elution rate.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−278347(JP,A) 特開 昭62−83035(JP,A) 特開 昭50−32089(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 61-278347 (JP, A) JP 62-83035 (JP, A) JP 50-32089 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】有機高分子物質を用いて造粒して成るリチ
ウム含有マンガン酸化物の粒状体をリチウム溶出能を有
する水溶液で処理し、該リチウムを溶出させたことを特
徴とする粒状リチウム吸着剤。
1. A granular lithium adsorbent characterized in that a lithium-containing manganese oxide granular material formed by granulation using an organic polymer substance is treated with an aqueous solution having a lithium elution ability to elute the lithium. Agent.
【請求項2】リチウム含有マンガン酸化物がLiMn2O4
はLi2MnO3を含むものである請求項1記載の粒状リチウ
ム吸着剤。
2. The granular lithium adsorbent according to claim 1, wherein the lithium-containing manganese oxide contains LiMn 2 O 4 or Li 2 MnO 3 .
【請求項3】有機高分子物質が水と混合可能な有機溶媒
に可溶で、かつ水又は水とアルコールとの混合溶媒に不
溶なものである請求項1又は2記載の粒状リチウム吸着
剤。
3. The granular lithium adsorbent according to claim 1, wherein the organic polymer substance is soluble in an organic solvent miscible with water and insoluble in water or a mixed solvent of water and alcohol.
【請求項4】リチウム溶出能を有する水溶液が酸又は酸
性を示す酸化性物質を含有するpH4以下のものである請
求項1、2又は3記載の粒状リチウム吸着剤。
4. The granular lithium adsorbent according to claim 1, 2 or 3, wherein the aqueous solution having the ability to elute lithium has a pH of 4 or less containing an acid or an oxidizing substance exhibiting acidity.
【請求項5】請求項1記載の粒状リチウム吸着剤をカラ
ムに充てんしたのち、該カラムにリチウムを含む希薄溶
液を流してリチウムを吸着させ、次いで希酸溶液又は酸
性を示す酸化性化合物を含有する水溶液を用いて、前記
吸着剤に吸着されたリチウムを溶離させることを特徴と
する希薄溶液からのリチウム回収方法。
5. A column is filled with the granular lithium adsorbent according to claim 1, and a dilute solution containing lithium is caused to flow through the column to adsorb lithium, and then a dilute acid solution or an oxidizing compound exhibiting acidity is contained. A method for recovering lithium from a dilute solution, characterized in that the lithium adsorbed on the adsorbent is eluted with an aqueous solution.
JP1141545A 1989-06-02 1989-06-02 Granular lithium adsorbent and lithium recovery method using the same Expired - Lifetime JPH0626661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1141545A JPH0626661B2 (en) 1989-06-02 1989-06-02 Granular lithium adsorbent and lithium recovery method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1141545A JPH0626661B2 (en) 1989-06-02 1989-06-02 Granular lithium adsorbent and lithium recovery method using the same

Publications (2)

Publication Number Publication Date
JPH038439A JPH038439A (en) 1991-01-16
JPH0626661B2 true JPH0626661B2 (en) 1994-04-13

Family

ID=15294462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1141545A Expired - Lifetime JPH0626661B2 (en) 1989-06-02 1989-06-02 Granular lithium adsorbent and lithium recovery method using the same

Country Status (1)

Country Link
JP (1) JPH0626661B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896053B1 (en) * 2007-11-16 2009-05-07 한국지질자원연구원 Ion-Exchange Lithium Adsorbent Using Narrow Fabric Filter and Its Manufacturing Method
WO2014010947A1 (en) * 2012-07-13 2014-01-16 Lee Sang Ro Method for recovering lithium, through electrochemical method, from coal fly ash or waste water generated in process for producing active material for lithium secondary battery
WO2014046359A1 (en) * 2012-09-24 2014-03-27 한국지질자원연구원 Ion-exchange manganese oxide lithium adsorbent using porous structure, and method for preparing same
DE102021105808A1 (en) 2021-03-10 2022-09-15 EnBW Energie Baden-Württemberg AG Process for extracting lithium from brine or seawater
US11794182B2 (en) 2017-08-02 2023-10-24 Lilac Solutions, Inc. Lithium extraction with porous ion exchange beads
US11806641B2 (en) 2016-11-14 2023-11-07 Lilac Solutions, Inc. Lithium extraction with coated ion exchange particles
US11865531B2 (en) 2018-02-28 2024-01-09 Lilac Solutions, Inc. Ion exchange reactor with particle traps for lithium extraction
US11964876B2 (en) 2020-06-09 2024-04-23 Lilac Solutions, Inc. Lithium extraction in the presence of scalants
US11986816B2 (en) 2021-04-23 2024-05-21 Lilac Solutions, Inc. Ion exchange devices for lithium extraction
US12076662B2 (en) 2022-03-28 2024-09-03 Lilac Solutions, Inc. Devices for efficient sorbent utilization in lithium extraction
US12162773B2 (en) 2022-04-01 2024-12-10 Lilac Solutions, Inc. Extraction of lithium with chemical additives

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504190A (en) * 2008-09-29 2012-02-16 韓国地質資源研究院 Lithium recovery device using separation membrane reservoir, lithium recovery method using the same, and lithium adsorption / desorption system using the same
CN101955210B (en) * 2010-09-14 2012-09-05 华东理工大学 Granular lithium ion sieve
KR101334703B1 (en) 2011-12-28 2013-12-05 충남대학교산학협력단 Microsphere for the adsorption of precious metal and Flow through Continuous Deionization
JP7513138B1 (en) * 2023-02-28 2024-07-09 住友金属鉱山株式会社 Method for producing lithium-containing solution
CN116440880B (en) * 2023-03-22 2024-10-18 礼思(上海)材料科技有限公司 Recycling method of manganese lithium ion sieve

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896053B1 (en) * 2007-11-16 2009-05-07 한국지질자원연구원 Ion-Exchange Lithium Adsorbent Using Narrow Fabric Filter and Its Manufacturing Method
WO2014010947A1 (en) * 2012-07-13 2014-01-16 Lee Sang Ro Method for recovering lithium, through electrochemical method, from coal fly ash or waste water generated in process for producing active material for lithium secondary battery
KR101466497B1 (en) * 2012-07-13 2014-12-02 이상로 Method of recovering lithium from fly ashes or waste water derived from active material for lithium secondary battery by using electrochemisty process
WO2014046359A1 (en) * 2012-09-24 2014-03-27 한국지질자원연구원 Ion-exchange manganese oxide lithium adsorbent using porous structure, and method for preparing same
US11806641B2 (en) 2016-11-14 2023-11-07 Lilac Solutions, Inc. Lithium extraction with coated ion exchange particles
US11794182B2 (en) 2017-08-02 2023-10-24 Lilac Solutions, Inc. Lithium extraction with porous ion exchange beads
US11865531B2 (en) 2018-02-28 2024-01-09 Lilac Solutions, Inc. Ion exchange reactor with particle traps for lithium extraction
US11975317B2 (en) 2018-02-28 2024-05-07 Lilac Solutions, Inc. Ion exchange reactor with particle traps for lithium extraction
US11964876B2 (en) 2020-06-09 2024-04-23 Lilac Solutions, Inc. Lithium extraction in the presence of scalants
DE102021105808A1 (en) 2021-03-10 2022-09-15 EnBW Energie Baden-Württemberg AG Process for extracting lithium from brine or seawater
US11986816B2 (en) 2021-04-23 2024-05-21 Lilac Solutions, Inc. Ion exchange devices for lithium extraction
US12076662B2 (en) 2022-03-28 2024-09-03 Lilac Solutions, Inc. Devices for efficient sorbent utilization in lithium extraction
US12162773B2 (en) 2022-04-01 2024-12-10 Lilac Solutions, Inc. Extraction of lithium with chemical additives

Also Published As

Publication number Publication date
JPH038439A (en) 1991-01-16

Similar Documents

Publication Publication Date Title
JPH0626661B2 (en) Granular lithium adsorbent and lithium recovery method using the same
CN107999033B (en) A polydopamine/aminated carbon nanotube/sodium alginate microsphere for adsorbing arsenic
JPH0688277A (en) Lithium recovering method and electrode used therefor
JP3706842B2 (en) Adsorption method of lithium ion from aqueous solution containing lithium by adsorbent
JP3210956B2 (en) Granular lithium adsorbent and method for producing the same
JP2003245542A (en) Lithium adsorbent, method for producing the same, and method for collecting lithium
JPS61283342A (en) Lithium adsorbent and its preparation
JP2002282684A (en) Method for producing porous granular lithium adsorbent
KR950009706B1 (en) Method for producing metal element adsorbent and method for adsorptive separation of metal elements by the adsorbent
WO2011115742A1 (en) Methods of producing metal oxides, a method of producing adsorption media including the same, and a precursor of an active component including the metal oxide
JP3646156B2 (en) Film-like lithium adsorbing material, method for producing the same, and method for recovering lithium using the same
JP2013188716A (en) Magnetic adsorbent
CN109794227A (en) A kind of preparation method of adsorption material for removing bromine iodide in waste water
JPS61171535A (en) Lithium adsorbent, its preparation and recovery of lithium using said adsorbent
JP3321602B2 (en) Selective lithium separating agent and method for producing the same
JPH038443A (en) Lithium adsorbent and method for recovering lithium with the same
JP2850309B2 (en) Method for producing lithium adsorbent
JPH06106031A (en) Lithium isotope separating agent and separation of lithium isotope using the same
JP4637737B2 (en) Regeneration method of boron adsorbent
JP2641239B2 (en) Silver adsorbent and method of using the same
JPH01155947A (en) Permission tannin-aldehyde-water or persimmon tannin-acid-water hydrated gel composition and method for adsorbing nuclear fuel element and organic matter containing iron using said composition
JPH0357814B2 (en)
JP2000325779A (en) Composite lithium adsorbent and manufacture thereof
JPS63287547A (en) Adsorbent for fluoride ion
JP2001113164A (en) Novel lithium adsorbent and production method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term